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Asthma is a complex, heterogeneous disease in which the
underlying mechanisms are not fully understood. Patients are
often grouped into phenotypes (based on clinical, biologic, and
physiologic characteristics) and endotypes (based on distinct
genetic or molecular mechanisms). Recently, patients with
asthma have been broadly split into 2 phenotypes based on their
levels of type 2 inflammation: type 2 and non–type 2 asthma.
However, this approach is likely oversimplified, and our
understanding of the non–type 2 mechanisms in asthma remains
extremely limited. A better understanding of asthma
phenotypes and endotypes may assist in development of drugs
for new therapeutic targets in asthma. One approach is to
identify ‘‘treatable traits,’’ which are specific patient
characteristics related to phenotypes and endotypes that can be
targeted by therapies. This review will focus on emerging
treatable traits in asthma and aim to describe novel patient
subgroups and endotypes that may represent the next step in the
search for new therapeutic approaches. (J Allergy Clin
Immunol Global 2022;1:27-36.)
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Asthma is a complex, heterogeneous disease with variable
clinical manifestations. Patients with common clinical, biologic,
and physiologic characteristics (phenotypes) are grouped
together to guide diagnosis, therapy, and management of asthma.
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However, patients within a given phenotype can show heteroge-
neity of disease severity and response to therapy, prompting the
need for more specific disease classifications. Recently, the term
endotype has been introduced to define patients with asthma by
distinct genetic or molecular mechanisms underlying asthma pa-
thology.1-3 Approaches based on endotypes and phenotypes have
been proposed to optimally manage patients with asthma.

Classifying patients into phenotypes and endotypes can direct
treatment toward targeting specific pathophysiologic pathways
that may be dysregulated in a given phenotype or endotype. For
example, asthma has been broadly split into 2 distinct phenotypes
according to the degree of type 2 inflammation: type 2 and non–
type 2 asthma.1,2,4 Of these 2 phenotypes, type 2 asthma is the bet-
ter understood and more easily identifiable in patients: eosino-
philic inflammation and IgE synthesis both play a key role.1,4

Non–type 2 asthma is less easily defined and may comprise
several subpopulations (distinct phenotypes and endotypes) of pa-
tients with non–type 2 asthma.4 However, because of the hetero-
geneity found in asthma, there are also likely to be patients whose
asthma is driven by both type 2 and non–type 2 inflammatory
mechanisms. Specific mechanisms may contribute to severe
asthma in certain patients who do not respond to therapies target-
ing type 2 asthma alone.5 A greater understanding of the pheno-
types and endotypes involved in asthma pathology will help to
identify patients who are more to likely benefit from established
or novel or emerging targeted therapies.

The fact that patients with asthma can present with many
clinical phenotypes justifies the need for a precision medicine
strategy based on the presence of what have recently come to be
known as ‘‘treatable traits."6,7 A treatable trait is a therapeutic
27

Delta:1_given name
Delta:1_surname
mailto:tcarr@deptofmed.arizona.edu
mailto:tcarr@deptofmed.arizona.edu
https://doi.org/10.1016/j.jacig.2022.04.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jacig.2022.04.001&domain=pdf


J ALLERGY CLIN IMMUNOL GLOBAL

MAY 2022

28 CARR AND PETERS
target identified by phenotype or endotype recognition through
validated biomarkers; it is not necessarily specific to 1 disease
and can change over time.6,7 Agusti et al6 have proposed treatable
traits of chronic airway disease based on 3 domains: pulmonary
(eg, airflow limitation, eosinophilic airway inflammation, airway
bacterial colonization), extrapulmonary (eg, obesity, obstructive
sleep apnea, cardiovascular disease), and treatable behavior/life-
style risk factors (eg, smoking, symptom perception, adherence to
treatment). The introduction of biologics directed at patients
with eosinophilic and allergic asthma strongly suggests that iden-
tifying therapeutic targets contributing to pathophysiologic
characteristics will significantly improve asthma control.8 The
identification and treatment of eosinophilic and allergic asthma
may serve as a template for what could be achieved when target-
ing other treatable traits. However, not all patients with a given
phenotype, such as late-onset eosinophilic asthma, will derive
the same benefit from a targeted biologic, perhaps because multi-
ple factors are at play. These treatable traits may be present across
different phenotypes and endotypes of chronic airway disease,
representing additional opportunities for targeted therapy.
Furthermore, there is evidence that focusing on treatable traits
leads to significant improvements in health-related quality of
life and asthma control.9

