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The global prevalence of myopia has brought to the attention of the different eye and

vision specialists, who make way to control its progression. Evidence have shown that

a proactive reshaping of the eyeball is the core point of myopia developing process,

which particularly includes the weakening, thinning, and expanding of the sclera. Thus,

the sclera is considered to be a prime target for therapeutic manipulation in halting

progressive myopia. In the past decades, corneal collagen cross-linking has been

applied in clinical practice for treating aberrant corneal remodeling diseases. In this

article, we hypothesize that scleral collagen cross-linking (SXL) has a huge potential in

stabilizing myopic process by shaping the eyeball and preventing the aberrant scleral

remodeling. In contrast with the current methods of optometry correction, such as

physiotherapy, pharmacotherapy, spectacles, contact lenses, refractive surgeries, etc.,

eyeball-shaping method using SXL is a fundamental intervention which aims at the

pathogenesis of progressive visual loss of myopia. Compared with the current posterior

scleral reinforcement, the most advantage of SXL is that there is no allotransplant into the

myopic eye, which means less expenditure, lower risk, and easier to handle in operating.
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INTRODUCTION

Myopia is the most common cause of visual impairment worldwide (1). It was speculated that the
global prevalence of myopia by 2050 will be about 4,758 million (49.8%), including 277 million
(4.0% of the global population) of high myopia (2). The burden of myopia is tremendous, as adults
with high myopia are more likely to develop pathologic myopia (PM) changes, such as posterior
scleral staphyloma, choroidal neovascularization, retinal choroidal atrophy, streak, peripheral
retinal degeneration, retinal detachment, and finally lead to blindness (3–5). Generally, myopia
was believed to be a mismatch of the eye’s anatomical axial length and its focal length (6) which
was caused by a “multifactorial” mechanism (7, 8). Aberrant scleral remodeling is the core point
during the myopic process, and has been the goal of any long-term therapy for the persistent vision
loss associated with myopia (9). Collagen cross-linking, introduced by Wollensak et al. (10), is an
effective approach to increase the biomechanical strength of the corneal and scleral tissue. Corneal
collagen cross-linking (CXL) has been applied in clinical practice for treating aberrant corneal
remodeling diseases in the past decades (11). Similarly, scleral collagen cross-linking (SXL) has
a huge potential in stabilizing myopic process by shaping the eyeball and preventing the aberrant
scleral remodeling, such as ocular axial elongation and staphyloma.
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HYPOTHESIS

We hypothesize SXL as an eyeball-shaping method to prevent
the aberrant scleral remodeling during myopic process. Such a
theory has not been conceptualized yet, and has not been verified
by clinical trials. We reason that the strengthening the integral
sclera by SXL could slow down the process of diffuse expansion
during eyeball growth; strengthening the equatorial sclera by SXL
could limit the axial elongation of the progressive myopic eyeball;
partially strengthening the sclera by SXL could block the local
bulges which causes staphyloma. Due to its cross-linking effect
only on the outer layer of the sclera, SXL is a safe method for the
function of the inner tissues underneath the sclera. SXL could be
artificially carried out by different cross-linking categories, doses,
frequencies, sites according to the current status and prognosis
of myopic eyes. For these reasons, it will prevent or halt the
progression of myopia in any stage of the disease.

ABERRANT SCLERAL REMODELING OF

MYOPIA

There are strong evidences from clinical and experimental studies
indicating that the biochemical and biomechanical properties of
the sclera play a major role in the progression of myopia (12).
Thinning of the sclera and weakened biomechanical properties,
particularly at the posterior pole of the eye, have long been known
to be an important feature in the development of high myopia
in human and mammalian models (9). It is found that myopic
sclera undergoes a proactive reshaping process which includes
diameter decrease and fiber gap enlargement of the collagenous
fiber bundle in all parts of the myopic eye, particularly in
the posterior sclera; this causes retinal fundus complications
which adversely affect visual acuity (9, 12). Thus, the sclera is
considered to be a prime target for therapeutic manipulation in
halting progressive myopia (13). Currently, scleral reinforcement
is the only available clinical option to slow down scleral bulges
(such as in staphyloma), which remain controversial due to its
complication risk (14). Thus, given the lack of treatment options,
novel clinical solutions are becoming increasingly necessary
available to halt progressive scleral remodeling and morbidity of
progressive myopia.

PRINCIPLE OF SXL

Cross-linking is a natural phenomenon in the body following
an enzymatic or a non-enzymatic pattern (15). Generally, the
phenomenon increases in age (16) or in diabetics (17), who rarely
show progressive myopia (18). On the contrary, diminished
cross-linking is an important factor in the weakening process
of myopic sclera (16) with a significant decrease in Young’s
modulus (19). It is therefore hypothesized that, instead of natural
cross-linking, artificially-induced cross-linking might be used
therapeutically to retard axial elongation, thereby reducing the
risk of blindness.

