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Abstract: The use of high-dose Ionizing Radiation (IR) is currently one of the most common
modalities in treatment of many types of cancer. The objective of this work was to investigate the
effects of high-dose ionizing radiation on healthy human tissue, utilizing quantitative analysis of gene
expression. To this end, publicly available transcriptomics datasets from human samples irradiated
with a high dose of radiation and non-irradiated (control) ones were selected, and gene expression
was determined using RNA-Seq data analysis. Raw data from these studies were subjected to quality
control and trimming. Mapping of RNA-Seq reads was performed by the partial selective alignment
method, and differential gene expression analysis was conducted. Subsequently, a meta-analysis was
performed to select differentially expressed genes across datasets. Based on the differentially expressed
genes discovered by meta-analysis, we constructed a protein-to-protein interaction network, and we
identified biological pathways and processes related to high-dose IR effects. Our findings suggest that
cell cycle arrest is activated, supported by our top down-regulated genes associated with cell cycle
activation. DNA repair genes are down-regulated in their majority. However, several genes implicated
in the nucleotide excision repair pathway are upregulated. Nevertheless, apoptotic mechanisms seem
to be activated probably due to severe high-dose-induced complex DNA damage. The significant
upregulation of CDKN1A, as a downstream gene of TP53, further validates programmed cell death.
Finally, down-regulation of TIMELESS, signifies a correlation between IR response and circadian
rhythm. Nonetheless, high-dose IR exposure effects regarding normal tissue (radiation toxicity) and
its possible long-term outcomes should be studied to a greater extend.

Keywords: high-dose ionizing radiation; RNA-Seq; differential gene expression; DNA damage response

1. Introduction

Regarding human exposure to Ionizing Radiation (IR), doses below 0.1Gy are classified as
“low” [1], while doses normally used in medical procedures, such as Radiation Therapy (RT) (2-3Gy)
are classified as high [2,3]. As such, apart from understanding the biological consequences of rare very
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high-dose exposures like in the case of nuclear accidents, a major field of radiobiological and clinical
interest is the optimization of RT which usually involves moderate to high fraction doses.

The main therapeutic modality employed in RT are photon beams in the form of low Linear Energy
Transfer (LET) radiation (X-rays, Gamma-rays), although high LET radiation (protons, alpha particles,
and other heavy ions) are sometimes incorporated due to their precise dose localization. Radiation
particles deposit more energy on the targeted tumor areas (a phenomenon known as the “Bragg
peak” [4]) and have a higher Relative Biological Effectiveness (RBE) [5–7], while photon beams deposit
a relatively small quantity of energy that disperses further to the surrounding healthy tissue due
to scattering phenomena. In general, the idea behind RT is that the rapidly proliferating cancer
cells are usually more sensitive to radiation than normal cells, while normal cells can usually repair
themselves at a faster rate and retain their normal function. Therefore, the goal is to inhibit cancer
cell multiplication potential, eventually leading to cell death, while minimizing dosage absorption
in normal tissue, to prevent toxicity [5,8]. Nonetheless, IR exposure effects regarding healthy tissue
(radiation toxicity) and its possible long-term outcomes should be studied to a greater extend.

Cancer and healthy cells are targeted alike, either directly through damage on their cellular
molecules and especially on DNA strands or indirectly via the formation of free radicals, a phenomenon
referred to as oxidative stress [9]. In essence, oxidative stress is a procedure of water radiolysis and
involves the formation of intermediate, partially reduced oxygen species, collectively termed as Reactive
Oxygen Species (ROS), that give rise to the formation of hydroxyl radicals that produce a number
of adverse biological reactions by attacking structural and functional molecules [10], thus resulting
in generalized cellular stress. Hydroxyl radicals can sometimes indirectly produce Single-Strand
Breaks (SSBs) and a plethora of base and sugar lesions in DNA molecules, which can be cytotoxic or
mutagenic [11], as well as crosslinks between two complementary DNA strands [12]. On the other
hand, direct DNA damage primarily involves the induction of Double-Strand Breaks (DSBs) that
represent the most lethal types of DNA damage, leading to cell death or genomic instability if left
unrepaired. Finally, closely spaced DNA lesions (referred to as complex or clustered DNA damage)
that may occur after IR exposure have been suggested to be highly repair-resistant or non-repairable.
Therefore, they are considered highly significant biological lesions [13]. This continuously challenging
process may lead to genomic instability and cancer [14], concurrently fueling DNA Damage Response
(DDR) activation [15] which constitutes the main component of IR effects on a cellular level.

