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Abstract: Dietary supplement and personal care products aiming to provide protection from air
pollution have been of great interest for decades. Epidemiology demonstrated that PM10 and
PM2.5 particulate matter (PM) are an actual threat to public health worldwide, but the detailed
processes of how these particles attack the cells are not fully understood. Here, we report that
the measurement of intracellular calcium concentration ([Ca%*]i) using human respiratory or skin
cells can illustrate pollutant challenges by triggering Ca®* influx in these cells. This signal was
generated by proteinase-activated receptor-2 (PAR-2), confirmed by competition analyses, and
Phellodendron amurense bark extract (PAE), a traditional medicine, was able to control the response
and expression of PAR-2. Increase in proinflammatory cytokines and decrease in cell adhesion
components could suggest a severe damage status by air pollutants and protection by PAE. Finally,
we identified 4-O-feruloylquinic acid (FQA), an active compound of PAE, showing the same effects on
Ca?* influx and PAR-2 regulation. The results presented here should help understand the underlying
mechanism of PM insults and the beneficial effect of standardized PAE as dietary supplement or
cosmetical ingredient.

Keywords: skin inflammation; particulate matter (PM); proteinase-activated receptor-2 (PAR-2)

1. Introduction

Air pollution is a major environmental threat to public health worldwide [1,2]. The
World Health Organization (WHO, Geneva, Switzerland) Air Quality Guidelines con-
firmed that over 4 million premature deaths were probably caused by particulate matter
(PM)2.5 [3]. It is widely accepted that PM10 and PM2.5, smaller than 10 and 2.5 um
respectively, are generated mostly from the use of fossil fuels and cause diseases and
cancers related to cardiovascular and respiratory systems [4]. Several researchers have con-
cluded that outdoor or ambient air pollution is carcinogenic to humans, and, more recently,
large-scale retrospective analyses of over 600 cities worldwide revealed an independent
association between short-term exposure to air pollutants and daily mortality [5-7].

Other than respiratory tracts, skin is an important organ that is in constant contact
with air pollution. Skin is the biggest and outmost organ in our body, and it plays a
role as a barrier to environmental insults, both physical and chemical [8]. The stratum
corneum, at the top of the skin surface, is challenged on many external stresses, including
reactive oxygen species (ROS) produced by particulate matters, and often PM2.5 can
penetrate into deeper layers of the skin, resulting in skin aging symptoms [9]. Exposure
to air pollutants also causes premature skin aging, pigmentation spots, and acne. Like
airway mucosa, human dermal fibroblasts and immortalized nontumorigenic epithelial
(HaCaT) cells have been shown to struggle with inflammatory conditions elicited by air
pollutants [10-13]. Cumulative irritations by exposure to PM have been implicated in skin
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disorder statuses, such as psoriasis, atopic dermatitis, and even skin cancer. Studies have
suggested that proinflammatory cytokines and the NF-«B pathway indicate damage status
by air pollutants, probably with ROS also being generated by them. Pollutants can also
disrupt the integrity of skin barrier function, facilitating further penetration through the
epidermal layers and leading to the complex toxicity. Still, it remains unclear which signal
transduction is induced by the contact with PM and activates the downstream pathways to
determine cellular responses, especially inflammatory conditions.

Intracellular calcium (Ca?*) is a universal intracellular second messenger, mostly
implicated in muscle contractile activation [14]. The level of cytosolic Ca?* concentration is
critically regulated by living cells, maintained much lower than the extracellular environ-
ment. Plenty of energy is consumed by Ca?* pumps, and highly regulated intracellular
compartments (Ca®* stores) are also important for cell viability [15]. Immediate influx of
cytosolic Ca?* indicates that the cells sense environmental changes via various surface
molecules, and a wide range of Ca?*-dependent regulators have been studied by mon-
itoring intracellular calcium concentration ([Ca2+]i). In 2011, Li et al., reported that the
contact of human bronchial epithelia to diesel exhaust particles induced Ca?* influx [16].
Proteinase-activated receptor-2 (PAR-2) was involved in the activation of transient receptor
potential vanilloid, family member 4 (TRPV4), leading to the disease symptoms of respira-
tory cells. It is interesting to note that PAR-2 has been known as a critical player in chronic
inflammation by physiological and molecular researchers [17].

Using traditional medicines or dietary compounds to enhance skin health has seen
an increasing demand in recent decades. Cosmeceutical products and supplements are
leading the personal care trend, and applying biomolecules from medicinal plants is widely
reported. In this study, we established stable platforms that can monitor [Ca?*]i during
respiratory or skin cells in contact with PM2.5 and respond to the stress. Transient, but
consistent Ca* influx was observed upon the diesel particle matter (DPM) treatment in
both normal human bronchial/ tracheal smooth muscle (HBT-SM) and HaCaT cells. The
involvement of PAR-2 was confirmed by competition analyses with a synthetic agonist and
an antagonist. Furthermore, we evaluated a traditional medicine, Phellodendron amurense
bark extract (PAE), to inhibit PM-induced Ca®* influx by directly acting on PAR-2, alleviate
inflammation and maintain homeostatic levels of cell adhesion components. Our study
uncovered hidden signal transduction that cells use to rapidly respond to the external
pollutants. These findings also elucidate the mechanism of PAE’s cosmeceutical effect,
which was recently suggested in an atopic dermatitis research [18].

