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Abstract

The barrier function of the skin protects the mammalian body against infection, dehydration, UV irradiation and
temperature fluctuation. Barrier function is reduced with the skin’s intrinsic aging process, however the molecular
mechanisms involved are unknown. We previously demonstrated that Claudin (Cldn)-containing tight junctions (TJs) are
essential in the development of the epidermis and that transgenic mice overexpressing Cldn6 in the suprabasal layers of the
epidermis undergo a perturbed terminal differentiation program characterized in part by reduced barrier function. To
dissect further the mechanisms by which Cldn6 acts during epithelial differentiation, we overexpressed a Cldn6 cytoplasmic
tail deletion mutant in the suprabasal compartment of the transgenic mouse epidermis. Although there were no gross
phenotypic abnormalities at birth, subtle epidermal anomalies were present that disappeared by one month of age,
indicative of a robust injury response. However, with aging, epidermal changes with eventual chronic dermatitis appeared
with a concomitant barrier dysfunction manifested in increased trans-epidermal water loss. Immunohistochemical analysis
revealed aberrant suprabasal Cldn localization with marked down-regulation of Cldn1. Both the proliferative and terminal
differentiation compartments were perturbed as evidenced by mislocalization of multiple epidermal markers. These results
suggest that the normally robust injury response mechanism of the epidermis is lost in the aging Involucrin-Cldn6-CD196
transgenic epidermis, and provide a model for evaluation of aging-related skin changes.

Citation: Troy T-C, Arabzadeh A, Larivière NMK, Enikanolaiye A, Turksen K (2009) Dermatitis and Aging-Related Barrier Dysfunction in Transgenic Mice
Overexpressing an Epidermal-Targeted Claudin 6 Tail Deletion Mutant. PLoS ONE 4(11): e7814. doi:10.1371/journal.pone.0007814

Editor: Christophe Egles, Tufts University, United States of America

Received August 5, 2009; Accepted October 20, 2009; Published November 13, 2009

Copyright: � 2009 Troy et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was sponsored by a research grant from the Canadian Institutes of Health Research (# MOP 84464) (www.cihr-irsc.gc.ca). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: kturksen@ohri.ca

Introduction

Formed during development by a series of cell commitment,

mesenchymal-epithelial cell interactions, and terminal differentia-

tion, the mammalian epidermis undergoes continuous self-renewal

in a tightly regulated process of epidermal cell proliferation and

differentiation [1–3]. As the end result of terminal differentiation,

the robust barrier function of the skin protects against microorgan-

ism invasion and UV irradiation, inhibits water loss, regulates body

temperature and is an important part of the host defense system [4].

These important functions decline in efficiency with aging, leading

to an inefficient epidermal injury response and dermatitis [5–7], for

reasons that are not yet understood.

Tight junctions (TJs) are essential not only for dividing epidermal

cells into apical and basolateral compartments to create cell polarity

[8], but also for the existence of skin barrier function by regulating

the selective permeability of the paracellular pathway [9–11]. The

selectivity function of TJs is imparted by Claudins (Cldns), a family

of 23 highly conserved tetraspan membrane proteins whose

heterogeneity stems in large part from distinctly charged amino

acid sequences in the first external loop [11–13]. Cldn type and

mixing ratio thus provide for the specific permeability requirements

of different epithelia [12]. The importance of Cldns in epidermal

differentiation and barrier function has been confirmed by

experiments in which Cldn expression has been perturbed in

epidermal cells; for example, Cldn1 knockout mice die shortly after

birth due to skin barrier dysfunction [14]. Involucrin-Cldn6 (Inv-

Cldn6) transgenic mice also suffer skin barrier dysfunction, the

severity/lethality of which is dependent upon the level of Cldn6

overexpression [15,16]. Further, Inv-Cldn6-CD187 transgenic mice

overexpressing a cytoplasmic tail-ablated Cldn6 display epidermal

hyperproliferation, apparently due to an inefficiency of Cldn protein

membrane targeting, as a result of the unfolded protein response

pathway [17].

The latter data suggest the importance of the cytoplasmic tail

portion of Cldn molecules in cell signaling during epidermal

differentiation. The cytoplasmic tail of different Cldns, while

relatively constant in length, is divergent in sequence, but a

number of putative functional protein domains are present in

many family members [12,18]. To address the activities of the

functional domains in more detail, we again used the involucrin

promoter (Inv) this time to target a shorter deletion in the
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cytoplasmic tail (Cldn6-CD196) to the differentiative compartment

of the epidermis. The Inv-Cldn6-CD196 transgenic mice possess

subtle epidermal differentiation abnormalities at birth that by

1-month of age are completely normalized. However, with aging,

Inv-Cldn6-CD196 mice suffered dermatitis, often manifested as

patent wounds in repetitive grooming areas. Normal hydration

levels were not maintained in the aging skin, and immunohisto-

chemistry revealed perturbations in the expression and localization

of multiple Cldns, as well as various classical markers of epidermal

differentiation. These results suggest that the normally robust

injury response mechanism of the epidermis is lost in the aging

Inv-Cldn6-CD196 transgenic epidermis and provides a model for

evaluation of chronic dermatitis and aging-related skin changes.