In general, DDR can be defined as the synthesis of functions (sensors, transducers, effectors)
that orchestrate DNA damage sensing and signal transduction, triggering either DNA repair, cell
survival, or cell death (apoptosis). Furthermore, pathways of cell cycle checkpoint control are also
essential components of DDR [16,17]. Main pathways of DNA repair include Base Excision Repair
(BER) and Nucleotide Excision Repair (NER), which repair DNA base damages, and Mismatch Repair
(MMR), which corrects base mispairs and small loops that are often found in repetitive sequence
DNA. In addition, Homology-dependent Recombination (HR) and Non-Homologous End Joining
(NHEJ) act alone or together to repair DSBs and complex events such as inter-strand crosslinks [18,19].
Dysregulation of DDR mechanisms can cause several human disorders that are associated with cancer
susceptibility, accelerated aging, and developmental abnormalities [20]. Moreover, like other types of
stress, radiation exposure affects the development of the immune system through radiation-induced
apoptosis, differentiation, and induction of inflammatory environment via different components of
DDR [21,22].

The complete pattern of biological responses to different doses and radiation types is unclear
and currently one of the most important questions in radiation biology. The general consensus is
that results of IR exposure in any living organism involve a topical and/or systemic stress. A variety
of responses is induced, including—but not limited to—oxidative stress in the irradiated area or in
the whole body (through systemic non-targeted effects), DDR, DNA repair, and pro-inflammatory
pathway initiation [23]. From a systems biology perspective, the aforementioned cellular mechanisms,
as well as other related ones, can be examined through altered gene expression. Thus, in this work,
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we performed a Differential Gene Expression Analysis (DGEA), in human tissues exposed to high-dose
IR, taking advantage of the wealth of publicly available RNA-Sequencing (RNA-Seq) data, as previously
suggested [24–26]. To this end, we carefully selected five datasets of healthy human cell samples,
and in each of them, we identified Differentially Expressed Genes (DEGs) between irradiated and
non-irradiated cells. Finally, we performed a meta-analysis, highlighting the common ground of
high-dose effects.

2. Results

2.1. Data Collection, Filtering, Pre-Processing and Mapping

ENA queries identified 71 projects that fulfilled our search criteria. After manual curation,
the Bioproject [27] accession numbers of the selected datasets (Table 1) were PRJNA494581 [28],
PRJNA450083 [29], PRJNA421022 [30], PRJNA436999 [31], and PRJNA396832. We downloaded
RNA-Seq-related FASTQ files of those Bioprojects. After the initial quality control, we performed soft
trimming on raw RNA-Seq data, choosing PHRED score Q = 20 [32,33], removing on average ~2.4% of
the nucleotide reads with more than 1% probability of an incorrect base call. PRJNA396832 trimming
rate was 7.7% with soft trimming, due to adapter contamination and poor quality of reads.

Table 1. Information of experiment accessions and sample description.

Bioproject Geo IR Type Tissue Condition Sample Count

PRJNA494581 GSE120805 X-rays Human Lens Epithelial Cells
Control 5

2 Gy | 20 h 5
5 Gy | 20 h 5

PRJNA421022 GSE107685 X-rays iPSC-Derived Cardiomyocytes Control 3
5 Gy| 48 h 3

PRJNA436999 GSE111437 X-rays Primary Human Lung
Fibroblasts (IMR90)

Control | 6 h 3
Control | 24 h 3

2 Gy | 6 h 3
2 Gy | 24 h 3

PRJNA396832 GSE102145 X-rays Skin Fibroblasts (WS1) Control 1
5 Gy | 24 h 1

PRJNA450083 GSE113125 Gamma-rays

Skin Fibroblasts
Control 1

5 Gy | 1 h 1

iPSC-Fibroblasts
Control 1

5 Gy | 1 h 1

iPSC-Neural Progenitor Cells Control 1
5 Gy | 1 h 1

Mapping of the trimmed reads to the reference genome and transcriptome (gentrome) was
estimated at a rate of ~83%. There were distinct outliers during the quality control, trimming,
and alignment processes, and this served as the first indicator that PRJNA396832 and PRJNA450083
were not of the desired quality for conducting our analysis. Without the outliers, mapping rate was at
~87% across the remaining 3 datasets (PRJNA421022, PRJNA436999, and PRJNA494581).

