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Since proving adenosine triphosphate (ATP) functions as a neurotransmitter in

neuron/glia interactions, the purinergic system has been more intensely studied within

the scope of the central nervous system. In neurological disorders with associated

motor symptoms, including Parkinson’s disease (PD), motor neuron diseases (MND),

multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), Huntington’s Disease (HD),

restless leg syndrome (RLS), and ataxias, alterations in purinergic receptor expression

and activity have been noted, indicating a potential role for this system in disease etiology

and progression. In neurodegenerative conditions, neural cell death provokes extensive

ATP release and alters calcium signaling through purinergic receptor modulation.

Consequently, neuroinflammatory responses, excitotoxicity and apoptosis are directly

or indirectly induced. This review analyzes currently available data, which suggests

involvement of the purinergic system in neuro-associated motor dysfunctions and

underlying mechanisms. Possible targets for pharmacological interventions are also

discussed.

Keywords: Parkinson’s disease, amyotrophic lateral sclerosis (ALS), multiple sclerosis, neurodegeneration, ataxia,

Huntington’s disease, restless leg syndrome, purinergic receptors

INTRODUCTION

The unexpected discovery and description of non-adrenergic and non-cholinergic inhibitory
nerves working through adenosine triphosphate (ATP) and its metabolites gave rise to the
introduction of the purinergic system concept in the early 70’s (Burnstock et al., 1970; Burnstock,
1972). Later, purines were also described as important co-transmitters in both central (CNS)
and peripheral nervous systems, as they are able to modulate and be modulated by many other
neurotransmission systems and signaling pathways (Burnstock, 1997, 2009; Abbracchio et al.,
2009).

After proposal of purinergic neurotransmission, the following decades were dedicated to the
isolation and characterization of the two families of purinergic receptors, which are distinguished
by their main agonists: P1 receptors, a family of protein G-coupled metabotropic adenosine
(A1, 2AA2A, A2B, A3) receptors, and P2 receptors. P2 receptors are sub-divided into P2X(1–
7) channels, activated by ATP, and G protein-coupled metabotropic P2Y(1–12) receptors,
which show sensitivity to ATP, adenosine diphosphate (ADP), uridine di- and triphosphate
(UDP and UTP, respectively), or UDP-glucose depending on the receptor subtype. Beyond
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receptors, membrane nucleotide/nucleoside transporters and
channels (e.g., pannexins) as well as ectonucleotidases play
important roles in purinergic signaling. These are responsible for
the exchange of purines between intracellular and extracellular
environments and their enzymatic extracellular conversion,
respectively (Zimmermann et al., 1998; Zimmermann, 2006;
Scemes et al., 2007; Abbracchio et al., 2009; Lapato and Tiwari-
Woodruff, 2017).

P2X receptors are ion channels that promote a non-selective
exchange of cations, mainly Ca2+, Na+, Mg2+, and K+. ATP-
activation of P2X receptors is especially important for Ca2+-
induced intracellular signaling pathways (Surprenant and North,
2009; Puchałowicz et al., 2015). P2Y and adenosine receptors
are coupled to Gq/Gi/Gs proteins, depending on the receptor
subtype (Puchałowicz et al., 2015). The activation of Gq
proteins triggers a signaling cascade through phospholipase
C/inositol-1,4,5-triphosphate (PLC/IP3), resulting in the release
of Ca2+ from the endoplasmic reticulum into the cytoplasm.
Gs/Gi protein activation, however, will work through the
stimulation/inhibition of adenylate cyclase, respectively, with
subsequent up- or down-regulation of cyclic AMP (cAMP)
production. Final effects of purinergic receptor-promoted
signaling will depend on the cell type and other intra-/inter-
cellular conditions, as i.e., in physiological embryonic and adult
neurogenesis (Oliveira et al., 2016), and in various pathological
scenarios, such as inflammatory (Beamer et al., 2016; Madeira
et al., 2017; Przybyła et al., 2018), oncological (Allard et al.,
2016; Vijayan et al., 2017; Whiteside, 2017; Kazemi et al., 2018),
neurological (Burnstock et al., 2011; Stockwell et al., 2017),
metabolic (Lindberg et al., 2015; Csóka et al., 2017; Parpura et al.,
2017; Tozzi and Novak, 2017; Labazi et al., 2018), psychiatric
(Cunha, 2008; Lindberg et al., 2015; Ortiz et al., 2015; Krügel,
2016; Cheffer et al., 2017; Oliveros et al., 2017), cognitive (Illes
and Verkhratsky, 2016), and peripheral neuromuscular and/or
neuromotor diseases (Robitaille, 1995; Kalmar, 2005; Burnstock
et al., 2013; Jiménez et al., 2014; Bogacheva and Balezina, 2015;
Puchałowicz et al., 2015; Safarzadeh et al., 2016).

In the CNS, extracellular nucleotides also participate as
messengers for communication between neuronal and non-
neuronal cells. As key players in neuron-glia interactions
and microglial activation (Fields and Burnstock, 2006; Cunha,
2008, 2016; Färber et al., 2008; Boison et al., 2010; Lecca

Abbreviations: 6-OHDA, 6-hydroxydopamine; ALS, amyotrophic lateral
sclerosis; ATP, ADP, AMP, adenosine tri-, di-, monophosphate; BBG, Brilliant Blue
G; BDNF, brain-derived neurotrophic factor; BzATP, 2′-3′-O-(benzoyl-benzoyl)
ATP; cAMP, cyclic AMP; CNS, central nervous system; COX2, cyclooxigenase 2;
EAE, encephalomyelitis; HD, Huntington Disease; Htt, huntingtin protein; IL-
1β/2/6/17A/23, Interleukin 1β/2/6/17A/23; iPSC, induced pluripotent stem cells;
L-DOPA, L-3,4-dihydroxyphenylalanine; LPS, lipopolysaccharide; MAPK/ERK,
mitogen activated protein kinases/extracellular signal-regulated kinases signaling
induction pathway; MNs, motor neurons; MND, motor neuron diseases; MPP+,
1-methyl-4-phenylpyridinium; MS, multiple sclerosis; NOX2, nicotinamide
adenine dinucleotide phosphate-oxidase 2; PBMC, peripheral blood mononuclear
cells; PD, Parkinson’s disease; QA, quinolinic acid; ROS, Reactive oxygen species;
RLS, Restless leg syndrome; SCA, Spinocerebellar ataxia; SMA, spinal muscular
atrophy; SNc, substantia nigra pars compacta; SOD1 (G93A), superoxide
dismutase 1 (glycin-93 to serine)-mutant mouse; TNF-α, tumor necrosis factor
alpha; TrkB, tropomyosin kinase receptor b; UTP, UDP, uridine tri-, diphosphate.

et al., 2012; Tsuda and Inoue, 2016; Inoue, 2017; Tsuda,
2017), both adenosine and ATP are essential modulators of
neuroinflammatory responses, excitotoxicity, oxidative stress
and cell death, especially via A2A and P2X7 receptors activity,
respectively (Cunha, 2016; Borea et al., 2017; Faas et al., 2017;
Faria et al., 2017; He et al., 2017; Lu et al., 2017; Miras-Portugal
et al., 2017; Vuorimaa et al., 2017). Differently from other
P2X receptors, the P2X7 receptor subtype needs higher ATP
concentrations for channel opening and Ca2+ influx and remains
longer activated, recruiting pannexin pores (Volont et al., 2012;
Sun et al., 2013). Through pannexin pores, large amounts of ATP
are released into the extracellular environment, stimulating other
purinergic receptors, and signaling cascades widely associated
with pathological conditions (Bartlett et al., 2014), such as the
A2A receptor, which is activated by adenosine released from
damaged cells or produced from ATP hydrolysis (Cunha, 2016).

Here, we explore the importance of purinergic signaling
in neurological diseases with motor symptoms, including
Parkinson’s disease (PD), motor neuron diseases (MND),
multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS),
Huntington’s Disease (HD), restless leg syndrome (RLS), and
ataxias. We discuss common mechanisms already known to
be involved in these conditions (Table 1), revise the role of
the purinergic system in demyelination processes (Figure 1),
and discuss new insights for further neural pathologies that
might have motor impairments to identify potential targets for
pharmacological therapies to decelerate disease progression and
improve motor activity.

MOTOR NEURON DISEASES

Motor neurons (MNs) are classified in different categories
according to their soma location, electrical speed transmission,
and other cellular and physiological characteristics. Regarding
the location of their somas, MNs can be classified as upper
or lower MNs. Lower MNs have their soma located either
in the brainstem—where they control head and neck muscle
contraction through cranial nerves—and in the anterior horn
of the spinal cord—where their axons innervate and control
skeletal muscle contraction through spinal nerves. Upper MNs
have somas located in the primary motor cortex and axons that
project either to the brainstem or to the spinal cord through
corticobulbar and corticospinal tracts, respectively. Upper MNs
axons in the brainstem interact with lower MNs, regulating their
control of head and neck contraction, while upper MNs project
to the spinal cord synapse with lower MNs that innervate skeletal
muscles, controlling their contraction (Rezania and Roos, 2013;
Verschueren, 2017).

MND are neurodegenerative conditions that affect MNs and
result in motor dysfunctions without compromising sensorial
neurons. MND are classified according to the damage location
in relation to the spinal cord. Diseases affecting lower MNs
and upper MNs are known as lower MNDs and upper
MNDs, respectively. Lower MNDs include progressive muscular
atrophy, spinal muscular atrophy (SMA), spinal and bulbar
muscular atrophy, and monomelic amyotrophy (Hirayama
disease). However, the most prevalent subtype of MND is ALS,
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TABLE 1 | Evidence of purinergic receptors involvement in neurological diseases with major motor dysfunctions.

Disease Purinergic

involvement

Model/Sample Drug Effects References

ALS P2X4 receptor positive

activity modulation

MNs culture/SOD1 (G93A)

mice

Preincubation with

Ivermectin (10mM);

Neuroprotective against

glutamate-induced excitotoxicity;

Andries et al.,

2007

Ivermectin 12mg per liter of

water during 70 days

Improves lifespan and increases

ventral horn MNs numbers

P2X4 receptor SOD1 (G93A) rats – Strong immunoreactivity in the ventral

horns

Casanovas et al.,

2008

P2X7 receptor

activation

Microglial cells derived from

transgenic SOD1 (G93A)

mice;

BzATP (10 and 100µM) Increase in NOX2 activity and ROS

synthesis

Apolloni et al.,

2013b

BzATP (10µM) Transition from microglial M2 to M1

activated phenotype, increased

TNF-α production and COX2

activation

D’Ambrosi et al.,

2009

Microglia/Neuron co-culture BzATP (10µM) Cell death due to ROS and NOS

production

Skaper et al.,

2006; D’Ambrosi

et al., 2009

Cultured rat spinal cord

MNs

ATP (1–100µM) MNs cell death through

peroxinitrite/Fas death pathway

Gandelman et al.,

2013

MNs co-cultured with

SOD1G93 astrocytes

ATP (100µM, 5 days) or

BzATP (10µM, 48 h)

Astrocytes become neurotoxic for

MNs through increased oxidative

stress

Gandelman et al.,

2010

P2X7 receptor deletion P2X7(−/−)/SOD1-G93A

mice

– Accelerates disease onset and

progression, increased

pro-inflammatory markers as well as

astrogliosis, microgliosis, and MNs

cell death

Apolloni et al.,

2013a

A2A receptor

antagonism

SOD1 (G93A) mice Caffeine, 1.5 mg/day for 70

days, in drinking water

Shortened mice survival Potenza et al.,

2013

Rat spinal cord cells culture Chronic enprofylline

treatment

Decreased MNs susceptibility to

excitotoxic environment through

inhibition of BDNF-promoted death

pathway

Mojsilovic-Petrovic

et al., 2006

A2A receptor

expression or levels

SOD1 G93A mice – Decreased expression in spinal cord Potenza et al.,

2013

SOD1 G93A mice and

end-stage humans with ALS

– Increased expression in spinal cord of

symptomatic mice and patients

Ng et al., 2015

ALS patient lymphocytes – Increased density in lymphocytes,

positively related with clinical status of

patients

Vincenzi et al.,

2013

A2A receptor activation SOD1 G93A mice CGS21680, 5 mg/kg, i.p.,

during 4 weeks

Delays ALS onset possibly by

stimulating non-truncated forms of

the TrkB receptor

Yanpallewar et al.,

2012

NSC34 cells T1–11 (30µM) Normalized abnormal cellular

redistribution of human antigen R,

found in MNs of ALS patients

Liu et al., 2015

A1 and A2A receptors SOD1 G93A mice

presymptomatic (4–6 weeks

old) symptomatic (12–14

weeks old)