There are numerous reviews that have covered asthma
phenotypes and endotypes previously.2,4,10-13 This review will
focus on those treatable traits in asthma that are more recently
discovered and those that represent a treatment gap in current
asthma care. These include inflammatory traits (TH17 cells and
neutrophilic inflammation, T cells and natural killer [NK] cells,
IL-6–high asthma, IL-6 transsignaling, and type 2–ultrahigh
asthma), physiologic traits (airway mucus hypersecretion,
chronic airway remodeling, nasal polyposis and comorbid
asthma, leaky airway epithelial barrier, and endoplasmic reticu-
lum [ER] stress), and infection-mediated traits (viral and bacterial
infections) (Fig 1). Some traits may be less common or fall
outside the typical type 2 versus non–type 2 categorization of
asthma but are often associated with more severe disease, and
although research is in its infancy, they may provide insight
into our limited knowledge of the clinical features of treatable
asthma pathology.
INFLAMMATORY TRAITS

TH1 cells, TH17 cells, and neutrophilic asthma
Although significant advances have been made for patients

with type 2 asthma, non–type 2 asthma remains poorly under-
stood. It is difficult to estimate the prevalence of non–type 2
asthma on account of the downregulation of type 2 biomarkers in
patients treated with corticosteroids, which may result in patients
with type 2 asthma being wrongly identified as having non–type 2
asthma.14 Patients with non–type 2 asthma tend to have a poor
response to corticosteroid treatment and often display relatively
higher neutrophil blood counts than patients with type 2 asthma
do.1

TH1 and TH17 are key cell types in non–type 2 asthma. TH1
cells secrete the proinflammatory cytokines IFN-g and TNF-a,
which are implicated in neutrophilic airway inflammation.15

IFN-g and TNF-a are also known to induce corticosteroid resis-
tance in human airway smooth muscle,16 and IFN-g is recognized
as a driver of severe steroid-resistant asthma.17 TH17 cells also
drive a distinct pathway in non–type 2 asthma that leads to IL-
17 release and neutrophilic inflammation. Once activated, neutro-
phils act to eliminate pathogens via phagocytosis, degranulation,
or formation of neutrophil extracellular traps (NETs).18 NETs,
which are composed of extracellular DNA, histones, and granular
proteins, have been found in high levels in the airways of patients
with neutrophilic and severe asthma.19,20 The accumulation of
NETs in patients’ airways may aggravate their asthma further,
contributing to a more severe disease phenotype.19

Neutrophilic asthma can be identified by the presence of
sputum neutrophilia.18,21 There are currently no specific therapies
for neutrophilic asthma, which is exacerbated by the fact that pa-
tients with neutrophilic asthma tend to have a poor response to
corticosteroid treatment.22

A number of novel, small molecule drugs are in early stages
of development for the treatment of neutrophilic asthma.
5-Lipoxygenase activating protein (FLAP) inhibitors have the
potential to reduce neutrophilic inflammation for patients with a
high neutrophil count and airway obstructions. However, in a
placebo-controlled trial in patients with moderate-to-severe
asthma (N5 14), GSK2190915, a potent FLAP antagonist, failed
to decrease sputum neutrophil numbers over 2 weeks. Further
clinical trials in patients with neutrophilic asthma are required to
assess efficacy.23

Macrolides may be used to reduce asthma exacerbations in
patients with neutrophilic asthma. In a clinical trial of patients with
severe asthma, low-dose azithromycin reduced asthma exacerba-
tions in a subgroup of patients with neutrophilic asthma. However,
whether the benefits occurred owing to azithromycin’s antimicro-
bial or anti-inflammatory properties is unclear.24 It should be noted
that treatment with macrolides is associated with long-term micro-
bial resistance and increased risk of adverse events.

Other potential therapies are in the preliminary stages of being
studied for their effects on IL-17 and neutrophilic inflammation.
BITS7201A, an antibody that neutralizes IL-17 and IL-13, was
well tolerated in healthy volunteers and participants with mild
atopic asthma in a phase 1 trial.25 However, phase 2 trials have not
started. A trial with adalimumab (anti–TNF-a) was conducted in
healthy volunteers. A neutrophilic response was induced by using
an inhaled endotoxin, which increased neutrophil counts in
sputum, suggesting that anti–TNF-a could inhibit neutrophils.
The authors suggest that the endotoxin model could be used for
the early prediction of anti–TNF-a therapeutics in patients with
asthma. However, clinical trials with anti–TNF-a have been un-
successful in patients with asthma26-28; a large phase 2 study
with golimumab was discontinued because of an unfavorable
safety profile, with serious adverse effects (sepsis, cellulitis)
and malignancies occurring more frequently in the golimumab
group than in the placebo group.27

Therapies that target thymic stromal lymphopoietin (TSLP)
may have the potential to treat neutrophilic asthma. TSLP is an
upstream cytokine mediator that initiates type 2 signaling
pathways and may drive neutrophilic inflammation through
TH17 cells and IL-17.29,30 In the phase 3 NAVIGATOR trial,
tezepelumab (an anti-TSLP therapy) was effective in both eosin-
ophilic and noneosinophilic subgroups. Although the noneosino-
philic subgroupmay have included patients with neutrophilia, this
population were not assessed specifically31; however, a phase 2
trial (CASCADE) measured the change in neutrophil, eosinophil,
T-cell and mast cells counts in response to tezepelumab treatment
in patients with differing levels of type 2 inflammation. The trial
has been completed, but results are yet to be published.32



FIG 1. Novel treatable traits in asthma. An overview of the inflammatory, physiologic, and infection-

mediated treatable traits for asthma, their potential mechanistic targets, and potential treatment classes.