2.2. Differential Gene Expression

It was suggested that the minimal number of biological replicates required for RNA-Seq based
DGEA is 6 [34]. PRJNA396832 and PRJNA450083 had a single biological replicate for each condition,
and were therefore excluded for subsequent analysis, as statistical significance could not be estimated.
Studies that contained combinations of experimental conditions (PRJNA436999 2 Gy for 6 and 24 h
and PRJNA494581 2 Gy and 5 Gy for 20 h), were split into distinct studies (Table 2) for DGEA. DESeq2
was used to identify DEGs in PRJNA421022 (Supplementary Materials, Table S1) in one of the distinct
studies of PRJNA436999 (Supplementary Materials, Table S2) and in one of the distinct studies of
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PRJNA494581 (Supplementary Materials, Table S3). From 2006 genes that were considered DEGs in at
least one dataset, 542 overlapped (Figure 1).

Table 2. Statistically significant gene counts derived from the differential gene expression analysis
for each comparison within each dataset. The table includes information about experimental sample
parameters, dataset accession numbers, and total mapped gene counts for each dataset.

Bioproject
Accession PRJNA421022 PRJNA436999 PRJNA494581

GEO Accession GSE107685 GSE111437 GSE120805

IR Type X-rays X-rays X-rays

Cell Type iPSC-Derived
Cardiomyocytes

Primary Human Lung Fibroblasts
(IMR90)

Human Lens Epithelial Cells
(HLE)

Dose 5 Gy 2 Gy 2 Gy 2 Gy 5 Gy
Time Point 48 h 6 h 24 h 20 h 20 h

DEG Counts 721 353 908 59 1003
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Meta-analysis was conducted using the three lists that derived from the DESeq2 analysis, yielding
1322 DEGs (Supplementary Materials, Table S4): 872 DEGs were found in at least one DESeq2 analysis
but not in the meta-analysis; 187 genes that were not characterized as DEGs in any DESeq2 analyses
were considered DEGs by meta-analysis (Figure 1).

Some of the genes that were identified as DEGs in the original RNA-Seq analyses were
PCR-validated by their own groups. For PRJNA494581 dataset [28], ddPCR validated CDKN1A,
AREG, H2BC13 (HIST1H2BL), GDF15, H3C11 (HIST1H31), H1-4 (HIST1H1E), H2BC10 (HIST1H2BF),
and TP53INP1 as DEGs and B2M and RPL13A as non-differentially expressed genes. For PRJNA421022
dataset [30], qPCR validated PLK1, BIRC5, AURKB, KIF20A, TOP2A, and CCNA2 as down-regulated
and CDKN1A and FDXR as up-regulated genes. Moreover, qPCR did not validate ANGPTL4 and
SOGA3 as up-regulated genes, even if those genes were estimated as DEGs in their RNA-Seq data
analysis. The DEG list of our meta-analysis agrees with all PCR validations.

2.3. Functional Enrichment Results

Functional enrichment analysis of up- and down-regulated genes resulting from meta-analysis
produced lists of statistically significant Gene Ontology (GO) [35] biological processes, KEGG [36]
biological pathways (Table 3), and gene-targeting transcription factors (Table 4). A Protein–Protein
Interaction (PPI) network of DEGs was also constructed (Figure 2).



Int. J. Mol. Sci. 2020, 21, 1938 5 of 17

Table 3. Enriched biological processes (Gene Ontology—GO) and enriched biological pathways (KEGG)
for up- and down-regulated genes after meta-analysis.

Gene Set Description Source FDR

Up-Regulated Genes
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GO:0006333 Chromatin assembly or disassembly GO 0
GO:0007051 Spindle organization GO 0
GO:0071103 DNA conformation change GO 0
GO:0007059 Chromosome segregation GO 0
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hsa05322 Systemic lupus erythematosus KEGG 0
hsa05203 Viral carcinogenesis KEGG 1.46 × 10−11

hsa05206 MicroRNAs in cancer KEGG 0.008110817
hsa03460 Fanconi anemia pathway KEGG 7.71 × 10−11

hsa05166 Human T-cell leukemia virus 1 infection KEGG 5.47 × 10−4

hsa04217 Necroptosis KEGG 1.19 × 10−4

hsa04218 Cellular senescence KEGG 0.0014615
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Table 4. Enriched gene-targeting transcription factors for down-regulated genes after meta-analysis.

