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Abstract: Zoonotic diseases represent a heavy global burden, causing important economic losses,
impacting animal health and production, and costing millions of human lives. The vaccination
of animals and humans to prevent inter-species zoonotic disease transmission is an important
intervention. However, efforts to develop and implement vaccine interventions to reduce zoonotic
disease impacts are often limited to the veterinary and agricultural sectors and do not reflect the
shared burden of disease. Multisectoral collaboration, including co-development opportunities for
human and animal vaccines, expanding vaccine use to include animal reservoirs such as wildlife,
and strategically using vaccines to interrupt complex transmission cycles is needed. Addressing
zoonoses requires a multi-faceted One Health approach, wherein vaccinating people and animals
plays a critical role.
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1. Introduction

Scientists estimate that 60% of diseases in humans can be attributed to origins in and
spreading from animals (i.e., zoonoses), and many of these diseases have high mortality
rates and the potential to cause epidemics and pandemics [1]. Zoonotic diseases are
responsible for approximately 2.7 million deaths and 2.5 billion human illnesses annually,
in addition to impacting livestock production and food security [2]. SARS-CoV-2, which
has zoonotic origins and emerged as a global pandemic in 2020, had caused over 4.4 M
human deaths globally by mid-2021 alone [3]. In addition to human and animal health
impacts, zoonotic disease burdens include substantial economic damage due to the cost
of human illness, lost livestock production, and disrupted ecosystem health [4,5]. The
potential for zoonotic diseases to affect human, animal, plant, and environmental health,
global food security, and economic stability highlights the need for effective interventions
that target prevention at multiple levels.

Vaccines are one of the most important public health achievements of the 20th century.
From Edward Jenner using cowpox (Variolae vaccinae) to protect against smallpox in the
18th century, Pasteur’s discovery of how to inactivate the rabies virus to save human lives
through vaccination, to the need to rapidly create effective vaccines during the explosive
SARS-CoV-2 pandemic, vaccination is undeniably one of the most effective tools to prevent,
control, and even eradicate disease [6,7]. Animal vaccines control diseases in companion
animals, ensure safe food supplies through maintaining healthy livestock populations,
and serve as an important barrier to prevent the transmission of some zoonotic diseases
to humans [8–11]. Strategies for animal vaccination programs against zoonotic diseases
have included vaccinating domestic animal species to prevent disease transmission to
humans, and vaccinating wild animal species to prevent transmission to domestic animals
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and humans [12]. Developing new and improved vaccines to prevent the transmission of
challenging or emerging zoonotic diseases represents an important future research horizon.

For some zoonotic diseases, animal vaccines have been available for decades. When
used as part of comprehensive prevention programs, these vaccines are highly cost-effective
and could save human lives, improve animal health, and improve food and economic
security [9,10,12]. Despite the successful historic use and current availability of animal
vaccines, they are not always used effectively for maximum public health impact. For
example, rabies vaccination campaigns for domestic animals and wildlife have nearly
eliminated human rabies in developed countries [13]; however, globally, rabid dogs are
still responsible for an estimated 59,000 human deaths annually, largely because many
low-and middle-income countries lack the resources to develop comprehensive canine
rabies vaccination programs [14].

Several limitations exist in the development and implementation of vaccination pro-
grams to protect against zoonotic diseases [12,15]. Challenges include defining the optimal
population targets (e.g., animals vs. humans; domestic vs. wildlife animal reservoirs),
navigating the complexities of vaccine licensing and approval for use (especially with
different regulatory systems for human and animal products), and even the potential
human risks of animal vaccine strains (e.g., human illness due to exposure to Brucella RB51
vaccine strains) [16,17].

In the United States, veterinary vaccines are regulated and licensed by the United
States Department of Agriculture Center for Veterinary Biologics (USDA CVB). Following
drug application, a product license is issued if all regulatory requirements are met after
thorough evaluation during the application, production, and manufacturing processes.
Following licensure, each new serial of a product is tested prior to marketing. The USDA
CVB reviews the test results and has the option to conduct confirmatory testing prior to
releasing the serial on the marketplace.

Human vaccines are licensed by the US Food and Drug Administration (FDA) with
immunization policies developed through the US Advisory Committee on Immunization
Practices (ACIP). After licensure, the FDA continues to monitor vaccine production. Ad-
verse events are voluntarily reported through the Vaccine Adverse Event Reporting System
(VAERS), which was originally created in 1990 as a collaboration between the FDA and
CDC to detect possible signals of adverse events associated with vaccines [18,19].

Vaccines intended for environmental use, particularly those that are modified or at-
tenuated live vaccines, must ensure that all relevant sectors (e.g., human, animal, and
environmental health agencies) agree on the safety and efficacy of the products and ap-
proaches for distribution. The CDC and USDA work closely to evaluate any potential risks
associated with environmental distribution and to ensure appropriate scientific evidence is
available for regulatory agencies to decide whether vaccine products can be used [20,21].