Photochemically-induced crosslinkings, which currently
include riboflavin/UV light crosslinking and riboflavin/blue

light crosslinking, can create additional chemical bonds between
collagen fibers by photopolymerization and increase scleral
stiffness (20). This photochemically-induced cross-linking is
mediated by photooxidation between riboflavin (vitamin B2) and
laser light (UV light, 360–370 nm; blue light, 400–500 nm). The
laser light activates riboflavin into triplet, which in turn produces
reactive oxygen species (ROS) and singlet oxygen. ROS reacts
with collagen fibril molecules in the corneal stroma and enhances
the mechanical strength of cornea by forming new chemical
bonds between amino groups of collagen fibril molecules (21).
Theoretically, blue light has better penetration ability and lower
damage in sclera compared to UV light considering the negative
relation between wavelength and penetrating depth in tissue (22).

Chemically-induced crosslinking is another kind of
artificially-induced cross-linking, which is usually applied
by injecting of chemical crosslinking agents into the sub-Tenon’s
(sT) space and scleral surface. This kind of crosslinking could
represent a simpler way to treat the posterior sclera, thus,
avoiding the need for UV light exposure (23). Although there are
many compounds that are suitable for industrial and commercial
cross-linking purposes, only a limited number of compounds
have emerged with potential for scleral stiffening in vivo:
glyceraldehyde (24), genipin (25–27), methylglyoxal (28, 29)
(also called pyruvaldehyde), formaldehyde releasers (FARs) (30),
sodium hydroxymethylglycinate (SMG) (31), methylglyoxal
(32). Applying the concept of the Maillard reaction (15),
these crosslinking agents can be added to the ends of protein
molecules and can be further transformed to advanced glycation
end products, which are more stable. The resultant covalent
collagen cross-links promote enhanced tissue stiffness and
resistance to enzymatic degradation (33).

TECHNIQUE OF SXL

Until now, no protocol of photochemically-induced crosslinking
was set up for sclera treatment, while several protocols of corneal
collagen cross-linking has been suggested to be used on corneal
stroma for the treatment of keratoconus, such as the Dresden
protocol (34, 35), Siena University protocol (36), Athens protocol
(37). Based on the experimental parameters reported in previous
studies, the operating procedure of photochemically-induced
SXLwas generally as follows: after adequate exposure of the target
scleral surface, a UV/blue light-source was set up to irradiate
directly on the target scleral surface. Specific intensity and energy
were performed to ensure that the exposure of UV/blue light
on the cornea is below harmful levels. A syringe with a blunt
needle allowed an almost continuous supply of the riboflavin
photosensitizer solution during the irradiation (38).

Compared with the photochemical procedure, which requires
a surgical procedure to access the posterior sclera with a UV light
source, injecting into the sub-Tenon’s space with chemical cross-
linking agents is much simpler (27, 39). Like photochemically-
induced crosslinking, no standardized protocol of chemically-
induced crosslinking has been set up at present, especially in the
parameters of drug concentration and dose (32). However, in
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contrast to photochemically-induced crosslinking, repeated sub-
Tenon’s injections of crosslinking agents can be performed in
different quadrants for several times in the following sequential
days, months, or years. Another advantage of chemically-
induced crosslinking is that, with the help of ultrasound, the
chemical crosslinking agents can easily be injected via sub-
Tenon’s approach, to the posterior globe and even the whole
sclera, and could create much larger crosslinked areas than
photochemically-induced crosslinking (33, 40).

KNOWN FACTS ABOUT SXL

Photochemically-induced crosslinking has been proven to
increase the mechanical strength of scleral collagen in guinea
pigs (40), rabbits (41), pigs (10), primates (42), and human
sclerae (43). A significant increase in the density and area
of collagen fibrils and a significant decrease in the density
and area of the interfibrillar spacing can be found in both
the equatorial and posterior sclera with either riboflavin/UVA
or riboflavin/blue light SXL for 12 months postoperatively
(42–44). However, the UV/blue light irradiation with high
intensities induces degenerative alterations of scleral cells mainly,
in the episcleral and outer scleral layers, which is associated
with extracellular matrix degradation, tissue inflammation,
hemorrhage, andmacrophage infiltration; and in the inner scleral
layers, where treatment with high-intensity irradiation induces
scleral cell activation with pronounced metabolic activity, and
finally results in scleral scarring (45). Not only would the high
light intensities be harmful, but also, complicated operations
would bring dangerous side-effects on the ocular tissues of
the crosslinked eye (46). For example, during the irradiation
process, the eyes had to be stretched to expose the target
scleral region. Irradiation was largely focused on the equatorial
area, thereby inducing possible mechanical injury to ocular
tissues. This approach made it impossible to fully expose the
posterior sclera that is prone to develop staphyloma (47).
Moreover, many other adverse factors were encountered in the
past, such as complexity of operating riboflavin/UVA sclera
collagen cross-linking, large lesions, difficulty in irradiating
the posterior sclera, and difficulty in administering repetitive
irradiation (48). Although a minimally invasive therapy has
reported to be performed by inserting miniaturelightemitting
diodes (LEDs) under the tenon’s capsule to the posterior sclera
without stretching the eyeball tissues (38), its drawbacks have
been put forward, including limited irradiance, risk of thermal
tissue damage, and poor flexibility (49).