FENO, Fractional exhaled nitric oxide; ISG, interferon-stimulated gene; TCR, T-cell receptor.
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Tezepelumab has now been approved for the treatment of severe
asthma.33 Another anti-TSLP therapy, CSJ117 (an inhaled anti-
body fragment), has shown positive results in a 12-week phase
1 trial in patients with mild asthma.34

Other therapies that target neutrophil chemotaxis and/or
signaling cascade, such as IL-17A or CXC chemokine receptor
2, have not demonstrated efficacy in clinical studies so far.
A phase 2 study demonstrated that a mAb blocking the IL-17
receptor, brodalumab, had no treatment effect in patients with
moderate-to-severe asthma.35 However, it is important to note
that the study did not select for a TH17 cell–high population.
Placebo-controlled trials have demonstrated that CXC chemokine
receptor 2 antagonists reduce blood neutrophil counts in patients
with severe neutrophilic asthma; however, there was no associ-
ated improvement in terms of asthma control, lung function, or
reduced exacerbation rates in those studies.36,37 This suggests
that a reduction in blood neutrophil counts may not be correlated
with a reduction in airway neutrophil numbers or airway inflam-
mation,38,39 limiting the accuracy of this biomarker for moni-
toring or predicting response to therapy. The aforementioned
results call into question the role of circulating neutrophils in
asthma and the extent to which non–type 2 asthma is driven by
neutrophilic inflammation. Although there is a notable body of
evidence implicating neutrophils in non–type 2 asthma, clinical
data to support the efficacy of targeted antineutrophil therapies
in non–type 2 asthma are lacking.36,37 Therefore, there is a
need for further clinical trials to be carried out in patients with
neutrophilic or TH17 cell–high asthma.
TRM T cells
Memory T cells are antigen-specific T cells that remain after an

infection has been eliminated. Lung tissue-resident memory
(TRM) cells are a subset of these cells that do not recirculate;
they patrol the mucosal barriers of the lung and play a crucial role
in mounting optimal responses during reinfections. After reac-
tivation, TRM cells rapidly secrete effector cytokines. Although
lung TRM cells can protect against respiratory infection,40 it has
been observed that in murine models of asthma lung, TH2 TRM
cells can cause chronic airway inflammation via the release of
cytokines that recruit eosinophils and also maintain ‘‘allergic
memory’’ in the lung.40,41 Additionally, in a study that clustered
patients with asthma on the basis of the cell composition of their
bronchoalveolar lavage (BAL) fluid, a distinct patient group
dominated by IFN-g–producing T cells, including CD41 and
CD81 TRM cells, was identified.42 Therefore, targeting TRM
cells could be a conceivable therapy, potentially via the T-cell
receptor-CD3 complex. A preclinical study in mice demonstrated
that anti-CD3 treatment specifically inhibited eosinophilic lung
inflammation driven by TH2 TRM cells.43 There are currently
no clinical trials of anti-CD3 in patients with asthma, although
anti-CD3 is in development for the treatment of autoimmune
disorders.44
CD81 T-cell deficiency
A recent study has shown that individuals with non–type 2

asthma exhibit a deficiency in airway cytotoxic CD81 T cells
associated with obesity-driven inflammation.45 This has led the
authors to speculate that deficiency in cytotoxic CD81 T cells
and an impaired immune response to viral infections could be a
mechanism of exacerbations in non–type 2 asthma. Additionally,
it is possible that obesity-related systemic inflammation could
cause cytotoxic T-cell dysfunction, possibly via T-cell exhaus-
tion.45 So far, there have been no studies investigating therapies
that target CD81 T-cell immunity in asthma.
NK cell deficiency
There is evidence that decreased NK cell abundance and

cytotoxicity may play a role in persistent airway inflammation in
patients with asthma.46 In a study investigating BAL fluid cell
samples taken from patients enrolled in the 3-year longitudinal
Severe Asthma Research Programme-3 study, patients with
asthma had fewer NK cells in their BAL fluid than healthy partic-
ipants did.46 In addition, compared with healthy participants, pa-
tients with severe asthma had decreased ratios of NK cells to TH

cells and neutrophils.46 There was also evidence that the NK cells
present in patients with asthma are less effective at killing target
cells than the NK cells in healthy participants are.46
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These data suggest that in some patients with severe asthma,
the number and efficacy of NK cells may be reduced, leading to an
impaired anti-inflammatory response that is only worsened by
corticosteroid treatment. This may provide a plausible mecha-
nism for the poor response of some patients with non–type 2
asthma to corticosteroid treatment.