N(6)-cyclopentyladenosine

(50 nM); CGS 21680 (5 nM)

Impaired cross-talk between

receptors in presymptomatic mice,

increased A1 receptor activation in

symptomatic mice

Nascimento et al.,

2015

(Continued)
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TABLE 1 | Continued

Disease Purinergic

involvement

Model/Sample Drug Effects References

Spinal

muscular

atrophy

ATP response iPSC-derived astrocyte

culture from SMA patients

ATP (10µM) Increased basal intracellular calcium

levels accompanied by a reduced

calcium response to ATP application

McGivern et al.,

2013

Multiple

sclerosis

P2X7 receptor

expression and protein

levels

Cultured PBMC from MS

patients

Glatiramer acetate

(50µg/ml, 48 h) BzATP

(300µM, 30min)

Glatiramer acetate, used to treat MS

patients, reduced P2X7 receptor

expression in BzATP-stimulated cells

Caragnano et al.,

2012

MS patients’ spinal cords – Increased P2X7 receptor protein

levels in microglia

Yiangou et al.,

2006

EAE rat brains – Increased P2X7 receptor expression

related to synaptosomal fraction in

the symptomatic phase and to the

glial fraction in recovered rat brains

Grygorowicz et al.,

2011

P2X7 receptor

polymorphisms

MS patients – Patients with T allele of rs17525809

polymorphism present a more

prominent activity, which may

contribute to MS development

Oyanguren-Desez

et al., 2011

P2X7 receptor deletion P2X7R−/− EAE mice model – Enhanced mouse susceptibility to

EAE

Chen and

Brosnan, 2006

Suppressed clinical symptoms in EAE

mice

Sharp et al., 2008

P2X7 receptor

antagonism

EAE mouse model BBG (10 mg/kg daily,

delivered from pellets,

during 20 days)

Antagonism improved symptoms and

promoted remyelination

Matute et al., 2007

P2Y12 receptor levels MS patients cortical tissue – Reduced protein levels near

demyelination areas

Amadio et al.,

2010

P2Y12 receptor

deletion

P2Y12 knockout EAE mice – Mice developed more severe EAE

related to higher release of IL-23

cytokines and imbalanced Th-cell

subtype frequencies

Zhang et al., 2017

A2A receptor

antagonism

MS patients Coffee consumption

exceeding 900mL daily

Reduced MS risk in comparison to

control group

Hedström et al.,

2016

A1 receptor deletion A1AR−/− EAE mice Induced severe EAE, with more

prominent demyelination, axonal

injury, and microglia activation

Tsutsui et al., 2004

A1 receptor activation A1AR−/− EAE mice Caffeine (2 mg/kg) +

adenosine amine congener

(10 µg/kg), subcutaneous

pump, during 25 days

Reduced EAE severity induced by A1
receptor expression deletion

Tsutsui et al., 2004

Cultured PBMC from MS

patients

R-phenylisopropyl-

adenosine

(1mM)

Inhibited IL-6 production Mayne et al., 1999

Parkinson’s

disease

P2X1 receptor

antagonism

H4 cells overexpressing

α-synuclein

Pre-treatment with NF449

(1–5µM) followed by 48 h

treatment with ATP (3mM,

every hour)

Prevented ATP-induced α-synuclein

aggregation in a dose dependent

manner

Gan et al., 2015

P2X7 receptor

antagonism

6-OHDA lesioned rats A-438079 (30 mg/kg, i.p.,

before lesion establishment)

Prevented depletion of dopamine in

striatum without reducing

dopaminergic neuron cell death

Marcellino et al.,

2010

(Continued)
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TABLE 1 | Continued

Disease Purinergic

involvement

Model/Sample Drug Effects References

BBG (45 mg/kg, i.p., every

48 h during 2 weeks, before

lesion establishment)

Prevented loss of

tyrosine-hydroxylase immunoreactivity

and attenuated rotational behavior

and memory deficit

Carmo et al., 2014

BBG (50 mg/kg, i.p., daily,

during 1 week, after lesion

establishment)

Reverted dopaminergic neurons loss

in substantia nigra and rotational

behavior

Ferrazoli et al.,

2017

BV2 microglia cells Pretreatment with BBG

(1µM)

Antagonism and/or deletion of P2X7

receptor blocked the interaction

between α-synuclein and P2X7

receptors and decreased ROS

production induced by α-synuclein

Jiang et al., 2015

SH-SY5Y cells Pretreatment with PPADS

(100µM) or AZ 11645373

(10µM)

Prevented abnormal calcium influx

induced by α-synuclein

Wilkaniec et al.,

2017

P2X7 receptor

polymorphism

PBMC from PD patients – 1513A>C (rs3751143) polymorphism

increased PD risk by facilitating pore

formation and cell death

Liu et al., 2013

P2Y6 receptor

antagonism

SH-SY5Y cells Pretreatment with

MRS2578 (1.0µM)

Decreased ROS production and other

inflammatory markers induced by

MPP+

Qian et al., 2017

A2A receptor

antagonism

6-OHDA lesioned rats 8-ethoxy-9-ethyladenine (8

mg/kg, daily, during 28

days, minipumps)

Enhanced effect of low doses of

L-DOPA without increased dyskinesia

Fuzzati-Armentero

et al., 2015

MPTP treated monkeys KW-6002 (10.0 mg/kg,

orally)

Increased effect of D2 receptor

agonist quinpirole, D1 receptor

agonist SKF80723 and low doses of

L-DOPA without increased dyskinesia

Kanda et al., 2000

PD patients with PD gene

risk variant LRRK2 R1628P

Caffeine intake through

coffee and tea consumption

Decreased PD risk in subjects with

LRRK2 variant R1628P

Kumar et al., 2015

PD patients with GRIN2A

variant rs4998386-T allele

Caffeine intake through

coffee consumption

Increased protective effect of GRIN2A

variant rs4998386-T allele

Hamza et al.,

2011;

Yamada-Fowler

et al., 2014

A2A receptor knockout

mice, SH-SY5Y cells

SCH 58261, ZM 241385 Decreased α-synuclein aggregation,

prevent neuronal death induced by

extracellular α-synuclein and restrain

overactivation of NMDA receptors

Ferreira et al.,

2015

Brain slices from mice

treated with MPTP

Preladenant (5µM) Facilitated beneficial microglial

responses to injury

Gyoneva et al.,

2014

Rats treated with LPS Caffeine 10 and 20 mg/kg;

KW6002 1.5 and 3 mg/kg;

i.p. for 6 days

Prevented striatal dopaminergic

deficit and hydroxyl radicals release

Gołembiowska

et al., 2013

A2A receptor number Mice injected with α-Syn

fibrils

– Hippocampal A2A receptors number

increased after injections of

α-synuclein in mice

Hu et al., 2016

A2A receptor

polymorphisms

PD patients – rs3032740 and rs5996696

polymorphisms are inversely linked to

PD risk

Popat et al., 2011

(Continued)
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TABLE 1 | Continued

Disease Purinergic

involvement

Model/Sample Drug Effects References

Huntington’s

disease

P2X7 receptor

antagonist

Tet/HD94 and R6/1 BBG (45.5 mg/kg, i.p.,

every 48 h during 28 days)

Reduce body weight loss, improve

motor functions, and prevent

neuronal loss

Diaz-Hernandez

et al., 2009

A1 receptor agonist 3-NPA mouse and rat model Pre-treatment of R-PIA

(1.75 mg/kg, i.p.) 15min

prior 3-NPA application

Reduction of seizure but not

prevention of neuronal loss

Zuchora and

Urbañska, 2001

3-NPA rat model ADAC (100 µg/kg, i.p., daily

for 2 days) 3 days after

3-NPA

Reduction in striatal lesion and

degeneration, improvement of motor

functions

Blum et al., 2002

A1 receptor antagonist Intracraneal application

malonate 6 µmol in

Swiss-Webster mice and 3

µmol Sprague Dawley rats

Pre-treatment with CPX 1

mg/kg, i.p.

Stimulate DAergic and GABAergic

neuron death

Alfinito et al., 2003

A2A receptor

polymorphisms

1876 C/T Silent mutation in A2A receptor Dhaenens et al.,

2009

1876 T/T Accelerates HD onset by 3.5 years

rs2298383 Early onset of HD Taherzadeh-Fard

et al., 2010

A2A receptor

antagonist

Intracranial application

malonate 6 µmol in

Swiss-Webster mice and 3

µmol Sprague Dawley rats

Pre-treatment with DMPX 5

mg/kg, i.p.

Provided protection to DAergic and

GABAergic cells against malonate

Alfinito et al., 2003

Human <190 mg/day caffeine Accelerates HD onset. Simonin et al.,

2013

3-NPA mouse model 8-(3-chlorostyryl) caffeine (5

mg/kg and 20 mg/kg, i.p.)

2x day for 5 days prior

3-NPA application

Reduction in striatal damage Fink et al., 2004

R6/2 mice SCH58261 (0.01 mg/kg,

i.p.)

Reduction in striatal BDNF levels at

earlier HD stage

Potenza et al.,

2007

SCH58261 (50 nM):

microdialysis application in

striatum)

Reduction of glutamate and

adenosine level

Gianfriddo et al.,

2004

Application of SCH58261

(0.01 mg/kg, i.p.) daily for 7

days at age of 5 weeks

Reduced NMDA-induced toxicity and

emotional responses

Domenici et al.,

2007

Corticostriatal slices from

R6/2 mice

ZM241385 (100 nM) Prevention of BDNF positive effect on

NMDA toxicity

Martire et al., 2010

ST14/SQ120 cells

Primary rat striatal culture Pre-treatment with SCH

58261 (30 nM) prior bath

application QA 900µM

Enhanced QA-induced increase in

intracellular calcium concentration

Popoli et al., 2002

QA rat model Pre-treatment with SCH

58261 (0.01 mg/kg, i.p.)

prior to QA application

Blocked the effect of QA on striatal

gliosis, EEG changes, motor activity

and glutamate levels

Popoli et al., 2002

DMPX (0.2 µg, i.p.)

application 5min after QA

application

Blocked QA-induced EEG

abnormalities in frontal cortex

Reggio et al., 1999

(Continued)
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TABLE 1 | Continued

Disease Purinergic

involvement

Model/Sample Drug Effects References

Pre-treatment with

SCH58261 (0.01 mg/kg,

i.p.) 20min before QA

application

Reduction in rearing behavior and

anxiety levels

Scattoni et al.,

2007

SCH58261 (0.01 and 1

mg/kg, i.p.) daily for 1 or 3

weeks

Reduction in striatal BDNF levels Potenza et al.,

2007

Transgenic HD rat model KW-6002 (1 and 3 mg/kg,

i.p.)

No beneficial locomotor activity at 6

and 12 month age

Orrú et al., 2011

SCH 442416 (0.3 and 1

mg/kg, i.p.)

No significant effect in reducing

electromyography responses

A2A receptor agonist Primary rat striatal culture Pre-treatment with

CGS21680 (100 nM.) prior

bath application QA 900µM

Reduced QA-induced increase in

intracellular calcium concentration

Popoli et al., 2002

Corticostriatal slices from

R6/2 mice

CGS21680 (30 nM) Beneficial effect against

NDMA-induced toxicity

Ferrante et al.,

2010

R6/2 mice CGS21680 (5 µg/kg, i.p.)

daily for 2 weeks

Delay decline in motor performance

and inhibit reduction in brain weight

Chou et al., 2005

CGS21680 (0.5 mg/kg, i.p.)

daily for 3 weeks

Brain region dependent alteration in

NMDA glutamate receptor subunits

density

Ferrante et al.,

2010

CGS21680 (0.5 mg/kg, i.p.) No changes in behavior compared to

wild type

Martire et al., 2007

Corticostriatal slices from

R6/2 mice

CGS21680 (5 µg/kg, i.p.)

daily for 2 weeks

Brain region dependent alteration in

NMDA subunits

Ferrante et al.,

2010

A2A receptor knockout N171-82Q mouse model – Aggravate survival and motor

functions and decrease in specific

markers for sub-population medium

spiny neurons

Mievis et al., 2011

3-NPA mouse model A2A receptor knockout mice

treated with 3-NPA

Reduction in striatal damage Fink et al., 2004

Ataxia A2A receptor

antagonism

SCA3 mice model Caffeine (1 g/L, drinking

water during 2 weeks)

Decreased synaptotoxicity and

reactive gliosis

Gonçalves et al.,

2013

(TgMJD) mice Caffeine (1 g/L, drinking

water during 2 weeks)

Prevented motor symptoms and

cognitive impairment

Gonçalves et al.,

2013

P2X receptors CHO-K1 cells with mutant

PKCγ

ATP (1mM) Increased damaging aggregation of

mutant PKCγ

Seki et al., 2005

Restless leg

syndrome

A2A receptor Iron deficient mice – Increased in striatal presynaptic

neurons

Gulyani et al.,

2009

A1 and A2A receptors Iron deficient mice – Decreased A1 and D2 receptor

density in animals with mild,

moderate and severe deficiency;

increased pre-synaptic A2A receptor

density in the latter

Quiroz et al., 2016

in which both upper and lower MNs are affected and where
non-neuronal cells as microglia and astrocytes play a central role
in its pathogenesis and progression (Rezania and Roos, 2013;
Verschueren, 2017).