Pathogens and their vectors do not respect borders and can cause outbreaks of disease
in wide geographic regions; however, the licensing of vaccines is country-specific. This
complicates response activities and highlights the necessity of global collaboration to
develop preparedness plans. The current regulatory landscape hinders information sharing
and collaboration, slowing vaccine approvals and restricting availability.

Financial support for the development of safe and effective vaccines to prevent
zoonotic diseases is an area that requires consideration and expansion by interested parties.
Vaccine challenge initiatives present attractive opportunities to encourage the research and
development of vaccines for zoonotic diseases. For example, the vaccine for use against
Brucella melitensis in small ruminants, Rev-1, is an attenuated vaccine that can be pathogenic
to humans and has accessibility challenges in low- to middle-income countries which are
more affected by the disease [22]. The “Brucellosis Vaccine Prize” is a collaborative initiative
to spur the development of an improved vaccine for B. melitensis, with increased safety
and accessibility in low- and middle-income countries as the primary goal; the challenge
is currently underway, with a potential grand prize of USD 20 million [23]. Information
gained through research directed towards improving a vaccine for B. melintensis would also
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likely inform the improvement of the safety profile of a vaccine against B. abortus. Chal-
lenges including the “Brucellosis Vaccine Prize” can help define complicated needs around
vaccines for zoonoses, encourage cross-sector collaboration, and drive the type of early
research and development that can lead to innovative vaccine designs. Unlike veterinary
vaccines, which can take as little as two years to reach the market (as was demonstrated
by the West Nile Virus vaccine for horses), human vaccines can take 10–30 years from
concept to licensure [24]. However, new vaccine platform technologies can help accelerate
this process, as was the case with the development of vaccines for SARS-CoV-2. These
platforms offer standardized, tested methods for delivering vaccine antigens, and can help
shorten and streamline the development process. Assorted vaccine platforms, including
viral vector technology and mRNA vaccines, were first used in veterinary medicine and
have since been adapted for human vaccines [25].

Economic constraints and timing also pose challenges to animal vaccine development;
evolutionary changes of the pathogen may render the vaccine ineffective, negating years or
decades of research, or an outbreak may end before a newly developed vaccine comes to
the market [26]. Outbreaks, such as those caused by the Rift Valley fever virus (RVFV), may
be sporadic, and vaccination strategies must consider the disease ecology and be tailored
to local circumstances whilst considering the risk, cost, and potential benefits.

The concurrent development of animal and human vaccines against zoonotic diseases
presents a unique opportunity for collaboration between historically separated biophar-
maceutical industries [12,27]. However, due to differences in regulation and licensing, as
well as avenues of funding, concurrent development may be challenging [12,28]. Increas-
ing communication, collaboration, and information sharing between human and animal
vaccine industries are important to help inform and drive new vaccine development.

Vaccine-preventable zoonotic diseases present an opportunity to employ a One Health
approach that involves a collaborative, multisectoral, and transdisciplinary approach—
working at the local, regional, national, and global levels—with the goal of achieving
optimal health outcomes recognizing the interconnections between people, animals, plants,
and their shared environment [29]. A review of select vaccine-preventable zoonoses, current
vaccine programs, and challenges for the development of vaccine-preventable zoonotic
disease programs is provided.

2. Review of Vaccine-Preventable Zoonoses

Given the high number of human diseases of animal origin and the public health’s
strong reliance on vaccine programs to improve human health, it is no surprise that a listing
of vaccine-preventable zoonotic diseases is extensive. These diseases have been studied
for over a century, and the development of vaccines to control them represents remarkable
achievements. In the United States, six of the top eight zoonotic diseases identified as those
of greatest national concern have either human or animal vaccines, or both [30]. The top
eight zoonotic diseases of greatest national concern in the US include zoonotic influen-
zas, anthrax, salmonellosis, West Nile virus, plague, severe acute respiratory syndrome
coronavirus (SARS), rabies, and Rift Valley fever virus. Of the 30 One Health Zoonotic
Disease Prioritization workshops conducted globally during the period 2014–2021, all five
of the most commonly prioritized diseases (rabies, zoonotic influenza, brucellosis, Ebola
and other viral hemorrhagic fevers, and anthrax) have either human or animal vaccines,
or both [31]. However, in many cases, opportunities to more innovatively and effectively
develop and use vaccines to address these and other zoonoses could be improved.

2.1. Rabies

Perhaps no zoonotic disease represents the potential successes—and challenges—of
preventing zoonotic disease transmission to humans such as rabies. Without appropriate
vaccination, rabies is an invariably fatal, acute encephalitic disease caused by viruses of the
Lyssavirus genus which is responsible for an estimated 59,000 human deaths annually [14].
Globally, the rabies virus variant that circulates in dogs presents the most serious public
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health threat among Lyssaviruses and is responsible for up to 99% of human deaths, mostly
in children [14]. In the United States, human rabies cases declined precipitously following
the implementation of canine vaccination regulations in the 1940s, and canine rabies was
declared eliminated in 2007 [13]. However, the vaccination of dogs is still considered a high
priority because Rabies virus variants are still present in several terrestrial meso-carnivore
and bat species, and spillover from wildlife continues to pose an ongoing public health risk
to humans, domestic dogs, and other animals in the United States.