Methods

Generation of Inv-Cldn6-CD196 transgenic mice
The Inv-Cldn6-CD196 construct [19] was injected into ova

collected from superovulated CD1 mice to generate viable lines at

the Ottawa Hospital Research Institute (OHRI) Transgenic

Mouse Facility as previously described [20]. Genotyping was

performed by PCR using genomic DNA and primers specific for

Cldn6 (59-ATG GCC TCT ACT GGT CTG CA-39) and the

FLAGH tag (59-TCA CTT GTC ATC GTC GTC CTT G-39).

Age-matched wild type and Inv-Cldn6-CD196 transgenic mice

were photographed using a Nikon COOL-PIX950 digital camera

(Nikon) for image processing with Adobe Photoshop version 7.0

(Adobe Systems). All research complied with the principles and

guidelines of the Canadian Council on Animal Care and was

approved by the Ottawa Hospital Research Institute Animal Care

Committee. Once the dermatitis phenotype became unmanage-

able, Inv-Cldn6-CD196 transgenic mice were euthanized accord-

ing to institutional and legislative policies.

Sample preparation, histology and
immunohistochemistry

a) Sample collection. Freshly dissected skin samples

(,1 cm2) were collected at various postnatal time points (birth, 1

week, 2 weeks, 3 weeks, 1 month, 2 months, 3 months, 5 months, 6

months) from either the mid-dorsal region or areas of frequent

grooming (e.g. the neck and behind the ears) of Inv-Cldn6-CD196

transgenic mice and their age-matched CD1 counterparts.

b) Frozen sections. Frozen sections were required for

immunolocalization with FLAGH antibodies, whereas histology

and all other immunostaining procedures were performed using

paraffin-embedded sections. For frozen sections, skin samples

were embedded in HistoPrep (Fisher Scientific), solidified using

dry ice-chilled isopentane and 5 mm sections were mounted

onto SuperfrostH/Plus slides (Fisher Scientific) as described [17].

Samples were fixed for 10 minutes in methanol (220uC) and

washed with PBS before immunohistochemistry (see below).

c) Paraffin sections and histology. For paraffin sections,

skin samples were fixed overnight in Bouin’s solution (75%

saturated picric acid, 20% formaldehyde, 5% glacial acetic acid)

and dehydrated via a graded series of ethanol washes (from 30% to

100%) before paraffin embedding and sectioning (5 mm). Sections

mounted onto SuperfrostH/Plus slides (Fisher Scientific) were

dewaxed using toluene and rehydrated in a reverse graded series of

ethanol washes to water. Following antigen unmasking and

washing in PBS, sections were either stained with hematoxylin

and eosin (H&E) as described [15] or further processed for

immunohistochemistry (see below).

d) Immunohistochemistry. After blocking for non-specific

antibody binding (10% goat serum, 0.8% BSA, 1% gelatin in

PBS), skin samples were incubated for 1 hour in antibodies

appropriately diluted in incubation buffer (1% goat serum, 0.8%

BSA, 1% gelatin in PBS) [15]. Antibodies recognizing the

following proteins were used: FLAGH (M2 monoclonal) (1:440;

Sigma), K15 (1:100; rabbit #UC55), K5 (1:100; rabbit #5054),

K14 (1:100; rabbit #199), K1 (1:100; rabbit #UC81), K6 (1:200;

BabCO), K17 (1:500; a gift from Dr. Pierre Coulombe, Johns

Hopkins), involucrin (1:100; BabCO), filaggrin (1:100; BabCO),

loricrin (1:100; rabbit #UC84), Cldn1 (6:100; Zymed

Laboratories), Cldn2 (1:200; Zymed Laboratories), Cldn3 (1:50;

Zymed Laboratories), Cldn5 (1:100; Zymed Laboratories), Cldn6

(1:100; hen #3677), Cldn11 (1:100; hen #3680), Cldn12 (1:100;

hen #5186) and Cldn18 (1:100; rabbit #A9953). Following

washes (0.8% BSA, 1% gelatin in PBS), skin samples were

incubated for 1 hour at room temperature with FITC-conjugated

secondary antibodies against mouse, rabbit and chicken (1:50;

Jackson ImmunoResearch) diluted in incubation buffer. After

washes in wash buffer and PBS, sections were mounted with

Moviol 4–88 (Calbiochem) containing 2.5% 1,4 diazobicyclo-

[2,2,2]-octane (DABCO; Sigma) for observation on a Zeiss

Axioplan 2 fluorescence microscope equipped with an AxioCam

camera and Axio Vision 2.05 software (Carl Zeiss); digital images

were processed using Adobe Photoshop version 7.0 (Adobe

Systems).