Amyotrophic Lateral Sclerosis
ALS is the main motor disorder in adulthood. It is characterized
by a progressive loss of MNs from the motor cortex, brainstem,
and spinal cord (Kiernan et al., 2011). As a result of this neuronal
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FIGURE 1 | Proposed mechanism for glial purinergic dysfunction leading to loss of myelination and cell death. In acute inflammation scenarios, microglial activation

upregulates P2Y12 receptor expression and activity (blue), stimulating microglial motility to the injury site. The activation of these receptors reduces P2Y1 receptor

(red) expression in astrocytes, increasing reactive astrogliosis and promoting neuroprotection. Chronic inflammation, as observed in motor neuron diseases (MND),

unable of upregulating microglial P2Y12 receptor expression results in constant astrocytic P2Y1 receptor activation and reduction of A1 receptor expression (yellow).

These events result in stimulating tumor necrosis factor α (TNF-α) release, which in turn induces A2B receptor activation (orange) and release of IL-6. These

detrimental factors induce oligodendrocyte death and neuron demyelination, aggravating the pathological scenario.

loss, muscle weakness, spasticity, and muscle atrophy occur,
inducing progressive paralysis. ALS is a very aggressive pathology
that usually evolves in a fast-progressive way. Patients have a
lifespan of 2–5 years after diagnosis. Death is frequently due
to breathing failure. Most of ALS cases (90%) are sporadic,
while a small proportion (10%) is linked to genetic mutations
that usually follow an autosomal dominant transmission (Harms
and Baloh, 2013; Renton et al., 2013). Cognitive impairment
is also associated with ALS. In fact, 30% of ALS cases
develop frontotemporal dementia (Lomen-Hoerth, 2011). The
C9ORF72 mutation is responsible for the main part of ALS and
frontotemporal dementia inherited cases (DeJesus-Hernandez
et al., 2011).

The cause of and reasons for MNs death are still unknown.
Particularly, it is still not known why this specific neuronal
population is affected. However, intense research performed
throughout the last two decades has uncovered several hallmarks
and molecular mechanisms involved in ALS neurodegeneration.
Among them, neuroinflammation, which is understood to be
a maintained immune system response in the CNS, plays
a central role in the pathogenesis of ALS. This response
includes astrocytic and microglial activation and lymphocyte

infiltration (Barbeito et al., 2010). There is strong evidence for
a compromised energetic metabolism in ALS. Several genes
involved in themitochondrial electron transport chain are altered
in their mRNA expression levels (Ferraiuolo et al., 2007, 2011;
Lederer et al., 2007; Raman et al., 2015). Further, numerous
studies reported structural and functional abnormalities in
mitochondria, resulting in increased reactive oxygen species
(ROS) and decreased ATP production (Jung et al., 2002;Mattiazzi
et al., 2002; Menzies et al., 2002; Wiedemann et al., 2002; Browne
et al., 2006), with supposed impacts on purinergic signaling.
Here, we will discuss the contribution of purinergic signaling in
ALS etiology.

Purinergic Involvement in ALS

P2X receptors
ATP mediates intercellular communication by acting as a
messenger between neurons and glia via activation of several
purinergic P2 receptors. The involvement of purinergic receptors
in ALS has been documented, such as the P2X4 receptor
subtype, which is implicated in neuroprotection (Andries et al.,
2007) and microglial activation (Tsuda et al., 2003). Positive
allosteric modulation of P2X4 receptor activity with Ivermectin
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and pre-incubation with low ATP concentration has shown to
induce neuroprotection against glutamate-induced excitotoxicity
in MNs cultures, a phenotype observed in several ALS models.
Allosteric P2X4 receptor activation also improved the lifespan of
superoxide dismutase 1 (SOD1) transgenic mice harboring the
G92A mutation (Gly-93 to Ala)—a conventional animal model
of ALS—by 10% and increased the number of ventral horn MNs
in the spinal cord (Andries et al., 2007). Ventral horns are the
main neurodegenerative regions affected in ALS. These findings
indicate that purinergic receptors modulate excitability, exerting
neuroprotection in ALS (Miles et al., 2002). However, it has been
described that the allosteric P2X4 receptor activator Ivermectin
acts on AMPA receptors inhibiting glutamate excitotoxicity,
which could be also responsible for these observed beneficial
effects.

Interestingly, the P2X4 receptor has been suggested as a novel
marker for non-typical apoptotic and degenerating MNs both in
the spinal cord and in other degenerated areas, which had not
been previously linked to ALS. P2X4 receptor-immunoreactivity
was enhanced in the ventral horns of SOD1 (G93A) transgenic
rats. These P2X4 receptor-positive cells were surrounded by
microglia with a neuronophagic phenotype (Casanovas et al.,
2008). Moreover, Tsuda et al. proved that the P2X4 receptor is
expressed selectively in activated microglia after neural injury
in the spinal cord and that this expression is required for
neuropathic pain (Tsuda et al., 2003). The same study showed
that pharmacological inhibition of P2X4 receptors induced a
reduction in neuropathic pain, indicating a direct relationship
between P2X4 receptor activation and microglial reactivity
(Tsuda et al., 2003). Further studies regarding the role of P2X4
receptors in activated and resting microglia are needed for
elucidating the participation of the P2X4 receptor in ALS etiology
and progression.

The P2X7 receptor is expressed in microglia (Ferrari
et al., 1996), spinal cord neurons (Deuchars et al., 2001;
Wang et al., 2004), astrocytes (Ballerini et al., 1996), and
oligodendrocytes (Matute et al., 2007). Activated microglia from
the dorsolateral white matter in the spinal cord of sporadic ALS
patients presented increased P2X7 receptor immunoreactivity
(Yiangou et al., 2006). This receptor has been tightly linked
to neuroinflammation. In vitro studies also showed increased
densities of P2X7 and P2X4 receptors, upregulation of P2Y6
receptor expression, and decreased ectonucleotidase CD39
hydrolytic activity in transgenic mice SOD1 (G93A)-derived
microglia, all indicating a potentiation of the purinergic system
in ALS. In fact, SOD1 (G93A) microglia treated with ATP
or 2′-3′-O-(benzoyl-benzoyl) ATP (BzATP), a potent P2X7
receptor agonist, presented a prominent transition from the
microglial M2 to the M1 activated phenotype, accompanied by
augmented production of tumor necrosis factor alpha (TNF-
α) and cycloxygenase 2 (COX2) (D’Ambrosi et al., 2009).
BzATP treatment of SOD1 (G93A) microglia also increased the
presence of inflammatory markers, such as nicotinamide adenine
dinucleotide phosphate-oxidase 2 (NOX2) activity and ROS
production, indicating damaging effects resulting from P2X7
receptor activation (Apolloni et al., 2013b). As expected, P2X7
receptor activation in microglia-neuronal co-culture induced

cell death by ROS and reactive nitrogen species generation
(Skaper et al., 2006; D’Ambrosi et al., 2009). Complementary
to the involvement of P2X7 receptors, Parisi et al. (2013,
2016) reported an overproduction of several microRNAs in
neuroinflammation. In agreement, expression rates of these
microRNAswere upregulated in ALSmodels upon P2X7 receptor
stimulation (Parisi et al., 2016).

Astrocytes, the most abundant cell type in the CNS, show
low expression of P2X7 receptor under physiological conditions.
However, this potential cytotoxic receptor presents upregulated
expression and increased activity following injury or under pro-
inflammatory conditions (Franke et al., 2004; Narcisse et al.,
2005; Lovatt et al., 2007). SOD1 (G93A) mice-derived astrocytes
showed increased extracellular ATP-induced signaling as well as
increased ATP hydrolysis (Gandelman et al., 2010). As previously
reported for microglia, P2X7 receptor activation resulted in
astrocyte cytotoxicity accompanied by production of reactive
oxygen and nitrogen species that are harmful toMNs (D’Ambrosi
et al., 2009).

In vitro studies presented consistent data regarding P2X7
receptor function in inflammation through microglia and
astrocytes, which are detrimental for MNs survival. Low doses
of ATP or BzATP induced spinal MNs death through the
peroxinitrite/Fas pathway (Gandelman et al., 2013). However,
in vitro studies fail to mimic the biological interplay between
neuronal and glial cell types. Activation of the Fas pathway,
or “Fas-death pathway,” is required for inducing death of MNs
in trophic factor deprivation environment (Raoul et al., 1999;
Barthélémy et al., 2004). Fas can trigger two different signaling
pathways: (1) activation of Fas-associated death domain (FADD)
and caspase 8, inducing mitochondrial cytochrome c release, or
(2) activation of FADD-associated protein 6 (Daxx), activating
Ask1 and p38, ultimately increasing production of nitric oxide
and peroxynitrite through NOS1 (Estévez et al., 1998, 2000;
Raoul et al., 1999, 2002). Although the latter pathway has been
described in MNs, it is not restricted to this neuronal population
alone.

Though studies have linked the P2X7 receptor to
neuroinflammation, surprising results have been found in
ALS murine models lacking P2X7 receptor. The genetic deletion
of P2X7 receptor expression (P2X7−/−) accelerated disease
onset and progression, induced neuroinflammatory responses,
and produced MNs depletion at end stages of the disease in
comparison with P2X7+/+/SOD1 (G93A) animals (Apolloni
et al., 2013a). The heterozygous SOD1 (G93A) P2X7 receptor+/−

animal model did not present any significant differences in body
weight, disease onset or motor performance.

While the heterozygous SOD1 (G93A) P2X7 receptor+/−

animal model did not present any significant differences in
body weight, disease onset, or motor performance, the genetic
deletion of P2X7 receptor expression (P2X7−/−), instead of
improving ALS disease conditions, accelerated disease onset
and progression, induced neuroinflammatory responses, and
produced MNs depletion at end stages of the disease in
comparison with P2X7+/+/SOD1 (G93A) animals (Apolloni
et al., 2013a). These detrimental effects on P2X7 receptor-
knockout SOD1 (G93A) mice shed light on possible dual
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effects of the P2X7 receptor in maintaining normal glial
activation/trophic phenotypes at early stages of ALS and
promoting a pronounced immunoinflammatory response in
advanced stages of the disease. Moreover, P2X7 as well as
P2X4 receptor expression levels were upregulated in neurons of
asymptomatic SOD1 (G93A) mouse peripheral nervous system;
however, more information about the mechanisms of action of
these receptors in ALS is required (Volont et al., 2016).

The P2X7 receptor has been implicated in detrimental
processes other than neuroinflammation. For instance, heat
shock proteins that are elements involved in the unfolded
protein response are also a neuroprotective mechanism against
unfolded proteins that accumulate in the endoplasmic reticulum
in response to stress, a phenotype associated with several
ALS models. Specifically, the heat shock protein 90 (Hsp90)
expression is upregulated in SOD1 (G93A) animal models as
well as in ALS patients. However, it is not clear whether
this upregulation is beneficial or prejudicial as in vitro studies
reported that Hsp90 is able to induce MNs cell death through
P2X7 receptor and FAS signaling (Franco et al., 2013). On the
other hand, two chaperones, HSP90α and HSP70-1A, interact
with A2A purinergic receptors. By this interaction, they retain
the receptor in the endoplasmic reticulum prior to exportation,
ensuring its correct folding and acting as a protein quality control
system (Bergmayr et al., 2013).