Gene Set Gene Symbol Gene Name FDR

Down-Regulated Genes
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GO:0071103 DNA conformation change GO 0 
GO:0007059 Chromosome segregation GO 0 
GO:0061641 CENP-A containing chromatin organization GO 0 
GO:0048285 Organelle fission GO 0 
GO:0051052 Regulation of DNA metabolic process GO 0 
GO:0071824 Protein-DNA complex subunit organization GO 0 

hsa03013 RNA transport KEGG 5.66E-05 
hsa03008 Ribosome biogenesis in eukaryotes KEGG 4.13E-05 
hsa04114 Oocyte meiosis KEGG 0.001082137 
hsa04914 Progesterone-mediated oocyte maturation KEGG 0.008441906 
hsa05322 Systemic lupus erythematosus KEGG 0 
hsa05203 Viral carcinogenesis KEGG 1.46E-11 
hsa05206 MicroRNAs in cancer KEGG 0.008110817 
hsa03460 Fanconi anemia pathway KEGG 7.71E-11 
hsa05166 Human T-cell leukemia virus 1 infection KEGG 5.47E-04 
hsa04217 Necroptosis KEGG 1.19E-04 
hsa04218 Cellular senescence KEGG 0.0014615 

  

E2F_Q3_01;E2F_Q4_01;
E2F_Q6_01;E2F1_Q4_01 TFDP1 Transcription factor Dp-1 0

E2F1_Q3;E2F1_Q6;
E2F1_Q6_01 E2F1 E2F transcription factor 1 0

E2F1DP1_01 E2F1;TFDP1 E2F transcription factor 1; transcription factor Dp-1 0

E2F1DP1RB_01 E2F1;TFDP1; RB1 E2F transcription factor 1; transcription factor Dp-1;
RB transcriptional corepressor 1 0

E2F1DP2_01 TFDP2 Transcription factor Dp-2 0
E2F4DP1_01 E2F4;TFDP1 E2F transcription factor 4; transcription factor Dp-1 0
E2F4DP2_01 E2F4;TFDP2 E2F transcription factor 4; transcription factor Dp-2 0

E2F1_Q4; E2F1 E2F transcription factor 1 9.80 × 10−12

E2F1_Q3_01 E2F1 E2F transcription factor 1 4.39 × 10−5
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3. Discussion

RNA-Seq is gradually becoming the predominant technique for transcriptome analysis,
superseding microarrays. RNA-Seq technology is more sensitive in detecting genes with low expression
levels, it lacks the associated background noise of hybridization-based techniques, and it is more
reproducible [24]. Furthermore, a crucial limitation of microarrays is their inability to study the
expression of genes for which no probe is available on the chip. So far, there is no gold-standard
methodology for analyzing the transcriptome using RNA-Seq technology. Poorly designed pipelines
for differential gene expression can have detrimental effects, compromising the experimental results.
Suboptimal pre-processing of raw data, directly affects the mapping process, resulting in poor mapping
rates (<60%) [37].

An extensive debate [38–40] on the effects of the pre-processing step of trimming, suggests that
reads should be carefully trimmed. Illumina Next-Generation Sequencing (NGS) platforms produce
sequences of between 25–250 nucleotides, the colorimetric signals of which are translated by an
internal Illumina software (CASAVA) to base calls and are represented in FASTQ [41] file format.
Minimal trimming (Q < 10) keeps low quality base calls in NGS analyses, adding unreliable and random
sequences to the final dataset [38]. However, hard trimming (Q > 30) of reads can have a particularly
strong negative impact on RNA-Seq-based gene expression estimates, as it introduces unpredictable
and unwanted biases [40]. Hence, we used soft trimming (Q = 20) as a balance, preserving biological
information that was not ideally recorded, while discarding non-sense information.

The expected mapping rate of RNA-Seq reads is between 70% and 90% when mapped against
the human genome and slightly less when mapped against the transcriptome [37]. In conventional
RNA-Seq mapping, multiple reads are mapped across splice junctions [42]. The inability of conventional
algorithms, like BWA [43], to handle spliced transcripts renders them obsolete. Splice-aware
aligners [44], such as Hisat2 [45], handle mapping in a more efficient manner. However, these traditional
approaches require significant computational resources amidst an explosively growing storage-hungry
environment [46]. Alignment-independent methods, such as Salmon [47], bypass the mapping step
and proceed to quantify directly transcript abundance, boasting a more lightweight and significantly
faster novel approach. Our mapping rate, minus the outliers, was calculated at a satisfactory level of
~87% using Salmon’s selective alignment method.

The resulting datasets combined with DESeq2 which utilizes estimates of dispersions and
logarithmic fold changes by incorporating data-driven prior distributions [48], yielded substantial
statistically significant results. Instead of using transcript levels, as in a classical meta-analysis, we chose
Mosteller–Bush, a method which is based on the combination of weighted z-values for the independent
studies, which are calculated from the p-values produced by DESeq2. PCR-based validations showed
that our meta-analysis outperformed original RNA-Seq data analyses.