Therapies that preserve NK cell effector mechanisms, such as
anti-inflammatory proresolving lipid mediator lipoxin A4 (LXA4)
may be beneficial for the treatment of the aforementioned individ-
uals.47 In an in vitro study, peripheral blood and lung NK cells
from healthy participants were exposed to LXA4, leading to
increased NK cell–mediated apoptosis of eosinophils. This high-
lights LXA4 as a potential anti-inflammatory and treatment for se-
vere asthma caused by NK cell deficiency.47
IL-6–high asthma and obesity
IL-6 is a proinflammatory cytokine, and studies suggest that it

plays an active role in the pathogenesis of asthma.48-50 IL-6 is a
biomarker of obesity-related systemic inflammation and meta-
bolic dysfunction, and a distinct subgroup of patients with obesity
and severe asthma has previously been described.3,51 Comorbid
asthma and obesity are frequently characterized by late-onset of
disease, female predominance, and non–type 2 inflammation.52,53

Better asthma control, lung function, and asthma-related quality
of life can sometimes be improved following aggressive weight
loss54; however, it should be noted that the impact of obesity on
asthma pathology does not appear to be isolated to the physiologic
impact of increased body mass on chest wall function. This was
demonstrated in 2 separate studies that evaluated the impact of
IL-6 systemic inflammation on asthma exacerbation rates and
lung function measurements. Peters et al reported that patients
with metabolic dysfunction and elevations in plasma IL-6 demon-
strated more frequent asthma exacerbations and lower lung func-
tion than did IL-6–low patients, independent from body mass
index.50 Specifically, nonobese patients with high plasma IL-6
levels had more severe asthma when compared with the levels
in nonobese patients without metabolic dysfunction and low
levels of IL-6. These findings suggest that IL-6 and metabolic
dysfunction may worsen asthma severity, even in nonobese
patients.

Therapeutics targeting IL-6 may be promising for patients with
IL-6–high asthma. However, in a small proof-of-concept clinical
trial, the IL-6 inhibitor tocilizumab was unable to prevent
allergen-induced bronchoconstriction in adult patients with
mild asthma.55 There is the potential for combination of IL-6 in-
hibition with other therapies. A preclinical study in a BAL fluid
mouse model for asthma has demonstrated that a combination
of IL-6 and TNF inhibition prevented the increase of eosinophilic
and neutrophilic infiltrate, so it may therefore be effective in
reducing inflammatory response in the lungs.56,57 There is
currently an ongoing phase 2 trial assessing the efficacy and safety
of the IL-6 inhibitor FB704A in adults with severe asthma. The
results are yet to be published.58
IL-6 transsignaling
IL-6 transsignaling (an alternative mechanism to classic IL-6

signaling) is seen in certain cells that do not express high levels of
membrane IL-6 receptor, and it has also been implicated in
exacerbation-prone asthma.59 IL-6 transsignaling is mediated by
a soluble IL-6 receptor that is likely produced by neutrophils at
the site of inflammation in patients with asthma.59,60 A novel sub-
set of patients with asthma whose asthma is driven by IL-6 trans-
signaling pathway activation in the lung epithelium and is
associated with a high exacerbation rate and type 2–independent
eosinophilia has been described.59 Further research into the prev-
alence and impact of this emergingmechanism of inflammation in
patients with asthma is warranted.

Taken together with the data on IL-6–high asthma, these data
are important, as they demonstrate that IL-6 may be a plausible
underlying mechanism in some populations with non–type 2,
severe asthma and may provide direction for further research.56
Type 2–ultrahigh asthma
It has become increasingly apparent that type 2 inflammation

exists on a spectrum of severity. Patients with mild-to-moderate
asthma may demonstrate airway measures of type 2 inflammation
that are higher than those in healthy control subjects, but these
measures are frequently extinguished by inhaled or systemic
corticosteroids.61 In contrast, many patients with severe asthma
have airway measures of type 2 inflammation that are resistant
to corticosteroid treatment.62 Corticosteroid resistance is linked
to various mechanisms, including respiratory infections and
obesity,63 but it could also be due to a type 2–ultrahigh pheno-
type.45 In a network analysis of sputum cell transcriptome expres-
sion data on patients with asthma, a subgroup of type 2–high
patients with uniformly higher expression of type 2 measures
was identified. Compared with patients with standard type 2
asthma, patients with type 2–ultrahigh asthma had characteristics
that included a high sputum eosinophil count (median 7.3% vs 2%
in patients with type 2 asthma) and high fractional exhaled nitric
oxide concentrations (median 52 ppb vs 41 ppb in patients with
type 2 asthma); in addition, they were generally older and had
more severe airflow obstruction.45