P2Y receptors
The metabotropic P2Y12 receptor has been proposed as a
marker for ALS progression. It is co-expressed with CD11b
in microglia and is also functional in oligodendrocytes. Its
immunoreactivity is gradually lost in the dorsal and ventral horns
of the spinal cord during ALS disease in the SOD1 (G93A)
model, while CD68 immunoreactivity increases, indicating that
P2Y12 receptor expression as marker for M2 microglia (Amadio
et al., 2014). However, no specific function of this receptor
has yet been described in association with either microglia or
oligodendrocytes.

Adenosine receptors
Among the four adenosine receptors, the A2A receptor subtype
has been mostly described to be involved in ALS. In vivo and
in vitro studies suggest a role of A2A receptor associated with both
improvement and attenuation of ALS progression, which could
suggest a stage-dependent role of this receptor.

The A2A receptor has been reported as the main target
for caffeine, a non-selective adenosine antagonist (Fredholm
et al., 1999; Karcz-Kubicha et al., 2003). The first investigation
of the possible neuroprotective effect of caffeine intake and
ALS development was performed in an epidemiological study,
showing a reduced ALS risk in 377 European patients (Beghi
et al., 2011). However, a longitudinal analysis based on over one
million individuals from five cohort studies failed to demonstrate
this association (Fondell et al., 2015). Similarly, an Italian case-
control study found no association with caffeine intake (Pupillo
et al., 2017). In the SOD1 (G93A) ALS mouse model, A2A

receptor blockade by chronic consumption of caffeine shortened
survival and decreased motor performance (Potenza et al.,

2013). An interesting finding of this study was the decrease in
A2A receptor protein levels only in the spinal cord from the
SOD1 (G93A) control group and not in caffeine-treated animals.
Whether this downregulation of receptor protein expression
is due to the heterogeneity of analyzed cell types (MNs,
astrocytes and microglia) or a true outcome of the disease
must be determined. In fact, another study showed an increased
expression of A2A, but not A1 receptors, in the spinal cords of
symptomatic SOD1 (G93A) mice and in spinal cords of human
end-stage ALS patients (Ng et al., 2015).

In the pathophysiology of ALS, one described mechanism that
is associated with susceptibility of MNs to excitotoxic insults is
activation of the receptor tropomyosin kinase receptor B (TrkB)
by brain-derived neurotrophic factor (BDNF) (Fryer et al., 2001;
Hu and Kalb, 2003). In this pro-death pathway, BDNF (Koh et al.,
1995; Ishikawa et al., 2000; Kim, 2003) agonist stimulation of
A2A receptors leads to the damaging transactivation of TrkB (Lee
and Chao, 2001; Rajagopal et al., 2004). This neurotoxic pathway
is diminished by blockade of A2A receptor in rat MNs in vitro
injured by the levels of ALS-related mutated proteins, such as
SOD1 (G85R) and p150glued (G59S) (Mojsilovic-Petrovic et al.,
2006). A physical interaction between TrkB and A2A receptor
was demonstrated, in which their disruption by cholesterol
depletion blocks the detrimental effect of BDNF to render MNs
vulnerable to insult in a similar way observed by in vitro A2A

receptor blockade (Mojsilovic-Petrovic et al., 2006). In addition
to pharmacological inhibition, partial genetic ablation of A2A

receptors in SOD1 (G93A) mice protected MNs from astrocyte-
induced cell death and delayed disease progression in the mouse
model (Ng et al., 2015).

During neuromuscular transmission, adenosine is an
important modulator of acetylcholine release by acting on
both inhibitory A1 and excitatory A2A receptors (Correia-de-
Sá et al., 1991). In pre-symptomatic SOD1 (G93A) mice, a
loss of functional cross-talk between A1 and A2A receptors
was reported, suggesting adenosine signaling dysfunction
prior to ALS onset (Nascimento et al., 2015). In the early
asymptomatic ALS phase, activation of A2A receptors by the
agonist CGS21680 enhanced acetylcholine-evoked release,
whereas this excitatory effect was no longer observed during
the symptomatic phase (Nascimento et al., 2015). Intracellular
Ca2+ homeostasis was also dysfunctional in MNs from SOD1
(G93A) mice (Fuchs et al., 2013). A2A receptor activation
increased the levels of cytosolic Ca2+ (Kobayashi et al., 1998;
Palma et al., 2011), while the opposite effect was observed after
A2A receptor blockade (Li and Wong, 2000; Correia-de-Sá
et al., 2002) and after A1 receptor activation (De Lorenzo
et al., 2004). The described loss of a functional equilibrium
between A1 and A2A receptor actions in presymptomatic ALS
mice could induce a hyperexcitable adenosinergic tonus in
neuromuscular transmission, contributing to the Ca2+-mediated
excitotoxicity at initial stages of the disease (Nascimento
et al., 2015). According to this hypothesis, A2A receptors
could act in an excitatory context during the pre-symptomatic
phase, whereas A2A receptor excitatory action disappears
during the symptomatic phase (Nascimento et al., 2015). This
stage-dependent effect of A2A receptors could explain the
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different effects on modulation of this receptor in ALS models.
Nevertheless, further investigation of this receptor through ALS
progression is needed.

Outside the neuromuscular context, only A2A receptor density
was up-regulated in lymphocytes from ALS patients, while
A1, A2B, and A3 receptors densities and affinities did not
change compared to age-matched healthy subjects. Surprisingly,
A2A receptor density was positively correlated with improved
clinical and functional status according to the revised ALS
Functional Rating Scale (Vincenzi et al., 2013). Furthermore,
cAMP production in ALS lymphocytes was increased by
pharmacological stimulation of the A2A receptor by its agonist
CGS21680. Within the immune system, higher levels of cAMP
reduce the production of pro-inflammatory mediators and
increase the production of anti-inflammatory factors (Raker
et al., 2016). Therefore, in addition to its described anti-
inflammatory function (Sitkovsky, 2003; Haskó, 2004), these
findings indicate a possible protective role for the A2A receptor,
specifically in the peripheral immune system.

In MNs, aberrant RNA metabolism—due to mislocalization
and/or dysfunction of RNA-binding proteins—has been
implicated in ALS (Strong, 2010). Human antigen R, a RNA-
binding protein that translocates from nucleus to the cytoplasm,
could be associated with pathogenic pathways of ALS (Liu et al.,
2015). Stimulation of A2A receptors with the agonist T1–11
normalized the cellular redistribution of human antigen R
in the MNs cell line NSC-34, providing potential therapeutic
interventions for improving the sustainability of MNs against
stress and delaying ALS progression.

Conclusion
ALS is a multifactorial disease with a marked loss of MNs and an
important contribution of non-neuronal cells to its pathogenesis
and progression. Several works reported the involvement of
diverse elements from the purinergic system in ALS, with a
critical contribution to neuroinflammation through microglia
and astrocyte activation. Two elements play a crucial role
in ALS pathogenesis regarding the purinergic system. P2X4
and P2X7 receptors participate in microglia reactivity and
astrogliosis, which both produce detrimental effects on MNs
maintenance and survival. However, their involvement in ALS
progression is more complex as shown in vivo models. There
is a specific time window, at late pre-symptomatic stages of
the disease, where antagonism of the purinergic P2X7 receptor
may be beneficial. However, P2X7 receptor inhibition after this
point produces negative effects on cell survival. During the
early phase of ALS, the A2A receptor mediates excitotoxicity
effects on neuromuscular junction, whereas this effect is no
longer observed with the progression of the disease, at the
symptomatic phase. These observations indicate a possible
change of function of this receptor depending on disease state.
In terms of the variety of extracellular nucleotide-degrading
enzymes and purinergic receptors, which assemble as homo-
or heterocomplexes and vary in composition in different CNS
cell types, more intense research has to be performed to
clarify short- and long-term implications of purinergic signaling
in ALS.

Other Motor Neuron Diseases
Spinal Muscular Atrophy (SMA) is a MND that affects MNs
in the spinal cord and brainstem. Patients share manifestations
similar to ALS, such as weakness, muscle atrophy/paralysis, and
respiratory impairment that can lead to death (Crawford and
Pardo, 1996; Lefebvre et al., 1997). The most frequent type of
SMA is caused by deletions in the survival motor neuron 1
(SMN1) gene, which is involved in biosynthesis of RNA and
proteins (Burghes et al., 1994; Lefebvre et al., 1995; Jablonka et al.,
2000; Gabanella et al., 2007; Bebee et al., 2010; Lotti et al., 2012).
High SMN1 expression in neurons and glia in a SMA transgenic
mice model rescued MNs survival, indicating a non-autonomous
cellular contribution in SMA (Gavrilina et al., 2008).

Currently, the only study shedding light on the involvement of
the purinergic system in SMA used human induced pluripotent
stem cell (iPSC)-derived astrocytes (McGivern et al., 2013).
Authors reported that this population presented increased
basal cytosolic Ca2+ concentrations and reduced responses
to ATP application, suggesting a possible impairment of the
purinergic system in the disease. For instance, P2Y2 receptor
activation triggered intracellular Ca2+ mobilization in control
cells, which was not observed in iPSC-derived astrocytes (Zhu
and Kimelberg, 2001; Verkhratsky et al., 2012). The cause for
this dysfunction, either because of altered kinetics or compromise
of downstream signaling elements, still needs to be clarified.
Further, this work was restricted to P2Y2 receptors, while other
purinergic receptor subtypes may be involved in the same
pathology. The role of the purinergic system in SMA disease
should also be studied in microglia and neurons for postulating
mechanisms of purinergic signaling in this MNs disorder.

Although no direct experimental evidence links the purinergic
system to other previously mentioned MND, the participation of
P2 and A2A receptors in the physiology of peripheral nervous
system is well-established. Schwann cells—peripheral glial cells
responsible for myelin maintenance and injury—destroy their
own myelin after peripheral nerve injury and remove myelin and
cell debris (Band et al., 1986). Since demyelination is a secondary
process present in MND pathophysiology, Schwann cell activity
may contribute to disease progression. In fact, injured sciatic
nerve induces Schwann cell proliferation via ATP activation of
P2X7 receptor while A2A receptors activation inhibits it, both
through MAPK/ERK pathways (Stevens and Fields, 2000; Song
et al., 2015).

Schwann cells located near the amphibian neuromuscular
junction are activated by synaptic ATP release (Robitaille,
1998), and purinergic signaling has key roles in presynaptic
modulation (Todd and Robitaille, 2006). However, as suggested
by the use of suramin (a non-selective P2 receptor antagonist),
activation of Schwann cells by local applications of ATP did
not depend on P2 receptors, indicating a possible involvement
of A1 receptor activation by ATP metabolites (Rochon et al.,
2001). An in vitro model of neuromuscular junction injury
showed that ATP was an activating signal for Schwann cells in
response to nerve function impairment, triggering purinergic
signaling (Rodella et al., 2017). Xu et al. (2013) brought evidence
for the involvement of purinergic signaling pathway in glia-
derived neurotrophic factor (GDNF) release by Schwann cells
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in nerve injure. ALS patients presented increased GDNF levels
in the cerebrospinal fluid in comparison to control groups
as a protective response to nerve injury (Grundström et al.,
2000). Moreover, ATP and ADP released by injured nerves
activated purinergic receptors that stimulate protein kinase-C
and -D pathways (Xu et al., 2013). Furthermore, purinergic
receptors promoted myelination processes in oligodendrocytes
and inhibited them in Schwann cells. The importance of the
purinergic system involvement in demyelination process in
MND is clear, but a better understanding of the degenerative
process is necessary for developing therapies (Xu et al., 2013).

MULTIPLE SCLEROSIS

MS is an autoimmune disease of the CNS. It is estimated to
affect∼2.5million people worldwide and is highly incapacitating;
50% of patients will need to use a wheelchair in the years
following disease onset between 25 and 45 years of age. The
symptomatology of MS is heterogeneous and includes motor
impairment, cognitive, visual, and sensory deficits, fatigue, and
pain (Compston and Coles, 2008). The etiology of MS is
unknown. However, it is speculated that environmental and
genetic factors play a role in disease development (Dendrou et al.,
2015).