Rabies management with oral rabies vaccination (ORV) has been successfully demon-
strated with coyotes, gray fox, and raccoons, while canine rabies vaccination in the United
States utilizes a parenteral (injection) approach. Ecological models and empirical evidence
support that the vaccination coverage of at least 70% of free-roaming dog populations can
eliminate the circulation of canine variants of rabies if maintained for a minimum of five
years. A recent global analysis estimated that it would cost approximately USD 6.3 billion
to eliminate canine rabies worldwide by 2030 through mass dog vaccination; this invest-
ment would prevent an estimated 500,000 human rabies deaths over the next 20 years [32].
However, meeting this ambitious goal would require a dramatic acceleration of funding
and resource prioritization.

The oral vaccination of dogs using live-attenuated viruses has gained attention as
a new tool to advance dog-mediated rabies elimination [33]. This is a particularly attractive
option for parts of the world where free-roaming dogs are challenging to catch and handle
for parenteral vaccination. However, unfounded concerns regarding the safety and efficacy
of well-studied ORV may delay large-scale implementation. The large-scale use of ORV for
wildlife–which lacks motivation for use in dogs—presents a paradox for the rabies com-
munity. While further study and awareness campaigns to improve community acceptance
may eventually enable the effective use of ORV for dogs, delays in the adoption of effective
tools such as ORV enable the continued persistence of the rabies virus in dogs around the
world and perpetuates otherwise preventable human deaths in many countries.

Despite the fact that vaccines for humans and animals have existed since 1885 and
1921, respectively, the rabies virus continues to cost an estimated USD 8.6 B USD per year
globally [14,34,35]. Overall, 55% of the primary global economic burden of rabies is due to
premature death, while 20% is attributed to post-exposure prophylaxis (PEP) use. Thus,
preventing human deaths is a highly cost-effective strategy compared to the estimated cost
of global elimination [14]. However, few countries in the past decade have made major
advances in the elimination of the canine variant and the United States has not yet achieved
the focal elimination of its most significant wildlife strain of rabies, namely the raccoon
variant. Adequate funding, improvements in vaccine accessibility, and the inclusion of
live-attenuated rabies viruses for oral vaccination are important tools that would help to
see these goals achieved.

2.2. Brucellosis

Brucellosis is one the most common zoonotic diseases globally, impacting many species
of animals, and is an example of both the opportunities and challenges of vaccine implemen-
tation. It also illustrates how in a contemporary vaccine prevention program, even highly
successful efforts must evolve and modernize to address the changing disease landscape.

Historically, in the United States, Brucella abortus infections in cattle caused devastating
chronic illness in people and significant economic losses in livestock due to abortions and
fetal loss [36]. Animal vaccine programs were developed by the agriculture sectors to
prevent agricultural losses and to protect human health by reducing the risk of zoonotic
transmission. The US Brucellosis Eradication Program, established in 1934 and imple-
mented by states through a complex set of laws and regulatory programs, exemplifies how
successfully controlling the disease in cattle population has a direct impact on reducing the
number of reported cases of human brucellosis [37].

Presently, brucellosis cases in humans are rarely reported in the United States and
occur mainly in immigrants and travelers who are exposed to the disease outside of the
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United States [16,38]. Brucella abortus infection has been successfully eliminated from
United States cattle herds as a result of this important program. The only remaining risk
in the United States remains near Yellowstone National Park, associated with the possible
spillover from bison and elk herds that were originally infected by cattle [39]. Additionally,
vigilance is still required on the US–Mexico border to monitor for geographic expansion
from that enzootic region. Despite the success of the eradication program and resulting
negligible human risk of exposure throughout most of the United States, large numbers of
cattle continue to receive modified live Brucella abortus vaccines in the United States today
as directed by regulatory processes that were established to support the US Brucellosis
Eradication Program [36].

Notably, an emerging risk factor for human brucellosis in the United States is the
vaccine itself. Three live attenuated vaccines to prevent two Brucella species (B. abortus
and B. melitensis) in animals are commercially available [40,41]. While less pathogenic
than wild-type Brucella species, all three vaccines are pathogenic in humans and can cause
clinical illness. Currently, the B. abortus vaccine RB51 is actively used throughout the United
States, and it was considered less pathogenic (and therefore safer to humans) than the prior
historic vaccine Strain 19 [42]. Over time, the use of the Brucella vaccine, as well as the rapid
identification of animals and removal from affected herds, contributed to the United States’
highly successful elimination of Brucella from US cattle herds [36]. With its widespread
use, however, accidental exposures to the vaccine, such as veterinarian exposures to RB51
through needlestick injury, continue to occur. [43–45].