Other conditions characterized by an exceptionally high
eosinophil count include hypereosinophilic syndrome (HES),
which is an idiopathic group of disorders characterized by
blood and/or tissue eosinophilia,64 and eosinophilic granulo-
matosis with polyangiitis (EGPA), which is a systemic vascu-
litis occurring in people with asthma.65 Both disorders are
typically characterized by eosinophil levels higher than 1500
cells/mL.64,66

IL-5 is produced by TH2 cells and is a potent activator of eosin-
ophils.67 In a phase 3 study with patients with HES, mepolizu-
mab, which is an anti–IL-5 agent, markedly reduced mean
blood eosinophil counts from 1460 cells/mL to 170 cells/mL after
week 2.64 Mepolizumab additionally reduced peripheral eosino-
phil count68 and significantly extended the remission period in pa-
tients with EGPA.69 Benralizumab, a biologic targeting the IL-5
receptor, is also in development for treatment of EGPA and
HES.70,71 Given that mepolizumab and benralizumab are
approved for the treatment of severe asthma and the existence
of evidence that the higher the blood eosinophil level, the higher
the expected impact of treatment,72,73 anti–IL-5 biologics have
clear potential for treating type 2–ultrahigh asthma.

Janus kinase (JAK) inhibitors are another possible treatment:
preclinical data demonstrate that JAK inhibition may reduce
airway inflammation and hyperreactivity in asthma,74 and JAK
inhibitors reduce BAL eosinophilia in vivo.74,75 JAK inhibitors
are in the early stages of development in patients with asthma.76
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PHYSIOLOGIC TRAITS

Airway mucus hypersecretion
Mucus hypersecretion is a widely recognized hallmark of

asthma and plays a key role in pathogenesis of the disease. In
small peripheral airways, mucus hypersecretion may lead to
plugging of the airway lumen and airway obstruction. Mucus
plugging has been well documented in fatal asthma and is
believed to play a major role in cause of death. Recent research
has demonstrated that it is also common in chronic severe
asthma.77 Multidetector computed tomography (CT) lung scans
from 146 patients with asthma and 22 healthy participants demon-
strated that mucus plugs were more common in patients with se-
vere asthma than in healthy participants.78 Mucus plugs were
visually observed on a CT scan, and a mucus score from 0 to 20
was assigned. High mucus scores (a score of 4-20 based on the
median score of the ‘‘plugged’’ group) were strongly correlated
with airway eosinophilia and other markers of type 2 inflamma-
tion,77 and patients with particularly high mucus scores did not
respond to bronchodilator or systemic corticosteroid treatment.78

Detection ofmucus plugs in the lung by usingmultidetector CT
lung scans could potentially serve as a biomarker of disease
severity in the airways of patients with asthma. Detection of
mucus plugs could also be an indicative outcome for clinical trials
to determine whether mucolytics or inhibitors of type 2 inflam-
mation can reduce mucus plug formation to improve airflow in
chronic severe asthma.

A separate study has also indicated that Charcot-Leyden
crystals, an indicator of eosinophilic inflammation often found
in patients with asthma, are highly abundant in airway mucus.79

The formation of such Charcot-Leyden crystals actively promotes
key features of asthma, such as airway inflammation, goblet cell
metaplasia, bronchial hyperreactivity, and IgE synthesis.79

Charcot-Leyden crystal–specific antibodies were able to dissolve
the crystal formations, in vitro and in vivo.79

Mucus plugs and Charcot-Leyden crystals are a tractable
treatment target in patients with severe asthma. Targeted treat-
ment with mucoactive drugs may improve airflow in patients with
chronic severe asthma, especially in the subset of patients with
high mucus scores who did not respond to traditional thera-
pies.77,78 Similarly, specific antibodies could potentially be used
to dissolve Charcot-Leyden crystal formations and reduce the
associated airway inflammation.79
Chronic airway remodeling
Airway remodeling in asthma is recognized as structural

changes in the airways, including thickening of the airway
epithelium, hypertrophy and hyperplasia of the airway smooth
muscle cells, thickening and fibrosis of the subepithelial basement
membrane, hypertrophy of the bronchial glands, goblet cell
hyperplasia, and loss of lung elastic recoil.80,81 These changes
can lead to persistent airflow limitation and are a leading cause
of reduced lung function. Both type 2 and non–type 2 asthma
can lead to airway remodeling, which usually worsens over
time and with disease severity.