The pathophysiology of MS is characterized by chronic
inflammation, in which T cells become responsive for different
myelin epitopes, triggering a cascade of events resulting in
axonal demyelination and neuronal transmission impairment
(Sun et al., 1991; Koehler et al., 2002). The hallmarks of
MS are axonal loss, astrogliosis/microgliosis, oligodendrocytes
damage, inflammatory focal lesions and T-cell activation
(Goldenberg, 2012; Luo et al., 2017). There is a range of immune
modulatory drugs used to alleviate MS symptoms. However,
these drugs induce troubling side effects including development
of other autoimmune disorders and fatal opportunistic infections
(Dendrou et al., 2015). Thus, better understanding of the disease
in order to develop more effective and safe treatments is needed.

Purinergic Involvement in MS
The first report of the involvement of purinergic signaling in MS
came from Mayne et al. (1999), when it was found increased
plasma and serum TNF-α levels in MS patients correlated with
low levels of adenosine. The induced experimental autoimmune
encephalomyelitis (EAE) mouse model, established by myelin
oligodendrocyte glycoprotein or myelin basic protein peptide
inoculation and immunization, provides some clues on the
mechanical role of purinergic signaling in early-stage MS. The
EAE model shows similar features as seen in the CNS of
MS patients, such as infiltrating T-cells and presence of IgG
antibodies as well as hind limb paralysis (Lassmann, 1983; Miller
and Karpus, 1994; Eng et al., 1996; Constantinescu et al., 2011).
The four purinergic receptors especially known to be involved in
MS are P2X7, P2Y12, A1, and A2A receptors.

P2X receptors
The participation of P2X receptors in MS has been proposed,
since they modulate astrocytes and axon-oligodendrocyte

communication, which is necessary for myelination formation
and repair (Butt, 2006). Post-mortem tissue from MS patients
exhibited increased P2X7 receptor expression in microglia from
spinal cord and brain white matter (Yiangou et al., 2006) in
astrocytes localized in active brain lesions (Narcisse et al., 2005)
and in oligodendrocytes from optic nerve samples (Matute et al.,
2007). Immunohistochemistry analysis of brain sections from
the frontal cortex of MS patients showed immunostaining for
P2X1, P2X2, P2X3, P2X4, and P2X7 receptors, while P2X6
receptor subunits could not be detected (Amadio et al., 2010).
Analysis of blood monocytes from MS patients did not show any
differences in P2X7 receptor expression in comparison to healthy
controls (Caragnano et al., 2012). However, monocytes from MS
patients undergoing treatment with glatiramer acetate—which
acts displacing myelin basic protein from the binding site on
MHC-II molecules, preventing the activation of myelin-specific
T cells—exhibit reduced P2X7 receptor and interleukin (IL)-1β
expression, indicating that this treatment may act by decreasing
P2X7 receptor pro-inflammatory effects (Caragnano et al., 2012).

Alterations in the P2X7 receptor gene have been identified
in MS, leading to gain-of-function of this protein (Oyanguren-
Desez et al., 2011). A polymorphism in P2X7 receptor T-
allele, resulting in an Ala-76 to Val transition (A76V), induced
an increase in Ca2+ permeability, ethidium bromide uptake,
and electrophysiological responses. Also, P2X7 receptor A-
allele substitution of His-155 to Tyr-382, increased Ca2+ influx
(Oyanguren-Desez et al., 2011). Similar findings in P2X7 receptor
gain-of-function due to His-155 to Tyr substitution (H155T)
was previously described for leukemic lymphocytes (Cabrini
et al., 2005) and suggested to be essential for ATP-dependent
P2X7 receptor activation, since the residue 155 is important
for P2X7 receptor protein folding (Bradley et al., 2011). On
the other hand, a genetic study demonstrated that the presence
of P2X7 receptor loss-of-function due to an Arg-307 to Gln
(N307Q) polymorphism provided a two-fold protective effect
against MS outcome (Gu et al., 2015). Thus, human P2X7
receptor variants are associated with a reduced or increased risk
of MS development (Oyanguren-Desez et al., 2011; Gu et al.,
2015).

In vivo studies with the EAE mouse model demonstrated that
absence of P2X7 receptors resulted in a severe disease phenotype.
In addition, microglia and invading brain macrophages were
positive for P2X7 receptor immunostaining (Witting et al.,
2006). P2X7 receptor knockout mice (P2X7−/−), where EAE
was experimentally induced, showed lower number of apoptotic
lymphocytes in the CNS and increased expression of interferon
γ in the spinal cord, with no alterations in TNF-α and
IL-2 protein levels (Chen and Brosnan, 2006). Furthermore,
P2X7 receptor−/− EAE mice have lower production of
endocannabinoids and reduced axonal damage in comparison
to wild type animals (Witting et al., 2006). The administration
of a P2X7 receptor antagonist during the chronic phase
of EAE in mice attenuated symptoms and tissue damage,
including remyelination, by improving axonal conductivity
and neurological latency (Matute et al., 2007). These results
suggest that the P2X7 receptor plays a detrimental role in the
development and chronic phase of MS.
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A study by Sharp et al. (2008) demonstrated that the absence
of P2X7 receptor results in lower frequency of EAE development,
including reduced astrocyte activation with no changes in
microglia, antigen responsive T-cell population, or cytokine
production by splenic-T cells. These results differ from previous
available data on P2X7 receptor −/− and EAEmice. In the former
two studies, deletion of exon 5 in P2X7 receptor was used to
derive the knockout mice (Chen and Brosnan, 2006; Witting
et al., 2006), while in Sharp et al. (2008) exon 1 was deleted,
resulting in macrophages inability to produce IL-1β. Based on
these data, regulation of P2X7 receptor activation status can
provide beneficial advantages for MS.

Activation of P2X7 receptors in astrocytes induces the release
of purines (Ballerini et al., 1996) and limits glutamate removal
from the extracellular compartment (Lo et al., 2008), eventually
culminating in neuronal/oligodendrocyte excitotoxicity (Pitt
et al., 2000; Matute, 2011). Upon stimulation with IL-1β,
astrocytes showed P2X7 receptor expression upregulation,
indicating that the P2X7 receptor expression depends on
the presence of pro-inflammatory cytokines (Narcisse et al.,
2005). Furthermore, a hyperactivation of P2X7 receptors
in oligodendrocytes causes excitotoxicity by cytosolic Ca2+

overload and consequent tissue damage (Matute et al., 2007).
Yiangou et al. (2006) proposed a mechanism for the

involvement of P2X7 receptor inMS: increased extracellular ATP
levels caused by cell death activate P2X7 receptors in microglia
and macrophages, consequently stimulate IL-1β production
and release. IL-1β will induce COX2, an enzyme known to
be detrimental during inflammation (Minghetti, 2004). This
induction will intensify cell death and production of pro-
inflammatory cytokines. In addition, in the EAE rat model,
protein levels of P2X7 receptor were analyzed at symptomatic
manifestation and after recovery (Grygorowicz et al., 2011).
During symptom onset, P2X7 receptor was found to be
overproduced in synaptosomes and in glial cells homogenates.
The elevated protein level of P2X7 receptor was stable at the
recovery phase mainly in the glial fraction, suggesting sustained
astrogliosis. The use of P2X7 receptor antagonists, such as
periodate-oxidized ATP and Brilliant Blue G (BBG), for the
treatment of the neurodegenerative phase of MS has been
patented (EP1655032 B1), providing novel tools for clinical and
research purposes.

P2Y receptors
During inflammatory responses, P2Y receptors are up regulated
in microglia to promote phagocytosis and migration, preventing
oxidative stress followed by apoptosis and controlling the
expression of pro-inflammatory cytokines (Förster and Reiser,
2015). In MS, the P2Y12 receptor was found in oligodendrocytes
from post-mortem brain samples and its expression was
decreased in areas corresponding to demyelination in
gray and subcortical white matter (Amadio et al., 2010).
Immunohistochemistry studies revealed expression of P2Y12,
P2Y11, and P2Y14 receptors in the frontal cortex of MS patients
(Amadio et al., 2010). However, the functions of P2Y11 and
P2Y14 receptors are not known. Therefore, we will further focus
on the P2Y12 receptor.

Microglia, macrophages and neuronal cells did not show
any expression of P2Y12 receptors, while receptor-positive
staining was found to be co-localized with myelin-binding
proteins and astrocytes. In the white matter of MS patients,
microglia expressing the major histocompatibility complex class
II, revealed immunostaining for P2Y12 receptors, indicating that
microglia possibly phagocytized myelin-bearing P2Y12 receptors
(Amadio et al., 2010). Presence of P2Y12 receptors in astrocytes
and oligodendrocytes suggests that signaling of this receptor is
involved in remyelination.

To determine the effect of P2Y12 receptor in MS, knockout
models of this receptor resulted in an enhanced EAE phenotype
in mice (Zhang et al., 2017). The EAE pathology was
characterized by an increase in IL-17A cytokine levels in serum,
higher number of T-helper cell subset (Th17) in spleen and
CNS, as well as the presence of granulocyte-macrophage colony-
stimulating factor (Zhang et al., 2017). Bone marrow-derived
dendritic cells from P2Y12−/− mice challenged to model EAE
have increased release of IL-23, which is an essential factor to
promote differentiation of CD4+ T cells toward the Th17 cell
subtype (Zhang et al., 2017). The authors concluded that P2Y12
receptors are important for balancing Th-cell populations, and
receptor function dysregulation leads to altered cytokine profiles,
contributing to EAE.

Adenosine receptors
Analysis of peripheral bloodmononuclear cells (PBMC) fromMS
patients showed that A1 receptor protein level was significantly
reduced (Mayne et al., 1999; Johnston et al., 2001), but gene
expression was unaltered (Mayne et al., 1999). In healthy
controls, activation of A1 receptors in PBMCs resulted in
inhibition of TNF-α while in MS patients IL-6 was inhibited
and had no effect on TNF-α protein level (Mayne et al., 1999).
It has been previously demonstrated that constant presence of
high TNF-α levels can induce demyelination in a similar way as
observed in MS patients, indicating that dysregulation of TNF-
α by A1 receptors can be an initiating factor for MS pathology
(Probert et al., 1995).

Histological analyses of post-mortem brain tissues showed
lower expression of A1 receptor in the glial population,
specifically the A1-β receptor spliced variant (Johnston et al.,

2001). Induction of the EAE model in A−/−
1 mice caused a

severe progressive-relapsing form of MS with myelin and axonal
loss (Tsutsui et al., 2004). Macrophages produced IL-1β and
metalloproteinase 12, as well as soluble factors that damaged

oligodendrocytes. Analysis of spinal cord of A−/−
1 EAE mice

showed increased release of pro-inflammatory cytokines. In

contrast, A+/+
1 EAEmice had diminished A1 receptor expression

in microglia, corresponding to inflammation. Chronic caffeine
administration upregulated A1 receptor expression in microglia,
and when treated concomitantly with A1 receptor agonist

alleviated EAE pathology in the A+/+
1 EAE mice model (Tsutsui

et al., 2004). Furthermore, coffee consumption and MS risk were
recently investigated. In individuals, who reported high coffee
consumption and in animal models of MS, caffeine decreased the
risk of developing neuroinflammation and had neuroprotective
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and anti-inflammatory properties (Hedström et al., 2016; Olsson
et al., 2017).

Current therapeutic recommendations in MS include
interferon-β and glatiramer (Wiendl et al., 2008). Worthwhile
of mentioning, interferon-β treatment increases expression of
CD73, responsible for the conversion of AMP into adenosine,
in endothelial cells (Airas et al., 2007). Similarly, in an induced-
demyelinated rat model, interferon-β treatment also enhanced
CD73 activity in synaptosomes from cerebral cortex (Spanevello
et al., 2006). CD73 activity is also required for lymphocyte
infiltration into the CNS during EAE development (Mills
et al., 2008). Thus, interference with levels of purines could
be an additional factor, by which interferon-β benefits MS
patients.