2. Materials and Methods
2.1. Treatment of the Cells with DPM, PAE, and 4-O-Feruloylquinic Acid (FQA)

DPM NIST® SRM® 1650b, Fura-2/AM and Pluronic™ F-127 were purchased from
Merck and Invitrogen. DPM stock solution (25 mg/mL) was prepared in dimethyl sul-
foxide (DMSO) and sonicated in a water bath with 40% amplitude and for 30 s on/off for
3 cycles. Because the particles are not solubilized, we kept the same protocol to prepare the
suspension directly before treating the cells.

The doses of PAE and FQA were determined after testing the cytotoxicity of each, as
described in Supplementary Materials Figure S1.

2.2. Measurement of [Ca?* ]i

HaCaT cells were kindly provided by the Department of Genetic Engineering, College
of Life Science and Skin Biotechnology Center, Kyung Hee University, and HBT-SM cells
were purchased from LIFELINE Cell Technology (Frederick, MD, USA). The cells were
plated at a density of 50,000 cells/well per coverslip, placed in a 12-well plate 15 h before
the experiment, and grown in Dulbecco’s modified Eagle’s medium (DMEM). Cells were
loaded with 5 uM Fura-2/AM (Invitrogen, Carlsbad, CA, USA) and 0.1% Pluronic™ F-127
(Invitrogen) and incubated at 37 °C for 30 min in a bath solution (10 mM HEPES (pH 7.4),
140 mM NaCl, 1 mM MgCl,, 5 mM KCl, 2 mM CaCl,, and 10 mM glucose). Cells attached
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to the coverslips were perfused with the prewarmed (37 °C) bath solution at the bottom
of a perfusion chamber. DPM and the other specimens were diluted in the bath solution.
[Ca2*]i was measured by using 340 and 380 nm excitation, and the emitted fluorescence was
captured by digital CCD camera (Hamamatsu Photonics, Hamamatsu, Japan) at 510 nm to
be analyzed by Metafluor software (Molecular Devices, San Jose, CA, USA). A fluorescence
ratio of 340/380 nm was recorded, and the responses to the specimens were calculated as
the percentage of changes in fluorescence compared to each control. Mean =+ SE of the
percentage values from individual cells were calculated and plotted with the number of
cells measured. The same amount of extraction vehicle (butylene glycol for PAE, or solvent
DMSO for FQA) was added to the control.

2.3. Quantitative Real-Time PCR

HaCaT cells were plated at a density of 3 x 10* cells per well in a 96-well plate and
cultured in a 5% CO; incubator at 37 °C for 24 h. Then, DPM (25 nug/mL) and PAE or
FQA were treated with the cells and incubated for 37 °C for 24 h. The same amount of
extraction vehicle (butylene glycol for PAE, or solvent DMSO for FQA) was added to
the control. The cells were washed twice with PBS, and preparation of cell lysates and
reverse transcription were performed using a commercial kit (SuperPrep II Cell Lysis
& RT Kit for qPCR; TOYOBO, Osaka, Japan). The concentration of the extracted cDNA
was measured using a NanoDrop (Nanodrop 2000, Thermo Fisher Science, Waltham,
MA, USA). To quantitate the expression levels of the target genes, quantitative RT-PCR
was performed on the LightCycler® 96 (Roche Diagnostic, Mannheim, Germany) using
a FastStart Essential DNA Green Master (Roche Diagnostic, Mannheim, Germany) with
the primers in Table 1. The gene expressions were compared for analysis by normalizing
against (3-actin expression.

Table 1. Primer sequences of genes analyzed by quantitative real-time PCR.

Gene Primer Sequence (5 to 3') References
PAR2 Forward CTGTGGGTCTTTCTTTTCCGAA [19]
Reverse CAAGGGGAACCAGATGACAGA
L6 Forward AGTCCTGATCCAGTTCCTGC [20]
Reverse AAGCTGCGCAGAATGAGATG
1.8 Forward TGAGCATCTACGGTTTGCTG [21]
Reverse TGCTTGTCTGGAACAACTGC
TNFO-o Forward GAGGCCAAGCCCTGGTATG [22]
Reverse CGGGCCGATTGATCTCAGC
. Forward CCTCGCCTTTGCCGATCC
-actin [23]
Reverse CGCGGCGATATCATCATCC

2.4. Western Blot Analysis

HaCaT cells were plated at a density of 5 x 10° cells/well in a 6-well plate and cultured
in a 5% CO; incubator at 37 °C for 24 h. Then, DPM (25 ng/mL) and PAE or FQA were
treated with cells and incubated for another 24 h. The same amount of extraction vehicle
(butylene glycol for PAE, or solvent DMSO for FQA) was added to the control. The cells
were washed twice with cold PBS and lysed with RIPA buffer containing protease inhibitor
cocktail. The lysates were centrifuged at 4 °C, 13,000 rpm for 15 min. Supernatants were
harvested, and protein quantification was performed by Bradford analysis. Samples with
equal amounts of protein (20 ug) were separated using 4-12% SDS polyacrylamide gels,
transferred to polyvinylidene difluoride membranes (PVDF), and blocked with 5% BSA in
TBST buffer for 25 °C for 1 h. Antibody dilutions were as follows: PAR-2, 1:1000; occludin,
1:1000; ZO-1, 1:1000; pB-actin, 1:10,000. Antibodies specific for PAR-2 (#6976), occludin
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(#91131), and ZO-1 (#13663) were purchased from Cell Signaling Technology (Beverly, MA,
USA). The antibody for p-actin (A1978) was from Sigma Aldrich (St. Louis, MO, USA).
Detection of bands was performed using Image Quant LAS 4000 (GE Healthcare, IL, USA)
hardware and software, according to the manufacturer’s instructions. Signal intensities
were quantified by densitometry, with Image J (NIH, Bethesda, MD, USA).