An emerging public health risk of concern from RB51 has been identified and is
associated with a rise in popularity among the general public of consuming unpasteurized
(raw) milk and milk products within the United States. This has resulted, in part, from
changes in laws permitting raw milk sales in retail stores or directly to consumers in
over half of US states [46]. As a result, RB51 cases have been recently diagnosed in
people who consume unpasteurized dairy products obtained from previously vaccinated
animals [16,17,47]. In this setting, some small percentage of cows that are vaccinated in
calfhood as part of state and federal programs never clear the vaccine strain and develop
a chronic infection, shedding infectious bacteria in milk during later lactation stages [36,48].
Several recent human cases of RB51 linked to raw milk have been reported, and in the
United States, the general public is at higher risk of RB51 than wild-type infection, especially
when consumer preferences remove protective pasteurization processes from milk and
dairy products [16,17]. Currently, the legislation related raw milk is enacted at a state
level, and interstate sales are illegal [46]. For recent cases of RB51 among humans in
the United States, both implicated cows were Jersey breeds, and the chronic shedding
of RB51 post-vaccination is believed to be more common in some individual animals of
Jersey breed [17,47].

An initial risk assessment of the RB51 vaccine was performed to evaluate the impact
of the vaccine on the safety of animals, public health, and the environment [49]. The USDA
Animal and Plant Health Inspection Service (APHIS) also conducted an environmental
assessment and concluded that the licensure of RB51 would not significantly affect the
quality of the human environment [49]. However, the safety assessment was conducted
during the time when farmers and veterinarians were populations at the greatest risk
of exposure to RB51 from accidental vaccine sticks, and before the rise in popularity of
consuming raw milk and milk products among the general public in the United States. The
assessment was also conducted to ascertain safety compared to the older Brucella vaccine
Strain 19, which was more highly pathogenic to humans and livestock. The changes in the
environmental risk of exposure to Brucella in the United States, as well as the changing
demographics of at-risk populations, represent an expanding gap that has developed since
the original vaccine assessments were performed.

RB51 was developed as a vaccine that could differentiate infected from vaccinated
animals (DIVA), an important tool for surveillance purposes. However, because traditional
serologic methods to detect brucellosis were not designed to identify RB51 in either hu-
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mans or animals, and symptoms can be non-specific and wax and wane, human cases
are undoubtedly underdiagnosed and underreported [44,50]. Additionally, RB51 is resis-
tant to rifampin and penicillin, which are the first-line medications used to treat human
brucellosis, further complicating human treatment and diagnosis [44,51]. While the CDC
established a passive surveillance system from 1998 to 1999 to identify cases of accidental
RB51 exposure among veterinarians and farmers, this system did not evaluate possible
RB51 infection from exposure to unpasteurized dairy products [45]. National surveillance
for human Brucella infections is tracked through the CDC’s National Notifiable Diseases
Surveillance System (NNDSS), and brucellosis cases are commonly investigated by state
health authorities to assess possible sources of domestic or international exposure [52].
However, because it is so challenging to detect human infections with RB51, which may
be milder than traditional cases of brucellosis, it is uncertain whether current surveillance
practices are sufficient for detection and reporting through the NNDSS, and unclear how
widespread the human RB51 infection caused by raw milk consumption may be. This gap
may become increasingly problematic as consumer preferences continue to evolve [45,53].
Further developments to enhance vaccine safety to produce non-pathogenic animal vaccine
strains should be considered an important future research horizon if the consumption of
unpasteurized dairy products becomes more widespread in the United States. Additionally,
changes in vaccine program administration in the context of emerging human health risks
should be discussed collaboratively between the public health and agriculture sectors. For
example, implementing screening programs on raw milk dairies and antigen-based tests
could provide targeted testing to help protect public health. Similarly, the current state
requirements for Brucella vaccination programs could be re-examined, particularly for the
cows used for raw milk dairies and in breeds at risk for chronic shedding.

2.3. Coronaviruses

Nothing illustrates the potential perils of zoonotic disease risks as dramatically as the
COVID-19 pandemic. Coronaviruses include several known zoonotic pathogens, most
notably the Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute
respiratory syndrome coronavirus 1 and 2 (SARS-CoV-1 and SARS-CoV-2). These viral
pathogens highlight the challenges and opportunities for vaccine use to prevent emerg-
ing zoonotic transmission, and the necessity of taking a flexible and adaptive approach.
MERS-CoV is a relatively rare zoonotic infection with epidemic potential that has caused
severe respiratory illness in people. Multiple lines of evidence point to dromedary camels
as a reservoir host [54–57]. Three potential vaccination strategies to prevent MERS-CoV
infection are currently under consideration: (1) the vaccination of camels to prevent the
camel-to-human transmission of MERS-CoV; (2) the vaccination of specific at-risk human
populations (e.g., healthcare personnel and those with occupational exposure to camels);
and (3) the reactive use of a vaccine in at-risk humans as a means of outbreak control.
Camel vaccination would likely provide minimal benefit to the animals [58], but given the
severity of disease in humans, the lack of viable treatment options, and epidemic potential,
camel vaccination is still considered a viable preventive measure for human infection.
Vaccine trials for MERS-CoV are underway in both camels [59,60] and humans [61,62], with
one candidate, the ChAdOx1 MERS CoV vaccine, undergoing trials across both camels
and humans [59,62].