While the A1 receptor subtype is an unequivocal negative
modulator of MS and EAE (Tsutsui et al., 2004), the A2A receptor
subtype presents a complex role in this disease. Interestingly,
A2A receptor expression is increased in the brain of patients
with secondary progressive MS, evidenced by positron emission
tomography (PET) imaging of radioligand binding to the A2A

receptor (Rissanen et al., 2013). This receptor is both highly
expressed by lymphocytes and the main mediator of anti-
inflammatory effects of adenosine (Blackburn et al., 2009). In
the EAE model, A2A receptor-selective antagonist SCH58261
treatment protected mice from EAE induction and CNS
lymphocyte infiltration (Mills et al., 2008, 2012). On the other

hand, A2A receptor-deficient (A−/−

2A ) mice developed a more
severe paralysis after EAE induction, characterized by increased
numbers of lymphocytes and activated macrophages/microglia
in the CNS (Mills et al., 2012), severe demyelinated phenotype,
axonal injury in spinal cord and cerebral cortex and pro-
inflammatory cytokine profile in the CNS, blood, and spleen
(Yao et al., 2012). Mechanisms of these opposite effects following
genetic (knockout animal) or pharmacological (antagonists)
blockade of A2A receptors were revealed by assays with bone
marrow chimeric mice (subjected to radiation and replacement
of immune cells by bone marrow from donor animals) (Mills
et al., 2012). This model also reveals the contribution of A2A

receptor signaling in immune and non-immune cells during
EAE. In fact, A−/−

2A donor hematopoietic cells induced severe
EAE, whereas the absence of A2A receptor in non-immune
cells protected mice from disease development. Taken together,
these data demonstrate that expression of A2A receptors in
lymphocytes is crucial for limiting the severity of inflammation,
while the A2A receptor on nonimmune cells is necessary for
disease development. Moreover, without A2A receptor expression
by blood brain barrier cells (and other non-immune cells),
immune cells fail to infiltrate the CNS, protecting mice from
disease development (Mills et al., 2012), similarly to the effects
of pharmacological blockade of A2A receptors (Mills et al., 2008,
2012).

A3 receptor signaling is associated with degranulation of
mast cells. Activation of A3 receptor inhibits adenylate cyclase,
stimulates phospholipase C and B, and induces calcium release
from intracellular stores. It has been suggested that A3 receptors
may also inhibit binding of neutrophils to endothelial cells. A3

receptor is expressed in whole brain (Safarzadeh et al., 2016).

Though it is still unclear whether the A3 receptor is involved
in MS, this receptor has been demonstrated to mediate the
inhibition of TNF-α production by adenosine (Lee et al., 2006;
Levy et al., 2006). Therefore, this receptor may play important
roles in the pathophysiology of MS and, such as for the A2A

receptor, A3 receptor inhibition may be a potential therapeutic
approach.

A2B receptor signaling also modulates the pathogenesis of
EAE phenotype. This receptor is upregulated in peripheral
leukocytes of MS patients and in the mouse model. Activity
inhibition of A2B receptor with the selective antagonist CVT-
6883 or its genetic deletion attenuated adenosine-mediated IL-
6 production, infiltration of peripheral leukocytes and clinical
symptoms in the EAE model (Wei et al., 2013). The presented
studies suggest that adenosinergic activation of A1 receptor
regulating inflammatory cytokine TNF-α and IL-6 production is
altered inMS, probably due to alterations at transcriptional levels
of A1 receptor and/or to adenosine availability (Mayne et al.,
1999; Johnston et al., 2001).

Conclusion
Since current therapeutic recommendations for MS have partial
efficacy on clinical outcomes and disease progression, the search
for new therapeutic tools is necessary. In this context, post-
mortem analysis of brain tissue from both MS patients and
EAE mouse/rat models elicited potential therapeutic targets
through: (1) blockade of P2X7 receptor and stimulation of
A1 receptor, inhibiting inflammation; (2) P2Y12 receptor
stimulation, favoring remyelination; and (3) blockade of A2B

receptors and CD73, inhibiting the infiltration of leukocytes into
the CNS.

PARKINSON’S DISEASE

Parkinson’s Disease (PD) is the second most common
neurodegenerative disease. Its incidence increases with age
reaching over 4% of the population over 80 years old (de Lau and
Breteler, 2006). PD is considered a motor disease as a reflex of its
clinical symptoms, as resting tremors of extremities, muscular
rigidity, postural imbalance, and bradykinesia (Braak et al.,
2013). The pathology of PD is characterized by progressive loss
of dopaminergic neurons in the substantia nigra pars compacta
(SNc) and their projections to the striatum, structures associated
to voluntary motor movements’ control. Besides dopaminergic
neuronal degeneration, the presence of protein aggregates
(known as Lewy bodies) due to misfolding of α-synuclein
occurs in the SNc, locus ceruleus, amygdala, and the CA2
area of the hippocampus (Jellinger, 2011). The mechanisms
underlying these events have yet to be clarified, although a
genetic predisposition associated with insults as traumatic brain
injury and ischemia seems to induce α-synuclein aggregation
(Shahaduzzaman et al., 2013; Kim and Vemuganti, 2017). The
majority of genes linked to familial PD development, such as α-
synuclein and leucine-rich repeat kinase-2 (LRRK2) apparently
follow a non-Mendelian genetic inheritance pattern. Even so,
people who have first-degree relatives affected by sporadic PD
have increased chances of developing PD (Elbaz et al., 1999).
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Mitochondrial dysfunction and purinergic receptor signaling
are also involved in the mechanism of the disorder (Takenouchi
et al., 2010; Hoang, 2014).

Currently, dopamine agonists as L-3,4-
dihydroxyphenylalanine (L-DOPA) are the most common agents
used in therapy. L-DOPA is a precursor of catecholamines such as
dopamine and is able to cross the blood-brain barrier. However,
long term use of L-DOPA loses efficacy and dose adjustments
are needed, triggering side effects such as dyskinesias in 50%
of patients after 5 years of continuous treatments (Lang, 2009;
Olanow et al., 2009). Present studies on molecular aspects of
PD, together with the development of new drugs and tests
for improving diagnosis accuracy, will bring new therapeutics
perspectives for the disease.

Purinergic Involvement in PD
P2X receptors
Although immunohistochemistry analysis did not reveal any
difference between intact and lesioned striatum and SNc
(Amadio et al., 2007) for P2X7 receptors, antagonism of this
receptor has been shown to prevent or reverse hemiparkinsonian
behavior in animals lesioned with 6-hydroxydopamine (6-
OHDA), a neurotoxin that mimics PD’s pathology. Acute SNc
injections of the P2X7 receptor antagonist A-438059, 60min
before and 60min after rat 6-OHDA lesion, prevented dopamine
striatal deficit in comparison to the intact hemisphere, with
the P2X7 receptor localized in glial cells (Marcellino et al.,
2010). BBG administered in a dose of 45 mg/kg daily after 6-
OHDA lesion prevented hemiparkinsonian behavior, short-term
memory impairment and dopamine deficit in the striatum and
SNc (Carmo et al., 2014). While these studies showed only a
preventive effect of P2X7 receptor antagonism, BBG at a dose of
50 mg/kg reversed 6-OHDA lesion in striatum and SNc. In this
work, BBG treatment started 1 week after 6-OHDA injection, a
period of time sufficient for the lesion to settle, thus proving the
reversal effect (Ferrazoli et al., 2017).

Neuronal death seems to aggravate protein aggregation
observed in PD. Intense ATP release and consequent purinergic
receptors activation were considered to be a key trigger. In
fact, P2X1 receptor antagonism or genetic deletion reduced α-
synuclein aggregation induced by ATP released by dying cells
in vitro (Gan et al., 2015). Moreover, P2X1 receptor activation
induced lysosomal dysfunction that seems to be involved in α-
synuclein aggregation, since it delayed protein turnover and led
to its accumulation (Gan et al., 2015). Although P2X7 receptor
blockade did not result in reduction of α-synuclein aggregation in
this study, ATP release triggered by α-synuclein in vitro activated
the P2X7 receptor and mobilized the release of intracellular
Ca2+, showing that P2X7 receptor activation is a consequence
of α-synuclein aggregation (Wilkaniec et al., 2017). Additionally,
another study showed that microglial cells challenged with α-
synuclein presented increased ROS production through P2X7
receptor activation, which was prevented in the presence of a
receptor antagonist (Jiang et al., 2015). Thus, it seems that P2X1
receptor activation contributes to α-synuclein aggregation, which
in turn modulates P2X7 receptor activity, ROS production and,
finally, ATP release.

Taking into account that few studies directly link purinergic
receptors with genetic predisposition to PD, the P2X7R
1513A>C polymorphism that facilitates pore formation by P2X7
receptor activation and leads to cell death (Gu et al., 2001) was
shown to be a risk factor in sporadic PD in a Han Chinese
population (Liu et al., 2013)

P2Y receptors
There is little data directly connecting P2Y receptors to PD.
Recent studies are drawing attention to the role of P2Y6
receptors in PD development and progression. An in vitro
study showed that P2Y6 receptor gene expression is increased
in SH-SY5Y cells—a human neuroblastoma lineage that when
differentiated presents markers for dopaminergic neurons—
when challenged with neurotoxin 1-methyl-4-phenylpyridinium
(MPP+) (Qian et al., 2017). Thus, its antagonism or deletion
decreased MPP+ effects in cell death through reduced ROS
production (Yang et al., 2017). In the CNS, UDP released by
damaged cells induces expression of cytokines CCL2 and CCL3
in microglia and phagocytic activity through activation of P2Y6
receptors, indicating that this receptor subtype may be involved
in inflammatory response in neurodegenerative diseases (Kim
et al., 2011).

Recently, P2Y6 receptor levels were found to be increased in
PBMC of PD patients younger than 80 years. To elucidate the
involvement of P2Y6 receptor in these patients, the authors used
an in vitromodel of microglia challenged with lipopolysaccharide
(LPS) and found increased P2Y6 receptor expression, supporting
the hypothesized neuroinflammatory effect of microglia (Yang
et al., 2017). Taking into account that P2Y6 receptor selective
inhibition by MRS2578 is able to prevent microglial phagoptosis
in a mixed neuronal/glial culture in inflammatory conditions
(Neher et al., 2014), P2Y6 receptor antagonism seems to be a
promising tool to attenuate neuronal death in PD by preventing
lesion worsening due to phagocytosis of viable neurons.

Adenosine receptors
It is known that A2A receptors are enriched in dopaminergic
brain areas and that their activity modulation affects dopamine
receptors (Burnstock et al., 2011). In fact, A2A receptors
form heterodimers with dopaminergic D2 and A1 receptors
in glutamatergic synapses, modulating the balance between
excitatory and inhibitory impulses that may aggravate PD
symptomatology (reviewed by Schiffmann et al., 2007). In
animals, a range of A2A receptor antagonists have being shown
to potentiate therapeutic effect of low doses of L-DOPA inMPP+

lesioned monkeys and marmosets and in 6-OHDA lesioned
rodents (Kanda et al., 2000; Fuzzati-Armentero et al., 2015)
In fact istradefylline, a A2A receptor antagonist, was recently
approved in Japan to be used concomitantly with L-DOPA
treatment, once the compound enhances antiparkinsonian effect
of L-DOPA and allow the usage of lower doses of L-DOPA with
less long-term side effects (Zhu et al., 2014).

A2A receptors are supposedly involved in synucleinopathy
process. A2A receptor-knock out mice presented resistance in
preventing dopaminergic deficits upon α-synuclein-induced
insults (Kachroo and Schwarzschild, 2012). Attempting to
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clarify involved mechanisms, Ferreira et al. found that A2A

receptor antagonism decreased α-synuclein aggregation,
prevented neuronal death induced by extracellular α-synuclein
and restrained hyperactivation of NMDA-glutamate receptors
(Ferreira et al., 2015). A2A receptor protein expression levels are
increased upon hippocampal injections of α-synuclein in mice
and closely co-localized with aggregates, suggesting a pathogenic
role of this receptor in synucleinopathy (Hu et al., 2016).

Moreover, A2A receptor antagonism may facilitate microglial
response to injury. Microglial delayed containment of debris
resulted from cell death can be associated with expansion of
the lesion (Gyoneva et al., 2014). Further, both caffeine and
selective A2A receptor antagonist KW60002 prevented rat striatal
dopaminergic deficit and hydroxyl radical release in LPS-induced
inflammation (Gołembiowska et al., 2013). These data suggest
inflammatory modulation by A2A receptor antagonism in PD
models.

Two polymorphisms of A2A receptor (rs71651683 or
rs5996696) were inversely associated with genetic PD risk,
wherein caffeine intake intensified the inverse association.
Moreover, two polymorphisms in CYP1A2a (rs762551 or
rs2470890), an enzyme responsible for caffeine metabolism, in
homozygous caffeine consumers showed a prominent reduction
in the risk of developing PD (Popat et al., 2011).