The inflammatory cytokines IL-4, IL-5, and IL-13, produced
by activated TH2 cells2 and type 2 innate lymphoid cells,82 pro-
mote eosinophil recruitment. Elevated eosinophil levels
contribute to airway remodeling and airway hyperresponsiveness
by causing chronic inflammation and damage to the airways.
Airway remodeling has been linked with early-onset asthma
and disease severity, and it has also been reported in very young
children with asthma. It is therefore likely that airway remodeling
can also occur in parallel to chronic inflammation, rather than as a
direct consequence of sustained inflammation, through a distinct
mechanism (or mechanisms) that may not respond to therapies
targeting inflammation alone.

IgE is also involved in the pathogenesis of airway remodeling
and plays a key role in the development of many asthma-related
symptoms.2,83 TSLP has direct effects on fibroblasts, which may
contribute to airway remodeling in asthma through increased
deposition of collagen or other pathways.84,85 Furthermore,
TSLP expression in the bronchial epithelium and airway smooth
muscle is upregulated in patients with asthma and promotes mast
cell synthetic function.85

Airway remodeling can be assessed by obtaining surgical lung
specimens, or by sampling airway tissues through flexible
bronchoscopy. However, these methods require specialist exper-
tise, so tools have been developed to bypass this. Indirect analysis
of blood, urine, and sputum remodeling markers can be carried
out, although whether the variations in these markers results in
significant consequences in the airway walls is not always clear.
Other techniques such as CT, endobronchial ultrasound, and lung
function measurement can also be used as screening tools.86

At present, there are no therapies that have demonstrated long-
term disease modification in asthma. However, there are biologics
targeting IL-5, IL-4/IL-13, and IgE that have been shown to have
an effect on airway remodeling. The anti-IgE biologic omalizu-
mab has been shown to reduce reticular basement membrane
thickness and decrease levels of proteins specifically related to
airway remodeling.87 A computational model based on bronchial
biopsy samples from adults with eosinophilic asthma (N 5 25)
treated with either benralizumab (an anti–IL-5 receptor biologic)
or placebo demonstrated that benralizumab significantly reduced
airway smooth muscle mass and number of eosinophils versus
placebo. Additional studies into the effects of benralizumab and
mepolizumab (an anti–IL-5 biologic) on airway remodeling are
currently under way. Although biologics may be a potential treat-
ment for airway remodeling in asthma, it is important to note that
not all patients will respond to these therapies, and the data are
limited.88 There have been few studies assessing airway hyperres-
ponsiveness, which may be key for airway remodeling in asthma.
Bronchial thermoplasty is another potential therapy that may
combat airway remodeling. It has been shown to reduce airway
smooth muscle mass and reticular basement membrane thickness
in patients with severe asthma, although its mode of action re-
mains unclear.89

The therapies described earlier in this review have shown
potential to exhibit an effect on airway remodeling in patients
with asthma, but further study into their long-term effects is
required. The development of treatments to prevent or reverse
airway remodeling would address a key unmet need in current
asthma care.
Nasal polyposis and comorbid asthma
Late-onset asthma, which is often nonallergic and severe, has

been shown to be highly correlated with nasal polyposis (also
known as chronic rhinosinusitis with nasal polyps). Patients with
nasal polyposis often have severe asthma and a high disease
burden, including an increased risk of hospitalization. They may
also be more likely to have aspirin-exacerbated respiratory
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disease, eosinophilic granulomatosis with polyangiitis, or allergic
fungal sinusitis with or without concomitant allergic broncho-
pulmonary aspergillosis.90-94 Patients with both nasal polyposis
and asthma often present with distinct biomarkers, which sug-
gests a common underlying mechanism.90,95 For example, pa-
tients with eosinophilic nasal polyposis and comorbid asthma
often have higher IgE levels,96 providing a plausible target for
nasal polyposis therapies. In 2 phase 3 studies, add-on omalizu-
mab (anti-IgE) was shown to improve nasal polyposis scores
and nasal congestion scores in patients with nasal polyposis97;
accordingly, omalizumab has recently received approval as an
add-on treatment of nasal polyps in adult patients with an inade-
quate response to nasal corticosteroids. Similarly, dupilumab
(anti–IL-4/IL-13) has also been approved for use in patients
with severe refractory nasal polyposis due to shared inflammatory
pathways involving IL-4/IL-13 found in both asthma and nasal
polyposis. IL-5 may also represent a shared inflammatory target:
the phase 3 clinical trial SYNAPSE investigating mepolizumab
(anti–IL-5) demonstrated that mepolizumab reduced nasal polyp
size, sinonasal symptoms, the need for endoscopic surgery, and
the need for systemic corticosteroid use in adults with severe
nasal polyposis. In 2021, mepolizumab was approved for the
treatment of nasal polyposis in the United States. The OSTRO
study investigating the anti–IL-5 receptor benralizumab for nasal
polyposis has also been completed, with results similar to those of
the SYNAPSE study.98
Leaky airway epithelial barrier
Repeated injury and repair of the airway epithelium

following exposure to inflammation and environmental factors
can cause damage to tight junctions of the airway epithelium. This
leads to increased airway epithelial permeability and contributes
to chronic mucosal airway inflammation by facilitating
paracellular transport of pathogens and allergens.99 It is observed
in patients with asthma, allergic rhinitis, and nasal
polyposis.100-103