Although a fraction of differentially expressed genes overlap among the 3 DESeq2 studies,
a meta-analysis was conducted to enhance the validity of our DGEA (Figure 1). In all three DESeq2
DEG lists (Supplementary Materials, Table S1–S3) and in the meta-analysis DEG list (Supplementary
Materials, Table S4), the number of statistically significant under-expressed genes considerably
surpasses the number of over-expressed genes. Such a result may indicate that cell cycle arrest has
been activated, which is supported by the top down-regulated genes (i.e., MKI67, CCNA2, CDK1,
PLK1, and CDCA3) identified by the meta-analysis and associated with cell cycle activation [49].
This difference between up- and down-regulated genes, as well as cell cycle arrest activation, coincides
with the primary results for PRJNA421022 dataset [30]. At the same time, observed up-regulation of
CDKN1A, responsible for cell cycle G1 phase arrest, in response to a variety of stress stimuli further
upholds this suggestion. p21 protein coded by this gene (known to be interdependent with tumor
suppressor protein TP53) is also responsible for inhibiting cellular proliferation in response to DNA
damage [50]. In addition, it is highly correlated with DNA repair, while also being instrumental in
the execution of apoptosis. Although p21 is assumed to play a key role as “genome guardian”, it can
alternatively act as the mediator of genomic instability, cellular senescence, and carcinogenesis under
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certain circumstances, like IR exposure and TP53 deficiency [51]. Another substantial result is the
significant up-regulation of GDF15, associated with the response to oxidative stress and induction of
inflammatory environment, thus coinciding with DDR and IR response in general [49,52].

TP53 is essential in DDR mechanisms through its downstream responses, which include cell cycle
arrest, DNA repair, and apoptosis. The accurate transition from G1 phase of the cell cycle to S phase is
crucial for a controlled cell proliferation, and its misregulation promotes oncogenesis [53]. G1 arrest
provides the cell adequate time to repair the DNA damage. Should repair be unsuccessful, TP53 levels
drop and CDK-cyclin protein kinase activity resumes, leading to entry into S phase and possible
apoptosis triggering. [54]. In our results, for samples selected over 20 h post irradiation, TP53 indeed
shows no altered expression, while MDM2, as a TP53 downstream gene transcriptionally activated by
it [55], is over-expressed.

Regarding enrichment results for down-regulated genes (Table 3), cell cycle checkpoint as well
as various DNA repair mechanisms are over-represented. These results may indicate that DNA
repair genes (i.e., MSH2, MSH6, XRCC3, and POLA2) are suppressed, due to programmed cell death.
However, NER-associated genes DDB1, DDB2, and XPC where found up-regulated. DNA repair in
general, due to its complexity, requires balanced expression of its genes in order to avoid erroneous
repairs [56]. Over-represented gene-targeting factors E2F1, E2F2, RB1, TFDP1, and TFDP2 (Table 4)
are connected through involvement in cell cycle G1/S phase transition, TP53 regulation, and cellular
senescence [49]. Moreover, under-expression of DNA repair genes, mediated by the RB/E2F pathway,
may play a causal role in senescence induction [57]. In the case of up-regulated genes, p53 signaling
pathway, DDR, and apoptotic mechanisms seem to be activated. In addition, platinum drug resistance
(Table 3) could arise from increased DNA repair, decreased mismatch repair, defective apoptosis,
and altered oncogene expression [58].

Regarding the PPI network (Figure 2), edges corresponding to protein interactions, were
constructed with sizeable restrictions regarding the validity of their sources and their assigned
score. Distinct clusters were formulated, coinciding with the main components of high-dose IR
response. Simultaneously, through these clusters, the network validates the biological processes
and pathways derived from the enrichment results. Two major, densely packed clusters are formed,
representing multiple cell cycle processes. These clusters are indicative of a collection of DNA repair
pathways (GO:0006281), such as DSBs repair (RAD51, BLM, DNA2), Mismatch Repair (MSH6, MSH2),
Homologous Recombination (XRCC3), and NER (DDB1, DDB2, XPC, POLE). Furthermore, TIMELESS,
a gene found in the center of the network due to its contribution to DSB repair, also acts as a circadian
rhythm pathway regulator [49]. Additional circadian rhythm-related results are the under-expression
of TYMS and the over-expression of CRY2.