Caffeine intake interferes with other genetic risk factors for
PD. Subjects with LRRK2 risk variant R1628P showed 15 times
increased risk of developing PD than not caffeine consumers
(Kumar et al., 2015). GRIN2A rs4998386-T allele encodes a
subtype of NMDA receptor, whose activity is enhanced by A2A

receptor activation and leads to glutamatergic excitotoxicity.
A polymorphism in the GRIN2A rs4998386-T is considered
protective for PD development per se, but in association
with caffeine consumption, it can beneficially impact PD risk
in a greater magnitude (Hamza et al., 2011; Yamada-Fowler
et al., 2014). However, creatine consumption that increases
ATP storage accelerated PD progression in GRIN2A caffeine
consumers, possibly due to ATP conversion to adenosine and
later A2A receptor activation (Simon et al., 2017).

Conclusion
Taken together, evidence indicates that modulation of purinergic
receptor expression and activity could be useful in PD treatment
in several ways: (1) reducing microglia activation by damaged
cells and α-synuclein aggregation through P2X7 and P2Y6
receptors antagonism; (2) preventing α-synuclein aggregation
through P2X1 and A2A receptors antagonism; (3) modulating
inflammatory scenario through A2A receptors antagonism; or
(4) preventing dyskinesia induced by L-DOPA long-term use
through combined treatment with A2A receptor antagonists.

OTHER NEUROLOGICAL CONDITIONS
WITH MOTOR DYSFUNCTIONS

Huntington’s Disease
HD is an inherited neurological disorder caused by a mutation in
IT15 gene that encodes huntingtin protein (Htt) predominantly
found in neurons. This mutation results in abnormal (CAG)n

repeats localized in 5′ coding sequence. HD is characterized
by neurodegeneration of neuronal cells located in striatum and
cerebral cortex, ultimately causing neuronal dysfunction and
striatal death (Vonsattel and DiFiglia, 1998; Ross and Tabrizi,
2011).

Purinergic Involvement in HD

Adenosine receptor
Adenosinergic pathway plays an essential role in HD etiology
and progression, especially through the A2A receptor, as observed
in patients and animal models (Popoli et al., 2007). The A2A

receptor is highly expressed in striatum (Schiffmann et al.,
1991; Fink et al., 1992) especially in GABAergic/enkephalinergic
neurons (Taherzadeh-Fard et al., 2010) and in post-synaptic
striatopallidal GABAergic neurons (Martinez-Mir et al., 1991;
Hettinger et al., 2001), antagonizing dopamine D2 receptors
(Schiffmann et al., 2007), while presynaptic A2A receptor
activity promotes glutamate release (Shen et al., 2013). Further,
presynaptic A2A receptors in glutamatergic terminals impinging
into medium spiny neurons play an essential role in the initial
maladaptive plasticity in animal models of HD (Li et al.,
2015), suggesting its involvement in the degeneration of striatal
neurons. Reduction of A2A receptor expression is based on the
overexpression of mutant Htt protein showing expanded poly
(Q), which affects CREB binding to its promoter region in the
A2A receptor gene. Under stimulation, A2A receptor is able to
promote its own gene expression via activation of PKC/CREB
signaling as well as reduce Htt aggregations (Chiang et al.,
2005). Striatal cells expressing mutant Htt showed increased
A2A receptor density and cAMP activity due to A2A receptor
activation (Varani et al., 2001). As expected, transgenic HD mice
showed reduced A2A receptor expression (Cha et al., 1999; Glass
et al., 2000; Luthi-Carter et al., 2000), while exhibiting transient
increases in A2A receptor density and A2A receptor-dependent
activation of cAMP signaling at the earlier pre-symptomatic stage
(Tarditi et al., 2006).

It has been proposed that modulation of A2A receptor activity
either by agonists or antagonists may prove to be beneficial
for HD treatment. However, available data indicate that the
beneficial effect observed after stimulation or inhibition of A2A

receptor activity depends on the disease stage. At earlier stages
of HD, the use of SCH58261 (an A2A receptor antagonist) in
quinolinic acid (QA)-induced HD rats and R6/2 transgenic mice
reduced striatal BDNF expression, precluding BDNF control
of NMDA toxicity (Potenza et al., 2007; Tebano et al., 2010).
In later stages, no effect on BDNF expression was observed
(Martire et al., 2010; Tebano et al., 2010). QA-induced rats
reproduced neurochemical changes of NMDA receptor from
HD, e.g., increased glutamate outflow, reduced adenosine levels
and degeneration of A2A and dopamine receptors (Beal et al.,
1991; Ishiwata et al., 2002; Gianfriddo et al., 2003). Treatment
with SCH58261 2-3 weeks after QA injection increased striatal
glutamate release, acting as damaging factor (Gianfriddo et al.,
2003).

Preventive treatment with SCH58261 before QA induction in
rats minimizes the effect of QA on motor activity, striatal gliosis,
electroencephalographic (EEG) changes, and glutamate levels
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(Popoli et al., 2002). However, cyclooxygenase-2 (COX-2) is
inhibited in microglia but increased in cortical neurons, probably
as a consequence of NMDA receptors activation, leading to
neurotoxicity (Minghetti, 2004). Pretreated QA-induced rats
also showed less rearing behavior and no changes in baseline
motor activity after 2 weeks of induction; 6 months later, rats
showed reduced anxiety but no changes in learning task when
compared to QA-induced rats not pre-treated with SCH58261
(Scattoni et al., 2007). These findings suggest that SCH58261 acts
on damaged striatum and not on damaged hippocampus, and
that different populations of striatal neurons are responsive to
SCH58261 (Scattoni et al., 2007). As reviewed by Cunha (Cunha,
2016), the blockage of A2A receptor improves memory and
motor functions indicating hippocampal activity, contradicting
the findings of Scattoni et al.

On the other hand, in primary striatal cultures treated
with QA, an increase in intracellular calcium concentration
was observed which enhanced in presence of SCH58261,
but reduced in presence of A2A receptor agonist CGS21680
(Popoli et al., 2002). Another A2A receptor antagonist, 3,7-
dimethyl-1-propargylxanthine (DMPX), completely blocked
encephalographic changes in prefrontal cortex in QA-induced
rats (Reggio et al., 1999). The beneficial effect can be due to
dopamine receptor activation that provides neuroprotection as
a result of abolishment of A2A receptor function, since D2
dopaminergic receptors are downregulated by A2A receptors in
D2/A2A receptor heteromers (Reggio et al., 1999).

In a transgenic rat model of HD showing 51 repeated
CAG sequences, the presence of post-synaptic A2A receptor
antagonist KW-6002, a known stimulant of locomotion, didn’t
alter the locomotion pattern between 3 and 6 months old. This
indicated that the animals become indifferent to A2A receptor
modulation during that period (Orr,ú et al., 2011). Furthermore,
the presynaptic A2A receptor antagonist SCH-442416 did not
reduce electromyography responses (Orr,ú et al., 2011).

The function of A2A receptors has been studied in HD
transgenic mouse models (R6/1 with later symptoms and R6/2
with earlier symptoms), which contain the first exon of human
Htt gene and 115-150 CAG repeats (Li et al., 2005). During
R6/2 mouse development, A2A receptor protein density and
A2A receptor-dependent production of cAMP slightly increased
at post-natal days 7–14, before the onset of motor symptoms
(Tarditi et al., 2006). On the 21st day, changes are normalized
to control (Tarditi et al., 2006). A2A receptor expression, but
not protein density, starts decreasing, indicating that protein
turnover is altered in HD (Cha et al., 1999; Tarditi et al., 2006).
Reduction of A2A receptor coding mRNA can be explained by
regulation of A2A receptor gene methylation patterns, once R6/1
mice has less hydroxymethylcytosine and higher methylcytosine
levels in 5′-UTR regions of the A2A receptor gene (Villar-
Menéndez et al., 2013).

Since turnover of A2A receptor protein is altered in HD,
inhibition of this receptor function is an advisable therapeutic
approach. Starting at 5 weeks, the use of the A2A receptor
antagonist SCH58261 in R6/2 mice ameliorated NMDA-induced
toxicity and emotional/anxiety response (Domenici et al., 2007).
After week 8, administration of SCH58261 leads to NMDA

receptors remodeling (NR1 and NR2A receptor /NR2B ratio)
in striatum (Martire et al., 2010). R6/2 mice at age of 10–11
weeks old showed increased adenosine levels correlated with
the presence of p38 MAPK in striatal neurons, resulting in
striatal damage (Gianfriddo et al., 2004). The usage of SCH58261
greatly reduced striatal adenosine levels and glutamate outflow,
suggesting that SCH58261 was acting on A2A receptors located in
corticostriatal glutamatergic terminals (Gianfriddo et al., 2004).
When treated with SCH58261, rearing and grooming behaviors
were reduced in R6/2 mice, but increased in wild type mice,
suggesting that A2A receptor antagonism effects on behavior
depended on the presence of mutant Htt (Domenici et al., 2007).
However, there are contradictory findings regarding the effect of
SCH58261. While this compound has shown beneficial effect by
reducing NMDA toxicity in striatum in vivo, it did not prevent
NMDA toxicity from in vitro culture of corticostriatal slices
obtained from R6/2 mice (Martire et al., 2010).

In order to determine whether the A2A receptor is involved
in HD etiology, A2A receptor knockout mice were induced with
mitochondrial toxin 3-nitropropionic acid (3-NPA) which blocks
succinate dehydrogenase, inducing HD phenotype. Only 1 out of
8 showed striatal lesion after 3-NPA induction, indicating that
the absence of A2A receptor has protective effect against HD
development (Fink et al., 2004). To confirm this finding, wild
type mice were pre-treated with the A2A receptor antagonist 8-
(3-chlorostypyl)-caffeine. The animals did not show any striatal
lesions after 3-NPA treatment (Fink et al., 2004). On the other
hand, ablation of A2A receptors in HD N171-82Q transgenic
mouse model completely aggravated motor performance and
survival, reducing the expression of striatal encephalin (Mievis
et al., 2011). This observation suggests that early and chronic
blockade of A2A receptor is not favorable for HD development
(Mievis et al., 2011), but memory improvement was observed in
R6/2 mice with complete genetic A2A receptor ablation (Li et al.,
2015).

In symptomatic R6/2 mice, activation of A2A receptors
by CGS21680 delayed the deterioration of motor conditions,
prevented reduction in brain weight, diminished the levels of
choline, normalized glucose levels, and altered NMDA receptor
subunit composition and basal synaptic transmission, without
changing its expression (Chou et al., 2005; Martire et al., 2007;
Potenza et al., 2007; Ferrante et al., 2010; Tebano et al., 2010).
Cultivation of corticostriatal slices from R6/2 mice in presence
of CGS21680 also showed reduced NMDA toxicity, suggesting
a crosstalk between A2A receptor and BDNF (Tebano et al.,
2010). Treatment of striatum slices from R6/2 with CGS21680
resulted in an increase in extracellular field potential, while the
opposite effect was observed in wild type slices, where the use of
an A2A receptor agonist potentiated toxicity via NMDA receptor
activation (Martire et al., 2007).

Single nucleotide polymorphisms (SNPs) in the ADORA2A

gene have been identified in HD patients. A C>T genotype
(1876 C/T; rs5751876) SNP results in a silent mutation with
unknown function and influences the age of onset of HD, while
the T/T genotype increases the age of onset of HD by 3.8 years
when compared to the C/C genotype (Dhaenens et al., 2009).
A SNP in intron 1 (rs2298383) is linked to early onset of HD

Frontiers in Pharmacology | www.frontiersin.org 17 April 2018 | Volume 9 | Article 325

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


Oliveira-Giacomelli et al. Purinergic Receptors in Neurological Diseases

(Taherzadeh-Fard et al., 2010). Analysis of HD patient peripheral
blood cells led to increased aberrant A2A receptor signaling,
which correlates with the age of the patient, numbers of expanded
CAG repeats and number of A2A receptor ligand-binding sites
(Maglione et al., 2005a,b). The linear correlation is more evident
in patients suffering from chorea—an early disruption of the
striatum in HD. Neutrophils from HD patients have higher
A2A receptor dysfunction in homozygous vs. heterozygous HD
patients while no changes in A1 or A3 receptors are observed
in peripheral blood cells (Varani et al., 2003). A2A-cannabinoid
CB1 receptor heterodimers exert crucial function by controlling
neuronal excitability (Moreno et al., 2017), while activation of
striatal A2A receptors may inhibit CB1 function independent
from heterodimer formation (Ferreira et al., 2015). Patients
harboring high-grade HD do not possess A2A-CB1 receptor
heterodimers in the caudate-putamen region due to the lack of
CB1 receptors (Moreno et al., 2017). Recent evidence suggests
that consuming more than 190 mg/day of caffeine may accelerate
HD onset (Simonin et al., 2013), contradicting findings in animal
models that point toward beneficial effects of A2A receptor
antagonism in HD.