In contrast, SARS-CoV-2, the virus that causes COVID-19, while suspected to have
originated in an animal reservoir, has reached pandemic levels through sustained person-
to-person transmission. Additionally, transmission from humans to a wide range of mam-
malian animals has been documented, including companion animals (dogs, cats, and
ferrets), exotic animals (lions, tigers, and other large cats, non-human primates, otters,
and multiple other species), production animals such as farmed mink, and most recently,
free-ranging white-tailed deer, and additional susceptible animal species continue to be
identified [63,64]. At the time of publishing, the Pfizer-BioNTech COVID-19 Vaccine and
Moderna Spikevax vaccines have been approved by the FDA for use in humans, and
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the Johnson & Johnson has been approved under emergency use authorization (EUA) in
the United States [65,66]. An experimental animal vaccine developed by Zoetis has been
authorized for use in mink herds and zoo animals that have demonstrated natural suscepti-
bility to SARS-CoV-2 infection [67]. Given the potential for the zoonotic transmission of
SARS-CoV-2 from mink to humans, in addition to the emergence of novel viral variants
in this animal species documented in Europe [68], vaccinating mink as a mechanism to
protect both animal and human health has been implemented in the United States. This
initiative has, in part, been fueled by concerns about vaccine and therapeutic efficacy in the
context of mink-associated viral variants which resulted in the mass culling of the mink
population in Denmark [68].

While the vaccination of people primarily serves to protect them against illness and
death, it has the indirect benefit of potentially preventing zoonotic transmission from
people to animals. Prior reports have documented the transmission of SARS-CoV-2 from
humans to critically endangered and valuable zoo animal species [69]. Experimental
animal vaccines have been used to protect these species from disease transmission from
humans [70]. The finding of widespread SARS-CoV-2 transmission among white-tailed
deer in the United States and Canada following the likely spread from people has raised
concerns about whether the virus might become enzootic in this species, which could lead
to further viral evolution and the emergence of new mutations or variants with public
health impacts [63,71]. Further research is needed to better elucidate any indirect protection
that vaccinating people may provide to animals. Preventing inter-species transmission
from people to animals and among animals, which may in part be accomplished by
vaccinating humans, could reduce the emergence of variants and help preserve vaccine
efficacy. SARS-CoV-2 demonstrates the complexities of inter-species disease transmission,
further highlighting how prevention and control efforts such as vaccination should reflect
the shared threat of disease among humans and a variety of animal species.

2.4. Influenza

For influenza viruses, human and animal vaccines play critical roles in protecting
the individual, preventing zoonotic transmission, and preventing virus reassortment
(i.e., recombining larger gene segments from different viruses) that may lead to a novel
virus with pandemic potential. In addition to humans, influenza A viruses are known
to routinely circulate in six animal species or groups (i.e., wild water birds, domestic
poultry, swine, horses, dogs, and bats), and can infect many other animal species through
inter-species transmission [1,2].

Influenza A viruses are constantly evolving, making it possible on rare occasions for
animal influenza viruses to change in such a way that they can easily infect people [3,4].
As with SARS-CoV-2, influenza vaccines not only directly protect the recipient, but also
prevent inter-species transmission, which can facilitate the emergence of new viruses [1,5].

Many influenza A viruses are not host specific; for instance, humans and some animals,
such as pigs and dogs, can be infected with either swine, human, or avian influenza viruses.
If a host is infected with different viruses at the same time, it is possible for reassortment
to occur and create a novel virus. While it is unusual, sporadic human infections caused
by certain avian influenza viruses and swine influenza viruses have been reported. In
combination with other measures, vaccines are a valuable tool in preventing the zoonotic
transmission of influenza viruses.

In the United States, in addition to seasonal influenza vaccines for humans, there are
12 animal influenza vaccines licensed through the United States Department of Agricul-
ture’s Center for Veterinary Biologics (USDA CVB). Vaccines are available for domestic
poultry (3), swine (5), horses (1), and dogs (3), in function of the needs of the individual
animal owners, whether they be commercial animal production facilities, family agriculture
farms, or companion animal owners [6]. Swine are vaccinated, while birds are not, and
the lack of an oral vaccine for the mass vaccination of poultry presents a challenge for the
poultry industry. To be most effective, it is important for the animal influenza vaccines
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to antigenically match the influenza virus strain currently circulating in the respective
animal species.

A candidate vaccine virus (CVV) is an influenza virus that has been prepared by the
Centers for Disease Control and Prevention (CDC)—or another public health agency—that
can be used by vaccine manufacturers to produce an influenza vaccine for humans [7]. In
addition to preparing CVVs for human seasonal influenza vaccine production, the CDC
routinely develops CVVs for novel avian and swine influenza viruses with pandemic
potential as part of their pandemic preparedness activities [8]. Influenza vaccines protect
against specific influenza viruses, with minimal cross protection against other influenza
viruses, so the first step in creating a CVV against a particular avian or swine influenza
virus is to identify the emerging animal influenza virus that is posing or may pose a risk to
human health [8–10].