2.5. Isolation of Active Compounds in PAE

The bark of P. amurense was extracted with 50% ethanol, and PAE was sequentially
fractionated with hexane, chloroform, ethyl acetate, and butanol. Three known compounds,
namely, palmatine, berberine, and 4-O-feruloylquinic acid (FQA) were isolated from the
ethyl acetate and the butanol fractions. The structure of each isolate was determined with
NMR spectroscopy.

Palmatine: 3C-NMR (100MHz, CD;0D) 5 110.4 (C-1), 123.7 (C-1a), 151.3 (C-2), 154.3
(C-3), 112.7 (C-4), 130.5 (C-4a), 28.3 (C-5), 57.1 (C-6), 146.9 (C-8), 120.9 (C-8a), 146.2 (C-9),
152.3 (C-10), 124.9 (C-11), 128.5 (C-12), 135.7 (C-12a), 121.7 (C-13), 140.2 (C-13a), 58.1 (C-2,
OCHz3), 57.4 (C-3, OCH3), 63.0 (C-9, OCHs), 57.8 (C-10, OCH3) [24].

Berberine: 3C-NMR (100MHz, CD;0D) § 106.6 (C-1), 121.9 (C-1a), 150.0 (C-2), 152.1
(C-3), 109.5 (C-4), 132.0 (C-4a), 28.3 (C-5), 57.7 (C-6), 146.5 (C-8), 123.4 (C-8a), 145.8 (C-9),
152.2 (C-10), 128.1 (C-11), 124.6 (C-12), 135.2 (C-12a), 121.6 (C-13), 139.7 (C-13a), 58.1 (C-2,
OCHz3), 57.4 (C-3, OCH3), 62.6 (C-9, OCHs), 57.7 (C-10, OCH3) [25].

4-O-Feruloylquinic acid: 13C-NMR (100MHz, CD;0D) § 74.1 (C-1), 38.3 (C-2), 72.5 (C-
3),79.0 (C-4), 72.3 (C-5), 40.1 (C-6), 181.4 (C-7), 127.8 (C-1'), 111.8 (C-2), 147.3 (C-3'), 149.5
(C-4),116.4 (C-5'), 124.2 (C-6'), 149.0 (C-7'), 115.5 (C-8'), 169.8 (C-9), 57.4 (C-3, OCH3) [26].

2.6. Statistical Analysis

Data of all experiments are expressed as mean =+ SEM. Significant differences (* p < 0.05,
**p <0.01, and *** p < 0.001) between the control and each experimental group from more
than 3 independent repeats were confirmed by one-way ANOVA or paired student’s ¢-test.

3. Results
3.1. Identification of a Pollutant-Induced Intracellular Signal

To characterize cellular damages elicited by air pollutants, especially PM2.5, we set up
an intracellular Ca?*-measuring system as described in the Materials and Methods Section.
We focused on [Ca?*]i because of its wide involvement in sensing environmental stimuli,
and HBT-SM cells were chosen as a primary reporter because they are likely to be among
the first to come into contact with air pollutants in the human body, and they are a favored
cell model to study Ca®* signaling.

The experiment showed how the [Ca2+]i changes over time. After stabilization of HBT-
SM cells in the current of media, we challenged cells with DPM. DPM was able to induce a
transient increase in [Ca%*]i, which was soon reduced back to a level close to the original
(Figure 1a). We interpret this decrease as a result of regulatory machineries maintaining the
homeostasis. Different concentrations of DPM can lead to distinct responses: 50 ng/mL
and 25 pg/mL showed similar but concentration-dependent levels and durations of Ca®*
influx, whereas 5 ug/mL showed only a marginal change which was barely noticeable by
integration of the plot (Figure 1b).

3.2. Control of DPM-Induced Ca** Influx by PAE

After identifying a damage signal by DPM, we screened natural products to find
potential candidates protecting from air pollution. Among many herbal remedies, PAE
demonstrated consistent and significant inhibition of Ca?* influx (Figure 2a). Rapid Ca?*
entry was reduced by more than half with high statistical significance (Figure 2b). We also
tested the effect of PAE in the keratinocytes, which constitute human skin and are also
among the first cells to come into contact with air pollutants. Interestingly, we observed
similar Ca?* influx by DPM and obvious inhibition by PAE in HaCaT cells (Figure 2c).
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Normalized Fura-2 Ratio (340/380)

Although the response curves look different in HBT-SM and HaCaT cells, reflecting distinct
Ca?" metabolism, PAE was able to consistently regulate the initial influx in both types of
cells (Figure 2d).
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Figure 1. Diesel particle matter (DPM) induced transient Ca* influx in human bronchial / tracheal smooth muscle (HBT-SM)
cells. (a) HBT-SM cells were treated with different concentrations of DPM at the indicated time (arrow), and intracellular
calcium (Ca®*) concentration was monitored. Black, 50 ug/mL; red, 25 ug/mlL; blue, 5 ug/mL. (b) Highly significant Ca®*
influx by DPM was observed in a concentration-dependent manner. N indicates the number of cells analyzed. (*** p < 0.001).
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Figure 2. Phellodendron amurense bark extract (PAE) was able to reduce DPM-induced Ca?* influx in both HBT-SM and
immortalized nontumorigenic epithelial (HaCaT) cells. (a) HBT-SM cells were preincubated with PAE (blue and red), or
not (black), and 25 pg/mL of DPM was treated at the indicated time (arrow). Blue and red represent independent sets of
experiment. (b) The inhibition of Ca?* influx by PAE was highly significant. (c) The same experiment was conducted using
HaCaT cells. Red, preincubated with PAE; black, not. (d) DPM induced similar Ca?* influx, which was inhibited by PAE,

and the effect was also robust and significant in HaCaT cells. (*** p < 0.001).
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3.3. PAR-2: A Mediator of DPM-Induced Ca’* Influx