One potential treatment modality to overcome the above
adverse factors of SXL is chemically-induced crosslinking by sub-
Tenon’s injection of chemical crosslinking agents. This method
could serve as a simple and minimally invasive approach to
reach the posterior sclera without the need for any specialized
UV device or UV irradiation (50). Our research team (39)
has successfully used sub-Tenon’s injection of 0.5% (22.1mM)
genipin to decelerate form-deprivation myopia in guinea pigs.
Another previous study (33) also found that sub-Tenon’s
injection of 0.15ml 0.5M glyceraldehyde seven times during 14

days reduced the AXL elongation of rabbit eyes, with no retinal
and choroidal affects under light microscopy. It was also found
that glyceraldehyde could increase scleral stiffness for at least 8
months in rabbits (24). Compared with glyceraldehyde (seven
fold) or methylglyoxal (30 fold), a much lower concentration
of genipin is required to achieve a similar scleral stiffening
effect after the sub-Tenon’s injection, which means that SXL
using genipin could be an alternative low-cytotoxic collagen
crosslinking agents (32). Moreover, sub-Tenon’s injection of
FARs (30) and SMG (31) have also shown their effects in
halting the progression of scleral elongation seen in myopic eyes,
and would be potential cross-linking compounds. Nevertheless,
it should be mentioned that the safety of chemically-induced
crosslinking was not fully evaluated at present. In a previous
study (51), a sub-conjunctival injection with glyceraldehyde
resulted in intraocular pressure elevation and loss of retinal
ganglion cell axon, which means that this type of SXL induced
glaucoma in these eyes.

DISCUSSIONS AND PREDICTIONS

As scleral crosslinking remains untested on human eyes, we
believe that through continuous research and development,
SXL would eventually become a novel method for shaping
eyeballs and retarding myopic progression. In contrast with
the current methods of optometry correction (spectacle works,
contact lenses, refractive surgeries, etc.), eyeball-shaping method
using SXL would be a fundamental intervention which aim at
the pathogenesis of progressive visual loss of myopia. SXL will
be also used for preventing and treating the myopia-related
complications, such as staphyloma, tractive retinal detachment
and macular cleave. Compared with the current posterior scleral
reinforcement (PSR) (52), the most advantage of SXL is that
there is no allotransplant into the myopic eye, which means less
expenditure, lower risk, and easier to handle in operating.

For photochemically-induced crosslinking, several necessary
developments on light delivery systemwill make this SXLmethod
much safer than the current ones. The novel light delivery
will provide homogeneous light distribution on scleral spherical
surface. This light-delivery system can be easily and flexibly
introduced and operated deep in the eye socket to deliver light to
the relatively large target region with sufficient irradiance, short
procedural time and reduced invasiveness. For accuracy, this
system can provide a series of irradiation area size, from several
square millimeters to hundred square millimeters, without any
extra light leakage to the adjacent tissues. For safety, this system
can create its SXL effects on the outer and medium layers of
sclera, and can be no harmful for the deeper ocular tissues.

For chemically-induced crosslinking, outstanding
crosslinking agents will be selected according to their efficacy
under physiologic pH and temperature, permeability, and cell
toxicity (53). Mature treatment strategies will be set up and
used including the drug compositions, dose, injection sites,
and repetition frequency based on the illness condition. Novel
drug delivery systems, such as microneedles (54), sub-tenon
(episcleral) implants (55), and transscleral iontophoresis (56),
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will be combined for increasing the bioavailability of crosslinking
agents, improving their penetrability, reducing their systemic
absorption and side effects, reducing administration frequency,
and improving the comfort and compliance of patients.

Until now, the current SXL protocol has a lot of urgent
questions to be answered. For example, dose-effect relationship
and dose-toxicity relationship should be generalized. For
photochemically-induced crosslinking, the light delivery
systems should be initially optimized for less damage. For
chemically-induced crosslinking, both effective and safe
chemical crosslinking agents should be established using more
comparative studies. Long-term observation of SXL efficacy
should also be lasting for several years. Thus, there is still a long
road ahead before clinical studies are conducted.

Because of their respective characteristics, both
photochemically-induced crosslinking and chemically-induced
crosslinking will be performed according to the myopic types
and the treatment plan. Photochemically-induced crosslinking,
which can be easily controlled in dosage, duration and area size of
irradiation, will be applied on the symmetrical locations of sclera
for axial myopia or on the partial sclera for staphyloma. For
larger and homogeneous crosslinking effect, chemically-induced
crosslinking can be repeatedly applied by multi-site injections
around the equatorial sclera or even the whole sclera. Moreover,
it should be noticed that SXL can only stabilize the situation of
myopia but not improve vision. This means that SXL can only
be useful on eyes while myopia is progressing but not when
myopia has stabilized. Thus, we believe that a complex series of

treatment, which includes not only both kinds of SXLs but also
adding refractive corrections (spectacle works, contact lenses,
refractive surgeries, etc.) and myopia-related complication
treatments (photodynamic therapy, laser photocoagulation,
anti-VEGF intravitreal injections, pars plana vitrectomy, etc.)
will be applied in clinics according to the realistic conditions and
treatment needs in the future.
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