HD is also characterized by oxidative stress resulting from
mitochondrial dysfunction, leading to GABAergic neuronal loss
and proneness to DNA damage (Chiu et al., 2015). GABAergic
neurons derived from HD-iPSC showed an increase in DNA
damage and oxidative stress, which can be dramatically reduced
by A2A receptor activation (Chiu et al., 2015). Stimulation of
A2A receptors minimizes oxidative stress-induced apoptosis by
activation of the cAMP/PKA signaling pathway (Chiu et al.,
2015), which is essential for reversing the effect of reduced
A2A receptor activity via CREB transcription factor activation
(Chiang et al., 2005). However, findings in vivo contradict the
beneficial effect of A2A receptor agonism on PKA signaling. In
R6/1 mice, dopamine D1 and A2A receptors are hyperactive
showing greater cAMP/PKA signaling (Tyebji et al., 2015).
Chronic administration of antagonists of dopamine D1 and
A2A receptors normalized PKA levels and improved cognitive
dysfunction and synaptic plasticity. Pre-treatment of rats and
mice with either 8-cyclopentyl-1,3-dipropylxanthine (CPX; A1

receptor antagonist) or DMPX prior application of manolate (an
inhibitor of mitochondria acting in striatum) showed that DMPX
prevented GABAergic cell loss while CPX promotes cell death
(Alfinito et al., 2003). The A1 receptor agonist R-PIA prevented
seizures but not neurodegeneration in the 3-nitropropionic
acid (3-NPA) model of neurotoxicity (Zuchora and Urbañska,
2001), while the A1 receptor agonist adenosine amine congener
(ADAC) protects against excitotoxicity, delays degeneration
and improves motor functions in the same model (Blum et al.,
2002). In view of that, the effect of A1 receptors depended on the
respective used antagonist.

P2 receptors
The role of P2X signaling in HD has not yet been studied in
detail. Evidence exists that signaling via ATP induced cell death
in HDmodels while blockade of ATP production reduces cell loss
(Varma et al., 2007). At the present, the only evidence available
is the role of P2X7 receptor in HD pathogenesis. In two HD
mice model, Tet/HD94 and R6/1, P2X7 receptor expression is

increased, as well as P2X7 receptor-induced Ca2+ permeability
(Diaz-Hernandez et al., 2009). Treatment with the P2X7 receptor
antagonist BBG ameliorates motor coordination deficits and
body weight loss while inhibiting neuronal loss. In vitro, neurons
expressing mutant Htt are prone to cell death induction by
apoptosis after P2X7 receptor stimulation (Diaz-Hernandez et al.,
2009).

Conclusion
The available data on the involvement of A2A receptors in
HD progression is evident, suggesting that the prevention of
its activation could delay disease progression. Taken together,
it can be proposed that a combination of A1 receptor agonist
and A2A receptor antagonist might be a good therapeutic
approach for HD. It must be taken in consideration that the
effect of A2A receptor antagonism depends on age, doses, and
length of treatment. Although antagonism of P2X7 receptor may
be promising, the involvement of other P2 receptors remains
unclear and needs to be investigated.

Ataxias
Ataxia, or dysfunction in motor coordination, is a major
consequence of cerebellar and spinocerebellar tract dysfunction
that can be induced by several factors, including genetic
and sporadic forms, commonly related to immune system
mechanisms (Mariotti et al., 2005). Spinocerebellar ataxia (SCA),
a genetic-related form of progressive ataxia resulted by cerebellar
degeneration, is classified according to mode of inheritance and
gene/chromosome locus affected (Matilla-Dueñas et al., 2012).
The most prevalent and severe forms of SCA are caused by
an increase in CAG sequence repeats in genes that encode
proteins related to disease development (Paulson et al., 2017).
For example, the expansion in polyglutamine affecting ataxin-2
protein can be observed in SCA type 2, while ataxin-3 related
expansion occurs in SCA type 3. Other forms of SCA can be
characterized by other genetic mutations, such as the type 14, in
which mutations in the protein kinase C-γ gene induce cerebellar
degeneration (Seki et al., 2005).

Purinergic Involvement in Ataxias
Attempting to identify survival characteristics of some cell
in SCA type 2, wild type ataxin-2 positive neurons showed
resistance in cell-death induced by axotomy (Viscomi et al., 2005)
and, although this lesion up-regulated P2X1 and P2X2 receptors
in precerebellar nuclei (Florenzano et al., 2002) and induced
P2X1 receptor in ataxin-2 positive neurons, the percentage of
cells expressing P2X1 receptor was not altered (Viscomi et al.,
2005). Viscomi and co-workers suggested that these purinergic
receptors could influence resistance against cell death without
being essential for cell survival, since there are several pathways
involved in neuronal death. The elucidation of purinergic
receptor involvement in SCA type 3 is focused on adenosine
receptors. The blockade of A2A receptors through caffeine
ingestion reduced damaging morphological changes induced by
mutant ataxin-3 injection. Moreover, these damaging effects
were abolished in knockout mice for A2A receptors (Gonçalves
et al., 2013). Behavioral improvements were also observed
in transgenic c57Bl6 mice expressing truncated polyglutamine
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ataxin-3 with severe ataxia, reinforcing the protective effect
of A2A receptor antagonism in the SCA type 3 (Gonçalves
et al., 2017). In the SCA type 14 in vitro model, stimulation of
purinergic receptors with ATP transiently increased translocation
of mutant protein kinase C-γ to the plasma membrane and
subsequent increased damaging aggregation in the cytoplasm
(Seki et al., 2005).

Restless Leg Syndrome
Restless leg syndrome (RLS) is a neurological condition
characterized by an urge to move legs during rest, following
a circadian cycle with worsening during night and even
during sleep (named periodic limb movements of sleep).
Pathophysiological mechanisms have not been fully elucidated,
and conflicting results are reported in the literature.
Dopaminergic transmission seems to be involved, since the
use of dopaminergic-inducing drugs improved symptoms
(Garcia-Borreguero and Cano-Pumarega, 2017). Due to the high
affinity of the agonists with best responsiveness to RLS for D3
dopaminergic receptors, it is postulated that the D3 receptor
subtype has major responsibility for RLS improvement (Ferré
et al., 2018). However, the risk of symptoms worsening after
long-term use of these drugs stimulated the search for alternative
therapies, based on glutamatergic ligands and reversal of iron
deficiency (Ferré et al., 2017). Striatal glutamatergic terminals
are found to be hypersensitive in an animal model of RLS with
increased glutamate and dopamine release. It is known that,
besides increased dopamine release, there is a decreased synaptic
D2 receptor density in this animal model (Ferré et al., 2018).

Purinergic Involvement in RLS
Recently, Ferré’s group pointed at a relation between adenosine
receptors and brain iron deficiency in RLS. Using an animal
model for RLS, in which mice and rats adhered to an iron
deficient diet, striatal presynaptic A2A receptor density was
upregulated (Gulyani et al., 2009). In the same animal model,
A1 receptor density was found decreased in animals with mild,
moderate and severe deficiency accompanied by dopaminergic
D2 receptor downregulation, and increased pre-synaptic A2A

receptor density in animals submitted to a more iron deficient
diet (Quiroz et al., 2016). Thus, the post-synaptic A1 receptor,
which can be found as heteromers with D1 dopaminergic
receptors and antagonizes their activity, as well as presynaptic
A2A receptors forming heteromers with D2 receptors whose
activation decreases D2 receptor affinity for agonists, could be
targets to improve movement impairment (Ferré et al., 1994;
Ferre et al., 1996; Ferré et al., 2007, 2018). Finally, A1/A2A

receptor heteromers found in the striatal glutamatergic terminals,
activated by different adenosine concentrations, decreased
glutamate release, a condition found in brain iron deficiency
animals (Ciruela et al., 2006; Ferré, 2010).

OUTCOMES FOR HYPOTHESES ON P2
PURINERGIC SIGNALING

Although P2X7 receptor expression and levels in neurons
is controversial, the involvement of this receptor in
neurodegeneration is well-stated (Illes et al., 2017). Of all

purinergic receptors, the P2X7 receptor has the lowest affinity
for ATP, and only high concentrations of this nucleotide induce
channel formation (North, 2002; Khakh and Alan North, 2006).
Of the neurological diseases presented here, immune system
responses and neural cell death correspond with the release
of elevated levels of ATP into the extracellular space. In these
scenarios, ATP in excess acts as a toxin that can directly induce
oligodendrocyte death by activating P2X7 receptors, resulting
in progressive neural damage (Matute et al., 2007; Domercq
et al., 2009). Corroborating this idea, it is well-known that the
P2X7 receptor triggers pro-inflammatory effects (Lister et al.,
2007), and its antagonism can counteract chronic inflammation
observed in these diseases (Figure 2). Thus, beneficial effects of
P2X7 receptor antagonism are of interest for future therapeutic
approaches.

As further investigations are necessary to better understand
the real role of purinergic signaling in the diseases here presented,
we also propose a novel mechanistic perspective, in which
purinergic receptors from glial cells are key initiators of motor
dysfunction in PD, MS, ALS and other MND. Although there is
no data regarding P2Y1 receptor functions in these pathological
conditions, it is known that this receptor plays a crucial role
in astrocyte responses accompanied by P2Y12 and adenosine
receptor activity modulation (Mamedova et al., 2006).

During an initial inflammatory response, microglial activation
induces P2Y12 receptor expression level and/or activity
upregulation, stimulating motility toward the injury site and
resulting in reduced P2Y1 receptor expression in astrocytes.
This downregulation in P2Y1 receptor expression stimulates
an increase in reactive astrogliosis and a phenotypical change
in order to promote neuroprotection (Haynes et al., 2006;
Mamedova et al., 2006; Shinozaki et al., 2017). However, constant
inflammatory responses disable microglia of stimulating P2Y12
receptor expression and activity, resulting in a permanent
activation of P2Y1 receptors in astrocytes and extended ROS
production (Rodrigues et al., 2015). This condition will lead
to a downregulation of A1 receptor expression, stimulating
TNF-α production and release, thereby promoting IL-6 secretion
through A2B receptor activation. As a result, TNF-α and
IL-6 accumulation damages oligodendrocytes and provoke
demyelination. A scheme of this mechanism is proposed in
Figure 1.

OVERALL CONCLUSION

The purinergic signaling system has risen in the past years as
a meaningful research object for understanding and treating
several pathologies, as reviewed by Burnstock (2017). Purinergic
receptors and enzymes are in the spotlight for new therapeutic
interventions as key regulators of neuron-glia communication,
as well as modulators of many signaling pathways associated
to neuroprotection, neurodegeneration, and neuroregeneration
(Burnstock, 2016; Ribeiro et al., 2016). In this review, we
highlighted available data linking purinergic signaling pathways
to neurological diseases, such as PD, MS, ALS, and other MND,
putting together published knowledge with novel hypotheses for
overcoming motor dysfunctions. The evidence is summarized
in Table 1. A common mechanism supporting P2X7 receptor
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FIGURE 2 | Common mechanism involving P2X7 receptor-mediated cell death in the central nervous system under neurological diseases affecting motor functions.

Degenerating neurons release large amounts of ATP, leading to sustained P2X7 receptor activation in: a. Astrocytes, inducing the release of cytokines and reactive

oxygen species (ROS); b. Microglia, inducing an activated state and release of cytokines and ROS; c. Oligodendrocytes, inducing cell death and neuron

demyelination; d. Neurons (in spite of the controversial discussion on expression of P2X7 receptors in this cell type), inducing pore formation, ion influx and cell death,

releasing more ATP into the extracellular space. Moreover, cytokines and ROS released by astrocytes and microglia act on other neural cells, culminating in apoptotic

pathway activation.

hyperactivation through high levels of ATP release during
disease development is illustrated in Figure 2. Moreover, a
novel mechanism based on purinergic modulation of glial
cells is proposed in Figure 1. These approaches suggest novel
possible research targets to understand the here presented
motor dysfunctions and other factors associated to neurological
impairment that have not been studied yet. Applied research
will need to be conducted for the development of novel
pharmacological treatments to improve patients’ lifespan and
quality.
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