Ca?* signaling upon DPM treatment reminded us of the activation of PAR-2 by matrix
metalloproteinase-1 (MMP-1) in human bronchial epithelia [16]. PAR-2 has been reported
to activate TRPV4 channels and cause Ca?* influx as we observed. This led us to check
the responsibility of PAR-2 for the results we obtained, and a known synthetic peptide
antagonist, FSLLRY-NH2, was employed [27]. HaCaT cells were treated with DPM with or
without the antagonist, and DPM-induced Ca?" influx was decreased by more than 50%
by the antagonist (Figure 3a,b). This result demonstrates that PAR-2 is responsible for the
calcium signaling of DPM.

Normalized Fura-2 Ratio (340/380)
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Figure 3. Proteinase-activated receptor-2 (PAR-2) was responsible for the DPM-induced Ca?* influx. (a) HaCaT cells were
treated with DPM only (black) or DPM and 100 uM FSLLRY-NH2 (red) at the indicated time (arrow). (b) DPM-induced
Ca?* influx was successfully reduced by inhibiting PAR-2. (c) HaCaT cells were treated with 100 uM SLIGKV-NH2 only
(black) or SLIGKV-NH2 and PAE (red) at the indicated time (arrow). (d) The PAR-2 agonist induced CaZ* influx, which was
also inhibited by PAE. This result indicates that the effect of PAE was mediated by PAR-2 regulation. (*** p < 0.001).

Next, we treated HaCaT cells with a known PAR-2 agonist, SLIGKV-NH2, and it
induced Ca?* influx (Figure 3c,d), correlating with the known effect. When we treated
cells with PAE at the same time, the calcium signaling by PAR-2 was significantly reduced
while, the agonist constitutively activated PAR-2. Together with the results above, we can
conclude that DPM activated PAR-2 and induced Ca®* signaling, which was suppressed
by PAE. It is likely that the regulation of PAR-2 was a direct action of PAE, given that PAE
was able to counteract the PAR-2 agonist, albeit partly.

3.4. Regulation of PAR-2 Expression

To learn more about the role of PAR-2 in DPM-induced signaling, we monitored the
expression of PAR-2 upon the treatment of DPM and the presence of PAE. As shown in
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Figure 4, the expression of PAR-2 was upregulated at both the protein and the mRNA
levels, suggesting that the cells require PAR-2 to properly respond to the air pollutants.
PAE, however, was able to reduce the levels of PAR-2 in a concentration-dependent manner,
which reversed the change by DPM. This confirmed the protective activity of PAE against
the air pollutants.

+PAE
DPM  +DPM  05% 1% 2%
PAR-D o o D o

B-actin

*

200 I

.[
150 |

100 =
50
0 L L n
1%

-DPM +DPM 0.5%

Relative PAR-2 Expression (% of Control)

+ PAE

(b)

Figure 4. DPM and PAE modulated PAR-2 expression in opposite ways. (a) Western blot showed a
robust increase in the PAR-2 protein caused by DPM in HaCaT cells, and the treatment with PAE was
able to reverse the effect of DPM in a concentration-dependent manner. (b) Transcriptional regulation
of PAR-2 was demonstrated to be upregulated by DPM, which could be inhibited by PAE. (* p < 0.05,
***p <0.001).

3.5. Inflammatory Conditions as an Outcome of DPM Challenge

As previously mentioned, PAR-2 has been known to function in diverse physiological
conditions in different tissues [27]. PAR-2 mediates inflammatory responses in bronchial
epithelia, which involves the regulation of interleukin-8 (IL-8) and interleukin-6 (IL-6) [28].
IL-8, IL-6, and tumor necrosis factor-oc (TNF-o) have also been involved in a range of
research of inflammatory conditions of human skin [11].

We examined the expression of proinflammatory cytokines to determine whether
DPM-induced PAR-2 activation could lead to inflammatory conditions in HaCaT cells. At
the transcriptional level, we were able to confirm that a set of proinflammatory cytokine
genes, IL-8, IL-6 and TNF-o, were upregulated by the DPM treatment (Figure 5). Sim-
ilar to the PAR-2 regulation, PAE inhibited the induction by DPM of the cytokines in a
concentration-dependent manner. Because DPM activated PAR-2 for Ca®* influx, these re-
sults are highly correlated with the previous observation that PAR-2 activates inflammatory
pathways.
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Figure 5. DPM upregulated proinflammatory cytokines and tumor necrosis factor-oc (TNF-o). HaCaT
cells were treated with DPM only or DPM and PAE. Transcriptional regulation of interleukin-8 (IL-8)
(a), IL-6 (b) and TNF-« (c) indicates that DPM induces inflammatory responses, which could be
inhibited by PAE in a concentration-dependent manner. (* p < 0.05, ** p < 0.01).
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-DPM

+DPM

3.6. Skin Barrier Weakened by DPM and Protected by PAE

Skin inflammation is often accompanied with skin barrier dysregulation, resulting in
various symptoms, e.g., atopic dermatitis or psoriasis [29,30]. Moreover, several studies
demonstrated the association of PAR-2 activity with skin health, especially its barrier
function [31]. To better understand the skin disorder conditions that DPM may be capable
of inducing, we also monitored cell adhesion molecules in HaCaT cells, implicated in the
skin barrier integrity. Among desmosomal and tight-junction components, we investigated
the protein levels of Zonula Occludens-1 (ZO-1) and Occludin. Western blot analyses
displayed consistent reduction of ZO-1 and Occludin upon DPM treatment, indicating
potential skin barrier damage (Figure 6). The downregulation of these proteins was
reversed by increasing concentrations of PAE, suggesting that PAE could also protect skin
barrier integrity from air pollutants.