Circadian genes are known to regulate a variety of cellular processes, including cell cycle, apoptosis,
and DNA damage repair [59]. Both oxidative defense mechanisms and repair of X-ray induced DSBs
in DNA are synchronized by circadian rhythms; thus, RT timing needs to be coordinated as we enter
personalized medicine [60]. Furthermore, disruption in circadian gene expression is associated with
increased incidence of cancers and gliomas [61]. Finally, the circadian clock system also controls
various parameters of the immune system and its biological defense functions [62]. This correlation
between circadian clock dysregulation and IR response may reveal possible underlying mechanisms
of chronic inflammatory disease development. In addition, understanding the interplay between
circadian rhythm, cell cycle, cell proliferation, and DNA repair will deliver benefits in RT by reducing
its side effects on healthy tissues.

Biological response to IR (high doses), especially at the organism level, is complicated and partially
unknown. RNA-Seq as an -omics methodology provides information on gene expression for several
thousand proteins. This opens a unique opportunity to approach this difficult task of delineating the
mechanisms triggered after radiation-induced stress, at a systems biology level. Therefore, in this
study, after critical screening of several RNA-Seq datasets and applying state-of-the-art bioinformatics
and meta-analysis, we were able to identify: (A) 1322 DEGs (371 up-regulated, 951 down-regulated,
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Supplementary Materials, Table S4); (B) cell cycle checkpoint activation, apoptosis, and various
down-regulated repair genes. The last probably relates to late post-irradiation time points (20–48 h),
where repair is expected to be completed and the cell is sent to apoptosis. Another suggestion is that
transcriptional up-regulation of DNA repair genes by genotoxic stress (p53 activation, Tables 3 and 4)
is counteracted by possible DNA damage that blocks transcription [56]; (C) indication of cellular
senescence; (D) association of IR response with the circadian clock.

4. Materials and Methods

Our RNA-Seq analysis involves a pipeline (Figure 3) of in silico processes, each with its own
specific parameters (Appendix A, Table A1), where files undergo a series of transformations. In each
step, data are manipulated in a way that information is retained and expanded by additional meta-data.
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Figure 3. Differential gene expression analysis workflow is comprised of 4 distinct steps: (A) Data
collection from the online repositories ENA and EnsEMBL. (B) Quality control and trimming.
A conventional analysis pipeline of RNA-Seq data starts with the pre-processing of the raw reads with
FastQC, MultiQC, and Trim Galore! (C) Gene abundance quantification with Salmon and tximeta by
mapping of the reads to a reference genome and/or transcriptome. (D) Differential gene expression
analysis with DESeq2, where gene expression levels of all mapped transcripts are quantified and
normalized in order to define differentially expressed genes.

4.1. Datasets

We searched for datasets available in public repositories to identify the studies that performed
RNA-Seq in normal and ionized tissues. The appropriate datasets were identified using the European
Nucleotide Archive (ENA) advanced search engine [63]. We narrowed our search down to human
Illumina RNA-Seq studies which involved ionizing radiation. More specifically, in the read domain of
ENA advanced search, our query was: “instrument_platform = “ILLUMINA” AND library_strategy =

“RNA-Seq” AND tax_eq (9606)”, and in the study domain, our query was: “(study_name = “*ionizing*”
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OR study_title = “*ionizing*” OR study_description = “*ionizing*” OR study_name = “*alpha particle*” OR
study_title = “*alpha particle*” OR study_description = “*alpha particle*” OR study_name = “*irradiation*”
OR study_title = “*irradiation*” OR study_description = “*irradiation*” OR study_name = “*X-ray*” OR
study_title = “*X-ray*” OR study_description = “*X-ray*” OR study_name = “*X ray*” OR study_title =

“*X ray*” OR study_description = “*X ray*” OR study_name = “*gamma ray*” OR study_title = “*gamma
ray*” OR study_description = “*gamma ray*” OR study_name = “*positron*” OR study_title = “*positron*”
OR study_description = “*positron*” OR study_name = “*radiotherapy*” OR study_title = “*radiotherapy*”
OR study_description = “*radiotherapy*” OR study_name = “*ionising*” OR study_title = “*ionising*” OR
study_description = “*ionising*” OR study_name = “*IR-induced*” OR study_title = “*IR-induced*” OR
study_description = “*IR-induced*”) AND tax_tree(9606)”. The first query yielded 10,541 studies and the
second query yielded 504 studies. Afterwards, we selected the overlapping study names. The studies
were then manually curated in order to exclude non-irradiated, UV-irradiated, and tumor samples.