The tendency of influenza A viruses for mutation and reassortment, combined with the
presence of wildlife reservoirs, the circulation of avian influenza viruses in domestic poultry,
and the diversity of swine influenza viruses in the domestic swine population, make vaccine
development a challenge. However, influenza vaccination in animals remains an important
measure to control and prevent reassortment events and zoonotic transmission, and to
reduce influenza illness in humans and animals.

3. Implementing Strong Global Programs for Vaccine Preventable Zoonoses

Efforts to prevent and address zoonotic diseases must reflect their global nature and
use a One Health approach because with worldwide trade, travel, and the movement
of animals and animal products, zoonotic pathogens anywhere are a threat to animal
and human health everywhere. The World Health Organization (WHO) Initiative to End
Dog-Mediated Human Rabies Deaths by 2030, a collaboration led by the WHO, World
Organisation for Animal Health (OIE), and the Food and Agriculture Organization (FAO),
is one of the most prominent collaborative global efforts to employ vaccines to eliminate
a zoonotic pathogen as a public health threat [32,72]. As a One Health effort, this strategic
plan heavily relies on dog vaccination and human PEP to prevent transmission and disease.
This initiative provides structure and impetus for countries to improve their rabies control
and elimination programs and has spurred additional efforts, such as the Global Alliance
Vaccine Initiative (Gavi), to help achieve this goal [73].

Gavi has committed itself to expanding access to human rabies vaccines for PEP
to provide equitable access to persons following a suspected dog bite [73]. Together,
these programs are examples of comprehensive One Health approaches using veterinary
and human vaccines to prevent zoonotic disease: veterinary vaccines used to prevent
disease and transmission between dogs and from dogs to humans, and PEP used to
prevent disease in humans in the event of exposure. Focusing solely on human PEP
fails to address the complete epidemiologic picture and will result in the need for never-
ending, costly PEP provision. The vaccination of dogs without the expanded provision
of PEP to bite victims will eventually eliminate the threat to humans, but would likely
result in hundreds of thousands of human deaths as canine vaccination programs are
implemented [74]. Oftentimes, zoonotic disease control efforts are siloed, resulting in
unequal control capacities and disease persistence; Gavi is setting a clear example of the
importance of recognizing a One Health approach to address rabies control from both
a human and animal perspective.

Within the United States, the CDC Global Immunization Strategic Framework (GISF)
provides guidance for CDC’s work during the next ten years to advance the control,
elimination, and eradication of vaccine-preventable diseases [75]. For the first time, vaccine-
preventable zoonoses are identified as a priority area within this framework. The GISF
identifies opportunities for collaboration, the remaining challenges, and ways to maximize
the efficiency and effectiveness of disease prevention interventions. The GISF emphasizes
the importance of taking a comprehensive, One Health approach that is flexible, adaptable,
and sustainable. Recognizing the importance of a collaborative multi-sectoral approach



Vaccines 2022, 10, 993 9 of 19

and the potential of using veterinary vaccines to prevent zoonotic disease is a foundational
step in implementing these plans.

The global threat of vaccine-preventable zoonoses prevention programs is demon-
strated by Rift Valley fever virus (RVFV). RVFV is transmitted by the Aedes species mosquito,
and competent vectors exist far outside of its current distribution, which is primarily lim-
ited to Africa and the Arabian Peninsula [12]. The introduction and establishment of novel
mosquito-borne diseases in the United States remain a risk, as historically demonstrated by
the introduction of the West Nile virus into the United States in 1999, followed by its rapid
spread across the country [76,77]. The USDA considers RVF to be of the most significant
foreign animal diseases posing a threat to the United States due to the presence of compati-
ble Aedes vectors and possible economic impacts on the livestock industry [78,79]. During
RVFV outbreaks, large numbers of infected livestock serve as an amplifier for viral spread.
Humans are primarily exposed to RVFV through contact with blood or other body fluids of
infected livestock. Thus, vaccinating livestock is central in stopping the transmission cycle
of RVFV by simultaneously preventing further transmission among mosquito vectors, in
wild animals, and preventing additional human infections [12]. Several animal vaccines
currently exist, but their use is complicated by the sporadic nature of outbreaks, which
is often related to weather events such as flooding. Geographic locations prone to RVFV
outbreaks are frequently rural and economically challenged, and so thus also present chal-
lenges with regard to the vaccine cost, availability, and licensure, which may not extend
to the entire geographic area experiencing disease. Ideally, vaccines should be DIVA to
allow animal exports to resume following outbreaks and to better track the distribution
of the natural disease. The tremendous potential for RVFV to cause disease across broad
geographic regions or be imported to new areas, coupled with the lack of a global plan to
address this disease, highlights the necessity of developing improved vaccine strategies
that are tailored to local risk and reflective of disease ecology.