+PAE +PAE

0.5% 1% 2% -DPM  +DPM 0.5% 1% 2%

- oo . o W — g— — W O
R e —— e . I G S N -actin

(a) (b)

Figure 6. DPM dysregulated cell adhesion proteins, and PAE played a role in maintaining homeostasis. DPM displayed

downregulation of desmosomal or tight-junction components. Zonula Occludens-1 (ZO-1) (a) and Occludin (b) expressions

were repressed at the protein level, and the perturbation of homeostasis was reversed by PAE, indicating a protective role.

3.7. FQA: A Novel Antipollution Agent

From the results above, PAE was successfully characterized as an active ingredient
that can protect HaCaT cells from a set of damages by air pollutants. We then tried to
identify a single compound most responsible for this efficacy. We were able to isolate FQA
and the other two known compounds through a series of fractionation followed by NMR
spectroscopy, as described in the Materials and Methods Section (Figure S5).

First, we examined the Ca?* influx by DPM in the presence of FQA. As shown in
Figure 7a,b, FQA perfectly reproduced the protecting effect of PAE in HaCaT cells. The
effect was concentration dependent, and an amount of 50 ppm was able to inhibit the influx
by half to 100 ppm (data not shown). Second, the expression of PAR-2 was investigated.
By the increasing amount of FQA, upregulation of PAR-2 by DPM was reversed to the
normal status (Figure 7c). This change in PAR-2 level was also confirmed at the mRNA
level (Figure S7). With these results, we can conclude that FQA is a major determinant of
PAE’s effect on DPM-induced damages, and standardized natural extracts can be used as a
dietary supplement or cosmetic ingredient to protect from air pollution.
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Figure 7. 4-O-feruloylquinic acid (FQA) is a major determinant of protective function of PAE.
(a) HaCaT cells were treated with DPM only (black) or DPM and 100 ppm FQA (red) at the indicated
time (arrow). (b) DPM-induced CaZ* influx was significantly reduced by FQA, hardly distinguishable
from the effect of PAE. (c) The regulation of PAR-2 upon the DPM treatment was countered by FQA
in a concentration-dependent manner. (*** p < 0.001).

4. Discussion

Air pollution has been one of the greatest public health concerns for decades, but
many questions are still unanswered, and there remains a lack of proper research in vitro
and in vivo. We started this study by asking what kind of signal can be generated by air
pollutants, leading to the damage conditions at the cellular level. Ca?* is an important
second messenger, and can be monitored in real-time on a custom-built multichannel per-
fusion system, allowing complete exchange of the solution in the cell chamber. Compared
to many omics approaches, Ca** monitoring has a considerable advantage in its ability
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to detect instant and transient signaling that will turn on the downstream pathways with
different kinetics, which can often be missed by out-of-pace cell harvest or preparations.

Although they are difficult to optimize, we successfully set up monitoring systems
with smooth muscle cells and keratinocytes. DPM induced similar Ca?* influx in both cells,
slightly deviated by the distinct physiology of each. These cells are present during the
interaction between air pollutants and the human body; thus, identifying the same signal
suggests highly significant and conserved responses of two different tissues. Moreover,
PAE, a traditional medicine known to have potential anti-inflammatory efficacy, could
play a role in protecting cells by directly working at the level of signal generation in
both cell types. The transient Ca* influx was mediated by PAR-2, which was confirmed
by an agonist that could mimic DPM effect, and PAE’s effect was recapitulated with an
antagonist. We also demonstrated that PAR-2 expression can be regulated by DPM, which
was reversed by PAE’s protective effect. These results altogether address the notion that
PAR-2-dependent Ca?* influx is one of the primary signals that DPM can evoke on the cell
surface, and that PAE can directly modulate PAR-2 as well as its expression under stressful
conditions. In addition to this, we purified and identified FQA as an active compound
of PAE that inhibits Ca* influx by DPM and regulates the expression of PAR-2. On the
other hand, PAE could not completely inhibit DPM-induced Ca?* influx, nor the PAR-2
antagonist. More research is necessary to fully understand the nature of this Ca?* signaling,
and a focus on the known transporters and regulators is recommended.

Interestingly, PAE and FQA were able to reverse the upregulation of PAR-2 expression
by DPM. We demonstrated that both the transcriptional and the translational regulations
exist. However, the change in protein level was more obvious than that in mRNA, especially
with higher doses (Figures 4 and 7, and Figure S7). These gaps may have been made by
additional factors affecting translational efficiency or post-translational control, which we
could not elucidate.

The correlation between skin disorders and air pollution has been suggested by
many researchers [32]. Here, we addressed the way by which DPM-induced signaling
could lead to damage conditions such as inflammation and skin barrier dysregulation.
Proinflammatory cytokines IL-8, IL-6, and TNF-« were induced following Ca?* influx
mediated by PAR-2. Furthermore, desmosomal and tight-junction components ZO-1 and
Occludin were downregulated. These effects may indicate severe skin damage conditions,
where inflammatory responses accelerate cell mobility and immune reactions, and, at the
same time, skin barrier integrity is affected. Ultimately, the loss of skin moisturization can
lead to severe dermatitis conditions, which have already been reported to be associated
with air pollution.