In a study of primary human bronchial epithelial cells from
patients with and without asthma, the bronchial epithelial cells of
patients with asthma had an increased expression of histone
deacetylases (HDACs). HDACs suppress the transcription of key
genes involved in epithelial integrity and tight junction formation.
In these patients, IL-4 and IL-13 appeared to upregulate HDAC
activity, suggesting that type 2 inflammation may drive barrier
leakiness. Inhibition of HDACs in bronchial epithelial cells from
patients with asthma increased the synthesis of tight junction
molecules to the levels seen in healthy participants, improving
barrier integrity.99 HDAC activity may be just 1 of many mecha-
nisms involved: altered ion transport channels and shifts in the ho-
meostasis of sphingolipids, angiopoietins, and prostaglandins
have all been proposed as potential mechanisms driving increased
airway epithelial permeability.104

Recently, ionocytes were discovered; they are novel airway
epithelial cells that highly express cystic fibrosis transmembrane
conductance regulator (CFTR), a transmembrane protein that
regulates anion transport.105 CFTR has been demonstrated to
regulate tight junction assembly and epithelial differentiation106;
therefore, ionocytes may play a crucial role in regulating epithe-
lial barrier function.100

Despite breakthroughs in understanding of the pathology of
airway epithelial permeability, this pathology has not been
studied extensively, and potential solutions for airway epithelial
barrier dysfunction have not reached clinical practice. Therapies
may include HDAC inhibitors or CFTR potentiators (currently
used to treat cystic fibrosis, and under investigation for the
treatment of chronic obstructive pulmonary disease)107; however,
the preservation or reconstitution of airway barrier function war-
rants extensive studies, and it may be some time before therapeu-
tic strategies are realized.
ER stress
ER stress involves the disruption of protein folding in the ER,

leading to the accumulation of misfolded proteins. It is likely to
impair the immune and inflammatory response commonly seen in
asthma; this is unsurprising given the variety of cell types and
high levels of secreted proteins involved in the inflammatory
process in asthma.108 Furthermore, many environmental factors
that induce ER stress in the lung are known triggers of asthma,
including air pollutants, cigarette smoke, allergens, and patho-
gens. Importantly, ER stress has been linked to both type 2 and
non–type 2 inflammation.5,109,110 Genes and proteins associated
with ER stress include interferon-stimulated genes (ISGs),
X-box binding protein 1, the ER-resident transmembrane
protein ORMDL3, and the transcription factor nuclear factor-
kB.5,109,110 ISG expression was elevated in patients with asthma
and associated with reduced lung function and ER stress.5

Although further research is necessary, both ER stress and ISG
expression are potential therapeutic targets that do not fall within
the type 2 or non–type 2 endotype. Additionally, the potential role
of ER stress in corticosteroid resistance has recently begun to
emerge, as it mediates the activation of the P13K, MAPK, and
nuclear factor-kB pathways, which are involved in corticosteroid-
resistant asthma.108,111 A number of compounds have been
observed to treat ER stress-based asthma in preclinical studies;
however, the research has been limited. Suhuang antitussive
capsule is a traditional Chinese patent drug shown to inhibit ER
stress in the lungs of rats with induced cough-variant asthma.
Treatment with ghrelin, a peptide hormone released by the stom-
ach, has been observed to inhibit ER stress in a murine
ovalbumin-induced asthmatic mouse model by stimulating the
Akt signaling pathway, thereby reducing inflammatory re-
sponses.110,112 Metformin has also been shown to protect against
ER stress in mice with cigarette smoke–induced lung inflamma-
tion, and it may therefore have potential for the treatment of
asthma.113 Further studies are required to establish the potential
of these therapies to treat ER stress-based asthma.
INFECTION-MEDIATED TRAITS

Viral infections
Viral infections such as rhinovirus (RV) and respiratory

syncytial virus have been associated with early-onset asthma
development,114-116 and they are among the leading causes of
acute asthma exacerbations.117 This is supported by early reports
of a reduction in asthma exacerbations during the COVID-19
pandemic, as social distancing and hygiene measures reduced
viral spread through populations.118,119 Although the mecha-
nisms driving viral-exacerbated asthma likely vary depending
on the infection and presence of NK cells,120 there may be a sub-
group of patients who are more susceptible to virus-induced exac-
erbations; these patients experience more exacerbations, perhaps
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on account of interactions between the IgE-mediated allergen
response and the viral infection.117,121 In a study of 183 patients
with asthma who were 6 to 17 years old, an increase in both total
IgE levels and allergen-specific IgE levels was associated with an
increase in the severity of RV-triggered asthma exacerbations.122