4.2. Raw Read Evaluation

Extensive quality control was performed on RNA-Seq data of each sample using FastQC (version
0.11.8) [64], and summaries were produced by MultiQC (version 1.8) [65] to evaluate the integrity of
RNA-Seq experiments. Quality control reports mainly involved the analysis of sequence accuracy,
presence of PCR artifacts, and adaptor sequences that were not automatically cleaned by Illumina
platforms, GC content, k-mer levels, etc. Surgical elimination of low-quality regions, known as
“trimming”, was performed—when necessary—by Trim Galore! (version 0.6.4) [66], a wrapper package
around Cutadapt (version 2.8) [67], and FastQC. Consequently, results where re-evaluated with FastQC
and MultiQC to verify that the quality of raw data had improved after the trimming process.

4.3. Sequence Alignment

Mapping aligns trimmed sequence reads against a known genome and transcriptome. Its efficiency
mainly depends on the bioinformatics tools used and the quality of the sequences. Reads were directly
mapped into Homo sapiens reference genome and transcriptome FASTA-formatted sequences. To this
end, we used the latest release of Salmon (version 1.1.0) [47] which adopts a selective-alignment
algorithm in order to overcome the shortcomings of lightweight approaches, without the additional
computational burden of traditional alignment [68]. We produced the transcriptome index for Salmon
via the partial selective alignment method, mapping the transcriptome to the genome, extracting the
relevant portion out of the genome, and, finally, indexing it along with the transcriptome.

4.4. Transcript Quantification

The entirety of the statistical analysis was performed using packages provided by Bioconductor
(BiocManager version 3.10) [69,70], a suite for analyzing high-throughput genomic data in R (version
3.6.2) [71] statistical programming language. All R code was executed through RStudio server
(version 1.2.5033) [72]. Transcript-level quantification was estimated using tximeta (version 1.4.3) [73],
an expansion of tximport (version 1.14.0) [74].

4.5. Differential Gene Expression Analysis

Transcript-level quantification data were processed for DGEA, using DESeq2 (version 1.26.0) [48].
Studies with more than two distinct conditions were split in order to analyze genes that were
differentially expressed between cells exposed to a specific dose for a specific time point and their
corresponding control samples. Exported lists containing statistically significant differentially expressed
genes include metrics such as Log2 Fold Change (Log2FC), p-values, and False Discovery Rate
(FDR)-adjusted [75] p-values for each gene. The lists were further annotated using org.Hs.eg.db
(version 3.8.2) [76] to include HGNC [77] gene symbols and gene names. The threshold for statistical
significance was set at the adjusted p-value < 0.05, as non-adjusted p-values are not to be considered [75].
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4.6. Meta-Analysis

DEG lists were further combined in a meta-analysis (Figure 4) to identify genes of differential
expression across studies. In order to achieve optimal results, only DEG lists derived from similar
condition groups regarding dose and time of post-irradiation collection were considered. To this
end, we excluded the DEG list derived from the PRJNA436999 samples that were collected 6 h
post-irradiation, leaving only the DEG list from the samples that were collected after more than 20 h.
Finally, the DEG list acquired from the PRJNA494581 samples after 2 Gy irradiation was also excluded,
as it was considered an outlier, due to its low DEG number.
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Figure 4. Functional enrichment analysis workflow. Differential Gene Expression Analysis
(DGEA)-derived genes, subdued to meta-analysis, yielded the final DEGs of utmost statistical
significance. Inputting these DEGs into WebGestalt and STRING generated the resulting enriched
terms and PPI network, respectively.

Our meta-analysis combined unadjusted p-values of each study for every gene, using a weighted
version of Stouffer meta-analysis [78], proposed by Mosteller and Bush [79]. For each gene and
study, its two-tail unadjusted p-value was converted into an one-tail p-value, based on the sign of the
corresponding Log2FC. For each one-tailed p-value, the corresponding z-score was calculated using
the inverse normal distribution function (Φ−1). Meta-analysis p-value for each gene was calculated
from the weighted z-score sum, using the normal distribution function (Φ):

p = Φ


∑k

i=1 niΦ−1(pi)√∑k
i=1 ni2


where pi is the DESeq2-derived p-value, and ni is the number of samples of study i and k the number
of studies. Finally, p-values underwent FDR adjustment, and 0.05 was selected as threshold for
statistical significance.

To evaluate the efficiency of our method, we compared the experimentally validated DEGs derived
from the studies the RNA-Seq data of which we chose for analysis with our own estimations.