PAE has previously been well studied for its anti-inflammatory effects under similar
conditions. It was reported to be effective in lowering TNF-« and other indices of arthritis
in mice [33]. Another in vivo study on atopic dermatitis conditions revealed that PAE,
with Sanguisorba officinalis, could regulate proinflammatory cytokines and the number of
immune cells involved in the lesion [34]. Our results corelate with these known effects
and suggest underlying molecular mechanisms and a consolidating skin protection effect
with potential skin barrier enhancement. The involvement of PAR-2 in DPM-induced skin
damage and PAE’s protection may also help future research in tackling questions regarding
oxidative damage or hyperpigmentation.

Due to the protective effect of PAE and its active compound, FQA, it could be em-
ployed as an active ingredient for dietary or cosmetical formulations. With its long history
of herbal remedies in East Asia, daily supplement of PAE could provide protection against
respiratory tracts, and topical application of PAE with a proper formula could provide
protection to sensitive skin in the area affected by air pollution. More research on the
stability of FQA and the safety of PAE use will be helpful to further examine potential
industrial applications.
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5. Conclusions

DPM, as a model of PM2.5, induced transient Ca2* influx in both airway smooth
muscle and skin cells, mediated by PAR-2. The signal could lead to an increase in proin-
flammatory cytokines and a decrease in skin barrier proteins, indicating potent skin damage
status. As PAE, or its active compound FQA alone, can inhibit Ca?* influx and the following
damage pathways, they represent promising dietary and cosmetical active ingredients.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/2218-273
X/11/1/23/s1, Figure S1: Dose tests. Figure S2: Western blots of PAR 2. Figure S3: Western blot of
Occludin. Figure S4: Western blot of ZO-1. Figure S5: NMR spectra analyses of isolated compounds
from PAE. Figure S6: Dose-dependent effect of FQA on DPM stress. Figure S7: Transcriptional
regulation of PAR-2 expression by FQA.

Author Contributions: Conceptualization, D.Y. and J.C. (Joonseok Cha); methodology, G.Y.H., D.Y.,
J.C. (Joonseok Cha); validation, D.Y. and J.C. (Joonseok Cha); investigation, J.C. (Jiyoung Choi),
M.YM.,, G.Y.H. and D.Y,; resources, D.Y. and M.S.C.; writing—original draft preparation, J.C. (Jiyoung
Choi), M.YM,, D.Y. and ].C. (Joonseok Cha); writing—review and editing, ].C. (Jiyoung Choi), M.Y.M.,
G.YH, D.Y,, M.S.C,, and ].C. (Joonseok Cha); supervision, M.S.C. and J.C. (Joonseok Cha); funding
acquisition, M.S.C. All authors have read and agreed to the published version of the manuscript.
Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article or supplementary material.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Katsouyanni, K. Ambient air pollution and health. Br. Med. Bull. 2003, 68, 143-156. [CrossRef] [PubMed]

2. Cori, L.; Donzelli, G.; Gorini, F.; Banchi, F; Curzio, O. Risk Perception of Air Pollution: A Systematic Review Focused on
Particulate Matter Exposure. Int. ]. Environ. Res. Public Health 2020, 17, 6424. [CrossRef] [PubMed]

3. Ambient (Outdoor) Air Pollution. Available online: https:/ /www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)
-air-quality-and-health (accessed on 10 May 2020).

4. Cohen, A],; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona,
R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data
from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907-1918. [CrossRef]

5. Dockery, D.W.; Pope, C.A., III; Xu, X.; Spengler, ].D.; Ware, ].H.; Fay, M.E,; Ferris, B.G., Jr.; Speizer, EE. An association between air
pollution and mortality in six U.S. cities. New Eng. J. Med. 1993, 329, 1753-1759. [CrossRef] [PubMed]

6. Qian, D.; Wang, Y.; Zanobetti, A.; Wang, Y.; Koutrakis, P.; Choirat, C.; Dominici, F.; Schwartz, ].D. Air Pollution and Mortality in
the Medicare Population. New Eng. J. Med. 2017, 376, 2513-2522.

7. Liu, C,; Chen, R;; Sera, E,; Vicedo-Cabrera, A.M.; Guo, Y.; Tong, S.; Coelho, M.S.Z.S,; Saldiva, PH.N.; Lavigne, E.; Matus, P.; et al.
Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New Eng. ]. Med. 2019, 381, 705-715. [CrossRef]

8. Baudouin, C.; Charveron, M.; Tarroux, R.; Gall, Y. Environmental pollutants and skin cancer. Cell Biol. Toxicol. 2002, 18, 341-348.
[CrossRef]

9.  Vierkotter, A.; Schikowski, T.; Ranft, U.; Sugiri, D.; Matsui, M.; Kramer, U.; Krutmann, J. Airborne particle exposure and extrinsic
skin aging. J. Investig. Dermatol. 2010, 130, 2719-2726. [CrossRef]

10. Qvrevik, ].; Refsnes, M.; Lag, M.; Holme, J.A.; Schwarze, P.E. Activation of Proinflammatory Responses in Cells of the Airway
Mucosa by Particulate Matter: Oxidant- and Non-Oxidant-Mediated Triggering Mechanisms. Biomolecules 2015, 5, 1399-1440.
[CrossRef]