Separately, 2 parallel studies demonstrated that adults with both
asthma and high levels of total serum IgE had worse lower respi-
ratory tract symptoms, lower lung function, and increased eosin-
ophil levels compared with healthy participants 2 to 3 days after
RV infection. The same studies demonstrated that anti-IgE treat-
ment with omalizumab improved lung function and asthma con-
trol during the first 4 days of infection in adult patients with
asthma versus in those who received placebo.123 Other studies
have indicated that omalizumab has a positive impact on RV-
induced exacerbations in children. In 1 study, omalizumab was
shown to reduce seasonal exacerbations in children, adolescents,
and young adults during the autumn (a time associated with viral
infection and increased allergen levels).124 In a more recent study,
when compared with standard asthma care, add-on omalizumab
was associated with a decrease in duration of RV infections, viral
shedding, and the risk of RV illnesses in children with allergic
asthma.125 These results further support the existence of an asso-
ciation between allergic IgE-mediated asthma and viral-
exacerbated asthma in some patients, who may therefore be at
increased risk of exacerbations than their counterparts without
allergy.

There is also potential to treat viral-induced asthma by boosting
antiviral immunity. Studies have shown that patients with asthma
are susceptible to viral infection due to deficiencies in interferon
production.126-128 In a randomized study of 147 patients with
asthma, treatment with IFN-b ameliorated airway response to
viral infection and enhanced morning peak expiratory flow recov-
ery. These studies suggest a possible therapeutic benefit of IFN-b
for targeting virus-induced asthma, and they support the need for
further investigation.129
Bacterial infections
Themicrobiome, both pulmonary and gastrointestinal, is likely

to play a crucial role in modulating immune responses in
asthma.130 Bacterial colonization also appears to play a role in
the induction and exacerbation of asthma in both children and
adults. In asthma, Staphylococcus aureus activates the sensitiza-
tion phase of the allergic response via the release of enterotoxins
and serine protease–like proteins, which are able to induce B-cell
IgE class switching and production of polyclonal IgE.131 S aureus
enterotoxins can also act as superantigens that activate large
numbers of T cells and B cells and ultimately trigger release of
inflammatory mediators.131 Nontypeable Haemophilus influen-
zae is thought to play an important role in the progression of
neutrophilic asthma and promote the occurrence of corticosteroid
resistance.132 In addition, infection or colonization of the airway
with atypical bacteria such as Chlamydia pneumoniae andMyco-
plasma pneumoniae is also implicated in asthma pathogen-
esis.133,134 A study is currently investigating the bronchial
microbiome in patients with neutrophilic and nonneutrophilic
asthma, which may provide further insights. Interestingly, it ap-
pears that key components of the innate immune system that
are associated predominantly with the prevention of infection
may also play a role in the control of pulmonary inflammation
in asthma. Surfactant protein A, for example, has been found at
lower levels in patients with asthma (particularly those who are
obese) than in healthy participants.135 Recent studies using ani-
mal models136,137 and primary epithelial cells taken from patients
with asthma suggest that surfactant protein A regulates IL-13–
induced inflammation and promotes eosinophilic clearance. It ap-
pears that in at least some patients with asthma, these functions
may be impaired.

Macrolide antibiotics, such as azithromycin, are active against
gram-positive bacteria such as Staphylococcus, Streptococcus,
and Diplococcus and are thought of as a potential therapy for
bacterial infection–mediated asthma. They also have broad anti-
inflammatory and immunomodulatory effects.138,139 There is
evidence that macrolides may reduce severe asthma exacerba-
tions and symptoms140; so far however, whether the antimicrobial
properties of macrolides are necessary for their therapeutic effi-
cacy has not been established. Further insights may be gained
from an ongoing study assessing the effects of azithromycin on
the lung bacteria of patients with asthma and determining whether
these effects translate to an improvement in asthma symptoms.

Prebiotics, which are foods that promote the growth of the gut’s
beneficial bacteria, have also been studied for their effects in
preventing allergic disease in pregnant women and children, and
they have been found to reduce the risk of asthma and wheezing
compared with placebo.141

The current clinical evidence does not support the use of
therapies targeting the microbiome as effective treatment for
asthma, and additional trials are required to understand the effects
of these therapies.142
SUMMARY
Given the growing evidence of asthma populations that do not

neatly fit into type 2 or non–type 2 phenotypes, acknowledging
treatable traits in patients with asthma may help identify new
treatment targets and potential asthma therapies, particularly for
patients who might currently lack effective therapies, such as
those with non–type 2 asthma. Improving our understanding of
lesser-known treatable traits in asthma, even if the research is still
in its infancy, may expand our knowledge of treatable asthma
pathology and be a vital step in improving asthma care.
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