4.7. Functional Enrichment Analysis and Gene Network Construction

To highlight the biological background of DEGs, a functional enrichment analysis (Figure 4)
was performed using the WEB-based Gene Set Analysis Toolkit (WebGestalt) [80]. We selected
Over-Representation Analysis (ORA) [81] method which performs a statistical evaluation of the
fraction of genes in a particular pathway found among the set of genes showing changes in expression.
Our terms of interest include biological process GO terms [35], KEGG biological pathways [58],
and gene-targeting transcription factors. The statistical significance of each over-representation of
biological terms was estimated using hyper-geometric distribution. p-values were FDR-adjusted,
and terms with adjusted p-values < 0.05 were considered statistically significant.
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In order to investigate the interactome of the DEGs and identify possible underlying cell
mechanisms, we constructed their Protein–Protein Interaction (PPI) network, using STRING (version
11.0) [82]. Edges of the network, corresponding to protein interactions, were determined solely based
on text mining sources with high confidence (Table A1).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/6/1938/
s1. Table S1: Statistically significant DEGs (Adj.p-value<0.05) derived from DGEA of RNA-Seq data from human
iPSC-Derived Cardiomyocytes after X-ray irradiation, using DESeq2. The experiment consists of 3 control samples
and 3 irradiated with 5 Gy X-ray radiation for 48 hours [Bioproject: PRJNA421022]; Table S2: Statistically significant
DEGs (Adj.p-value<0.05) derived from DGEA of RNA-Seq data from Primary Human Lung Fibroblasts (IMR90)
after X-ray irradiation, using DESeq2. The experiment consists of 3 control samples and 3 irradiated with 2 Gy
X-ray radiation for 24 hours [Bioproject: PRJNA436999]; Table S3: Statistically significant DEGs (Adj.p-value<0.05)
derived from DGEA of RNA-Seq data from Human Lens Epithelial Cells after X-ray irradiation, using DESeq2.
The experiment consists of 5 control samples and 5 irradiated with 5 Gy X-ray radiation for 20 hours [Bioproject:
PRJNA494581]; Table S4: Statistically significant DEGs derived from a meta-analysis comparing DESeq2 outputs
from irradiated and control samples of three datasets [PRJNA421022, PRJNA436999, PRJNA494581].
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BER Base Excision Repair
DDR DNA Damage Response
DEGs Differentially Expressed Genes
DGE Differential Gene Expression
DGEA Differential Gene Expression Analysis
DSBs Double Strand Breaks
ENA European Nucleotide Archive
FDR False Discovery Rate
GSEA Gene Set Enrichment Analysis
GO Gene Ontology
HR Homology-dependent Recombination
IR Ionizing Radiation
LET Linear Energy Transfer
Log2FC Log2 Fold Change
MMR Mismatch Repair
NER Nucleotide Excision Repair
NGS Next-Generation Sequencing
NHEJ Non-Homologous End Joining
ORA Over-Representation Analysis
PPI Protein to Protein Interaction
Q PHRED Score
RBE Relative Biological Effectiveness
RNA-Seq RNA-Sequencing
RNS Reactive Nitrogen Species
ROS Reactive Oxygen Species
RT Radiation Therapy
SSBs Single-Strand Breaks
WebGestalt WEB-based Gene Set Analysis Toolkit
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Appendix A

Table A1. Specific arguments used during the analysis. Unless explicitly specified otherwise, default
parameters were used.

Trim Galore! trim_galore –cores 4 –illumina -q 20 –phred33 –paired –fastqc <fastq files>

Salmon salmon quant -i salmon_index –libType A -1 <forward_1.fq.gz> -2
<reverse_1.fq.gz> –gcBias –validateMappings -o <transcripts_directory>

WebGestalt

Basic Parameters:

Organism of Interest: Homo sapiens
Method of Interest: ORA

Functional Database: geneontology + (Biological Process: no redundant),
pathway + (KEGG), Network + (Transcription Factor target)

Gene List: Select Gene ID
Type: EnsEMBL Gene IDReference Gene List: Upload: Mappings per study:

EnsEMBL Gene ID

Advanced Parameters

minimum number of genes for category: 2
Multiple Test Adjustment: Benjamini-Hochberg

Significance level: FDR (0.05)
Number of categories visualized in the report: 100

STRING

Basic Settings:

meaning of network edges: confidence
active interaction sources: textmining

minimum required interaction score: high confidence (0.7)

Advanced Settings:

hide disconnected nodes in the network
disable structure previous inside network bubbles
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