11. Park, S.-Y,; Byun, EJ; Lee, ].D.; Kim, S.; Kim, H.S. Air Pollution, Autophagy, and Skin Aging: Impact of Particulate Matter (PM;)
on Human Dermal Fibroblasts. Int. ]. Mol. Sci. 2018, 19, 2727. [CrossRef]

12. Li, Q.; Kang, Z; Jiang, S.; Zhao, J.; Yan, S.; Xu, E; Xu, ]. Effects of Ambient Fine Particles PM; 5 on Human HaCaT Cells. Int. |.
Environ. Res. Public Health 2017, 14, 72. [CrossRef] [PubMed]

13. Dong, L.; Hu, R.; Yang, D.; Zhao, J.; Kan, H.; Tan, J.; Guan, M.; Kang, Z.; Xu, F. Fine Particulate Matter (PM;5) upregulates
expression of Inflammasome NLRP1 via ROS/NF-«B signaling in HaCaT Cells. Int. ]. Med. Sci. 2020, 17, 2200-2206. [CrossRef]
[PubMed]

14. Bers, D.M. Calcium cycling and signaling in cardiac myocytes. Annu. Rev. Physiol. 2008, 70, 23-49. [CrossRef] [PubMed]


https://www.mdpi.com/2218-273X/11/1/23/s1
https://www.mdpi.com/2218-273X/11/1/23/s1
http://dx.doi.org/10.1093/bmb/ldg028
http://www.ncbi.nlm.nih.gov/pubmed/14757714
http://dx.doi.org/10.3390/ijerph17176424
http://www.ncbi.nlm.nih.gov/pubmed/32899325
https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
http://dx.doi.org/10.1016/S0140-6736(17)30505-6
http://dx.doi.org/10.1056/NEJM199312093292401
http://www.ncbi.nlm.nih.gov/pubmed/8179653
http://dx.doi.org/10.1056/NEJMoa1817364
http://dx.doi.org/10.1023/A:1019540316060
http://dx.doi.org/10.1038/jid.2010.204
http://dx.doi.org/10.3390/biom5031399
http://dx.doi.org/10.3390/ijms19092727
http://dx.doi.org/10.3390/ijerph14010072
http://www.ncbi.nlm.nih.gov/pubmed/28085100
http://dx.doi.org/10.7150/ijms.46962
http://www.ncbi.nlm.nih.gov/pubmed/32922182
http://dx.doi.org/10.1146/annurev.physiol.70.113006.100455
http://www.ncbi.nlm.nih.gov/pubmed/17988210

Biomolecules 2021, 11, 23 13 of 13

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

Patel, S.; Cai, X. Evolution of acidic Ca?* stores and their resident Ca2+—permeab1e channels. Cell Calcium 2015, 57, 222-230.
[CrossRef]

Li, J.; Kanju, P; Patterson, M.; Chew, W.-L.; Cho, S.-H.; Gilmour, I.; Oliver, T.; Yasuda, R.; Ghio, A.; Simon, S.A.; et al. TRPV4-
Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles. Environ. Health Perspect.
2011, 119, 784-793. [CrossRef]

Ferrell, WR.; Lockhart, J.C.; Kelso, E.B.; Dunning, L.; Plevin, R.; Meek, S.E.; Smith, A.J.H.; Hunter, G.D.; McLean, ].S.; McGarry, F,;
et al. Essential role for proteinase-activated receptor-2 in arthritis. J. Clin. Investig. 2003, 111, 35-41. [CrossRef]

Lee, J.-H.; Lim, J.-Y.; Jo, EH.; Noh, H.M.; Park, S.; Park, M.C.; Kim, D.-K. Chijabyukpi-Tang Inhibits Pro-Inflammatory
Cytokines and Chemokines via the Nrf2/HO-1 Signaling Pathway in TNF-«/IFN-y-Stimulated HaCaT Cells and Ameliorates
2,4-Dinitrochlorobenzene-Induced Atopic Dermatitis-Like Skin Lesions in Mice. Front. Pharmacol. 2020, 11, 1018. [CrossRef]
Wang, X.; Xiong, L.; Yu, G.; Li, D.; Peng, T.; Luo, D.; Xu, J. Cathepsin S silencing induces apoptosis of human hepatocellular
carcinoma cells. Am. J. Transl. Res. 2015, 7, 100-110.

Mikirova, N.; Scimeca, R.C. Intravenous high-dose ascorbic acid reduces the expression of inflammatory markers in peripheral
mononuclear cells of subjects with metabolic syndrome. J. Transl. Sci. 2016, 2, 188-195. [CrossRef]

Messerschmidt, L.; Fischer, S.; Wiedemann, P,; Bringmann, A.; Hollborn, M. Osmotic induction of cyclooxygenase-2 in RPE cells:
Stimulation of inflammasome activation. Mol. Vis. 2019, 25, 329-344.