4. Co-Development of Human and Animal Vaccines

An example of vaccine co-development, or the concurrent development of a vaccine
intended for veterinary and human use against a common pathogen, occurred in 1999
with the West Nile virus (WNV) vaccine [80,81]. The West Nile virus was first detected in
animals in 1999, and quickly spread across the United States, causing illness in humans,
horses, and numerous bird species [76]. During the early phase of the epidemic, veterinary
and human vaccine candidates were developed in tandem, and the data gathered from
both programs were shared across sectors to help inform the pathway to advanced clinical
trials [12]. In two years, a veterinary vaccine was developed for use in horses, and one of
the developed vaccines was able to protect California Condors from extinction [12,82]. In
this instance, the development of the veterinary vaccine helped inform the development
of the human vaccine by providing information on the safety, duration of immunity, and
immune protection [12]. The cost of developing an animal vaccine is approximately 10% of
that of developing a human vaccine [83]; the WNV vaccine co-development provides
an example of the potential for collaborative vaccine development through coordination
between human and veterinary sectors. Today, while the WNV vaccine is considered a core
vaccine in horses, there is currently no licensed vaccine for humans due to obstacles with
obtaining efficacy data because of unpredictable WNV transmission patterns. Approval
of a human WNV vaccine would likely require the use of the FDA’s Animal Rule, which
provides a pathway to licensure for vaccines using well-designed animal studies when
human clinical trials are not possible or are unethical [84]. In addition to obstacles to
conducting Phase III studies, initial estimates of a universal vaccination program among
humans in the United States was not cost-effective. However, more recent cost-effectiveness
analysis in the United States has demonstrated that the implementation of a human WNV
vaccine program that targets persons aged ≥60 years (who are at increased risk for severe
outcomes) and who live in high-incidence areas would improve the cost-effectiveness of
the program and could reduce human deaths by 60% [85–88].
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Another example of vaccine co-development is LYMErix, a vaccine that was developed
in the 1990s for human application to protect against Lyme disease. LYMErix was based on
a novel approach that targeted an outer surface protein, OspA, to inactivate B. burgdorferi
while still in the tick vector. Despite a reported 76% efficacy in the first year, LYMErix
was removed from the market after four years, with the manufacturer citing poor sales
performance, amid unsubstantiated concerns of side effects and an ongoing class-action
suit [89]. Meanwhile, several OspA vaccines were developed and are currently available
to protect against Borrelia burgdorferi infection in dogs [90]. A second generation OspA
vaccine candidate for human use, Val15, is undergoing stage 2 clinical trials [91]. OspA
vaccines have also been evaluated for possible use in wildlife reservoirs of B. burgdorferi;
however, there remain significant barriers to vaccine delivery. The similarities between
these vaccines highlight the potential for co-development opportunities through sharing
technology that has been in use for years in animal applications. As Lyme disease causes
a substantial burden of illness among humans with approximately 476,000 Americans being
diagnosed and treated annually, vaccine development remains an important strategy for
the prevention and control of this zoonotic disease [92,93].

An important example of zoonotic disease vaccine co-development with wide-
ranging benefits was the development of the ChAdOx1 MERS-CoV vaccine. This vaccine,
an adenovirus vector vaccine with the MERS-CoV spike protein was developed for use
in both humans and camels. Immunogenicity and efficacy results were first reported in
camels in 2019 [59], and phase 1a results were reported in humans by Folgatti et al. in
early 2020 [62]. Additionally, in early 2020, scientists from the same group reported the
development of an adenovirus vector vaccine with the spike protein of SARS-CoV-2; the
ChAdOx1 nCoV-19 vaccine, AZD1222 [94]. The work on a functional MERS-CoV vaccine
therefore enabled rapid scientific translation into a vaccine for a novel emerging coro-
navirus. The AZD1222 vaccine has since been used globally, with over 2 billion doses
distributed in less than 12 months after initial approval [95]. The use of the AZD1222
vaccine in turn, has informed the further development of the ChAdOx1 MERS-CoV vaccine,
with the recently published human phase 1b results [96]. Additionally, it is notable that
the rapid early development of mRNA vaccines for SARS-CoV-2 was also enabled by the
previous development of vaccines for MERS-CoV [97]. More specifically, structural studies
using MERS-CoV led to the development of mutations that stabilized beta coronavirus
spike proteins in the prefusion state, improving their expression, and increasing immuno-
genicity [98]. This principle was then applied to design mRNA-1273, an mRNA vaccine
that encodes a SARS-CoV-2 spike protein that is stabilized in prefusion conformation [97].

In unique situations where the goal is the development of a human drug or biologic
product, and where it would be unethical to deliberately expose healthy human volunteers
to a lethal or permanently disabling toxic biological, chemical, radiological, or nuclear
substance, the FDA “Animal Rule” is intended to expedite the development of new drugs
and biologic products as medical countermeasures (MCMs) [82]. This rule permits the
FDA to approve drugs or license biological products on the basis of animal efficacy studies
for use in ameliorating or preventing serious or life-threatening conditions caused by
exposure to lethal or permanently disabling toxic substances [84]. Additionally, the use of
animal models for the pre-clinical testing of human vaccines provides another example
of an opportunity for information sharing across sectors. Thus, even when vaccine co-
development is not the intention, collaboration and information sharing across the animal
and human sectors can inform the development of novel drugs and biologics.