Furue, K ; Ito, T.; Tanaka, Y.; Yumine, A.; Hashimoto-Hachiya, A.; Takemura, M.; Murata, M.; Yamamura, K.; Tsuji, G.; Furue, M.
Cyto/chemokine profile of in vitro scratched keratinocyte model: Implications of significant upregulation of CCL20, CXCL8 and
IL36G in Koebner phenomenon. J. Dermatol. Sci. 2019, 94, 244-251. [CrossRef] [PubMed]

Weiler, J.; Mohr, M.; Zanker, K.S.; Dittmar, T. Matrix metalloproteinase-9 (MMP9) is involved in the TNF-x-induced fusion of
human M13SV1-Cre breast epithelial cells and human MDA-MB-435-pFDRI1 cancer cells. Cell Commun. Signal. 2018, 16, 14.
[CrossRef] [PubMed]

Kim, J.-B.; Shin, W.-S.; Kwon, Y.-I.; Bang, B.-H. Isolation and Purification of Antibacterial Components in Cortex Phellodendri. J.
Korean Soc. Food Nutr. 2013, 26, 547-552. [CrossRef]

Lee, ].H.; Lee, BW,; Kang, N.S.; Yang, M.S.; Park, K.H. Alkaloids from the Stem Bark of Phellodendron amurense Rupr. J. Life Sci.
2005, 15, 423-426. [CrossRef]

Dokli, I.; Navarini, L.; Hamersak, Z. Syntheses of 3-, 4-, and 5-O-feruloylquinic acids. Tetrahedron Asymmetry 2013, 24, 785-790.
[CrossRef]

Katoga, S.; Maruyama, K.; McGuire, ].J. Characterization and Functions of Protease-Activated Receptor 2 in Obesity, Diabetes,
and Metabolic Syndrome: A Systematic Review. BioMed Res. Int. 2016, 2016, 3130496.

Mayati, A; Le, EE.; Holme, J.A.; Fardel, O.; Lagadic-Gossmann, D.; Ovrevik, J. Calcium signaling and beta2-adrenergic receptors
regulate 1-nitropyrene induced CXCLS responses in BEAS-2B cells. Toxicol. In Vitro 2014, 28, 1153-1157. [CrossRef]

Nutten, S. Atopic Dermatitis: Global Epidemiology and Risk Factors. Ann. Nutr. Metab. 2015, 66 (Suppl. 1), 8-16. [CrossRef]
Parisi, R.; Symmons, D.PM.; Griffiths, C.E.M.; Ashcroft, D.M. Global Epidemiology of Psoriasis: A Systematic Review of Incidence
and Prevalence. |. Investig. Dermatol. 2013, 133, 377-385. [CrossRef]

Shin, Y.-S.; Kim, HW.,; Kim, C.D.; Kim, H.-W,; Park, J.W,; Jung, S; Lee, ]-H.; Ko, Y.-K.; Lee, Y.H. Protease-activated receptor-2 is
associated with terminal differentiation of epidermis and eccrine sweat glands. Ann. Dermatol. 2015, 27, 364-370. [CrossRef]
Rembiesa, J.; Ruzgas, T.; Engblom, ].; Holefors, A. The Impact of Pollution on Skin and Proper Efficacy Testing for Anti-Pollution
Claims. Cosmetics 2018, 5, 4. [CrossRef]

Jung, HW.,; Kim, K.H.; Park, Y.K. Inhibitory effect of the extract of Phellodendron amurense ruprecht root on collagen-induced
arthritis in mice. Chin. J. Integr. Med. 2017, 23, 755-762. [CrossRef] [PubMed]

Park, S.; Kim, D.S.; Kang, S.; Shin, B.K. Synergistic topical application of salt-processed Phellodendron amurense and Sanguisorba
officinalis Linne alleviates atopic dermatitis symptoms by reducing levels of immunoglobulin E and pro-inflammatory cytokines
in NC/Nga mice. Mol. Med. Rep. 2015, 12, 7657-7664. [CrossRef] [PubMed]


http://dx.doi.org/10.1016/j.ceca.2014.12.005
http://dx.doi.org/10.1289/ehp.1002807
http://dx.doi.org/10.1172/JCI16913
http://dx.doi.org/10.3389/fphar.2020.01018
http://dx.doi.org/10.15761/JTS.1000140
http://dx.doi.org/10.1016/j.jdermsci.2019.04.002
http://www.ncbi.nlm.nih.gov/pubmed/31010609
http://dx.doi.org/10.1186/s12964-018-0226-1
http://www.ncbi.nlm.nih.gov/pubmed/29636110
http://dx.doi.org/10.9799/ksfan.2013.26.3.547
http://dx.doi.org/10.5352/JLS.2005.15.3.423
http://dx.doi.org/10.1016/j.tetasy.2013.06.002
http://dx.doi.org/10.1016/j.tiv.2014.05.012
http://dx.doi.org/10.1159/000370220
http://dx.doi.org/10.1038/jid.2012.339
http://dx.doi.org/10.5021/ad.2015.27.4.364
http://dx.doi.org/10.3390/cosmetics5010004
http://dx.doi.org/10.1007/s11655-016-2094-5
http://www.ncbi.nlm.nih.gov/pubmed/27460490
http://dx.doi.org/10.3892/mmr.2015.4348
http://www.ncbi.nlm.nih.gov/pubmed/26397864

	Introduction 
	Materials and Methods 
	Treatment of the Cells with DPM, PAE, and 4-O-Feruloylquinic Acid (FQA) 
	Measurement of [Ca2+]i 
	Quantitative Real-Time PCR 
	Western Blot Analysis 
	Isolation of Active Compounds in PAE 
	Statistical Analysis 

	Results 
	Identification of a Pollutant-Induced Intracellular Signal 
	Control of DPM-Induced Ca2+ Influx by PAE 
	PAR-2: A Mediator of DPM-Induced Ca2+ Influx 
	Regulation of PAR-2 Expression 
	Inflammatory Conditions as an Outcome of DPM Challenge 
	Skin Barrier Weakened by DPM and Protected by PAE 
	FQA: A Novel Antipollution Agent 

	Discussion 
	Conclusions 
	References