5. Discussion

The multi-factorial nature of zoonotic diseases highlights the need for One Health
collaborations to protect human, animal, and environmental health. Despite the availability
and proven efficacy of using vaccines to prevent zoonotic diseases, they are not always used
to their full potential. Although opportunities for partnership exist regarding intervention
strategies, vaccine target identification, and vaccine development, they are underutilized.
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To aid in this effort, it would be beneficial if information regarding vaccine research and
development were shared between human and animal health sectors. This might be
accomplished through opportunities for interprofessional education at conferences and
events, and include information on how recent developments in vaccine science can impact
multiple species and promote One Health collaborations for examining vaccine efficacy.

Historically, human and animal health sectors have primarily focused on preventing
diseases that affect their respective species. Consequently, prevention plans are often limited
in scope and reactive in nature, resulting in the continued burden of zoonotic diseases.
Proactive collaboration between human and animal sectors such as having agreements for
sharing biological samples and laboratory results prior to disease emergence or outbreaks
would expedite the sharing of DNA sequences and information to aid in more timely
prevention strategies. This proactive approach by federal, state and local animal and public
health entities may help to achieve more timely disease control.

Human and animal health agencies have their own specific knowledge and tools,
including surveillance data, which are needed to direct efforts to prevent these diseases
in their respective species, but the collaborative One Health approach needed to address
zoonotic diseases is lacking. Although rabies is one of the oldest vaccine-preventable
zoonotic diseases, and arguably has employed the most expansive coordinated approach
among vaccine preventable zoonoses, this virus remains a significant human health threat
across the world. Despite the strong achievements of the past century, including the
development and wide availability of efficacious canine and human vaccines, global control
has remained elusive, with tens of thousands of deaths annually. The new and energized
focus on rabies prevention by the WHO, along with Gavi and other partners, represents
a change in the approach to rabies control, particularly because the architecture of the
plan involves both human and animal vaccine programs and sets ambitious global goals
requiring coordinated work across human and animal health sectors. This type of core
coordination would also strongly benefit other vaccine-preventable zoonoses.

Currently, human and animal health divisions within the biopharmaceutical industry
are kept largely separate, even with regard to zoonotic diseases. As exemplified by WNV,
the co-development of human and veterinary vaccines can provide an opportunity for
collaboration and information sharing, including safety and efficacy studies, the duration of
immunity, and immune protection. Ideally, research, funding, and communication efforts
should reflect the shared nature of zoonotic diseases for which vaccines are being developed.
As both sectors bear the burden of zoonotic diseases, directly or indirectly, it follows that
they should share the responsibility and cost of developing and implementing prevention
and mitigation strategies. Additionally, in developing vaccines and communicating about
their importance to disease prevention, developing plans for unified communication and
messaging about vaccine technology (e.g., mRNA) may help jointly combat misinformation.
Sharing information regarding the use of vaccines in veterinary patients might help expand
public acceptance for human vaccines, during a time of increasing vaccine hesitancy in some
individuals [99]. Sector-specific approaches to zoonotic disease prevention and control
efforts that do not consider the complex landscape of disease ecology and multi-host
diseases using a One Health approach miss opportunities for more significant success.

While a comprehensive sector-inclusive approach to utilize vaccines to prevent zoonotic
diseases is undoubtably more complicated than solely focusing on human or animal pop-
ulations, the careful examination of disease reservoirs, vector ecology, and transmission
dynamics may identify unique opportunities for effective intervention. Examples of past
successful vaccine development and implementation, such as the elimination of canine-
mediated rabies in the United States, and the use of Salmonella Enteritidis vaccination
among egg-laying poultry flocks demonstrate the promise of using vaccines to prevent
zoonotic diseases. Veterinarians are uniquely suited to this task and can aid in the adoption
of a more inclusive approach to vaccine utilization by working with producers to examine
the potential implications for public health when considering whether to utilize certain
vaccines in a flock or herd of animals.
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The diseases described herein present unique challenges that require comprehensive
plans to effectively reduce zoonotic disease impacts. While there is a great deal of work hap-
pening for some pathogens, such as rabies, for others, there is lack of forward momentum
or a generalized acceptance of background disease rates as “something to live with”. The
diseases listed in Table S1 represent partially developed programs. Each also represents
opportunities for the renewed consideration of more comprehensive and collaborative
approaches for prevention and control. Vaccination as a method to prevent zoonotic disease
holds tremendous promise, not only to prevent animal infections, but also to protect human
health, food security, and wildlife populations. The re-examination of current programs
and creating new, re-energized, collaborative approaches for vaccine-preventable zoonotic
diseases is needed among vaccine researchers, pharmaceutical companies, and public
health and animal health professionals and producers. A One Health approach that reflects
the shared burden of disease and promotes domestic and global collaborations between the
human and animal health sectors and other relevant partners should be applied in strate-
gies to prevent zoonotic diseases, including research and vaccine development, planning,
funding opportunities, and implementation.

Supplementary Materials: The following supporting information can be downloaded at: https:
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