Protein isolation and immunoblotting
Skin samples (0.4 g) were dissected from either the mid-dorsal

region or areas of frequent grooming (e.g. the neck and behind the

ears) of Inv-Cldn6-CD196 transgenic mice and their age-matched

CD1 counterparts and whole cell protein extracts were prepared by

homogenizing in SDS extraction buffer (62.5 mM Tris pH 6.8,

25% glycerol, 2% SDS and 2% b-mercaptoethanol with pepstatin A

and a complete mini protease inhibitor cocktail tablet [Roche])

followed by centrifugation. Following a 30-minute incubation in

sample reducing buffer (62.5 mM Tris pH 6.8, 25% glycerol, 2%

SDS, 0.1% bromophenol blue and 2% b-mercaptoethanol), boiling

and centrifugation, 10 mg of soluble proteins were separated on

12% SDS-polyacrylamide gels and transferred to nitrocellulose

[17]. After blocking for non-specific antibody binding (5% skim

milk, TBS/0.1% tween-20 [TBS-T]), blots were incubated at 4uC
overnight with diluted (5% skim milk, TBS-T) antibodies against

FLAGH (polyclonal) (1:500; Sigma) and GAPDH (1:20,000; Abcam).

After several washes in TBS-T, blots were incubated in diluted

(5% skim milk, TBS-T) HRP-conjugated antibodies against mouse

and rabbit IgG (1:20,000; Amersham) for 1 hour at room

temperature and washed with TBS-T before incubation with

chemiluminescent HRP substrate (Millipore) and visualization on

BioMax XAR autoradiography film (Kodak). Films were scanned

and digital images were prepared using Adobe Photoshop version

7.0 (Adobe Systems).

Barrier integrity assay
Trans-epidermal water loss (e.g. impedence) of both Inv-Cldn6-

CD196 transgenic and wild type mouse skin was measured using a

dermal phase meter (DPM) (Nova Technology Corporation) as

described [16]. Diminished barrier integrity is reflected in higher

DPM values over time as depicted digitally with EDWINA

software (Nova Technology Corporation) and converted into

graphical form with Excel software (Microsoft).

Cornified envelope extracts
Using dorsal skin samples of CD1 and Inv-Cldn6-CD196

transgenic mice, purified cornified envelope extracts were

prepared as described [16,21,22]. Briefly, skin samples were

Aging Related Skin Phenotype
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immersed in hot extraction buffer (0.1 M Tris-HCl pH 8.5, 2%

SDS, 20 mM dithiothreitol, 5 mM EDTA), followed by 15-minute

incubation at 95uC and gentle centrifugation before observation

using an Olympus CK2 inverted microscope (Olympus) equipped

with a Nikon COOLPIX 4500 digital camera (Nikon). Images were

produced with Adobe Photoshop version 7.0 (Adobe Systems).

Results

Generation and expression analysis of Inv-Cldn6-CD196
transgenic mice

We previously reported that overexpression of a Cldn6 lacking

the C-terminal half of the cytoplasmic tail domain (e.g. truncation

after amino acid 196; Cldn6-CD196) (Figure 1A-C) in the

suprabasal compartment of the mouse epidermis results in marked

hyperproliferative squamous invaginations/cysts replacing hair

follicles and lethal epidermal barrier dysfunction [19]. The

rationale for generating the D196 mutation was based on two

main factors. First, we already knew that tailless Cldn6 was not

targeting to the membrane appropriately. Second, we wanted to

delete the PDZ domain that is at the tip of the cytoplasmic tail as

well as putative phosphorylation sites, which could be accom-

plished by deletion from amino acid 196. The choice of 196 rather

than 195 or 197, both of which would also have accomplished

removal of the PDZ and putative phosphorylation sites, was one of

convenience for the steps required to make our mutant insert.

Because we have demonstrated previously that the level of Cldn6

overexpression correlates to the severity of the phenotype [15,16],

we re-derived F0s with lower Cldn6-CD196 expression to avoid

lethality and explore the function of the Cldn6 tail in postnatal

animals; levels of expression of the mutant Cldn6 is half of that

observed in our previously generated mice. Nine Inv-Cldn6-

CD196 positive F0 transgenic mice (five females and four males)

were generated and three viable lines exhibiting indistinguishable

phenotypes were successfully established. Cldn6-CD196 expres-

sion was confirmed to be confined to the upper spinous and

granular layers of the epidermis and localized to cell membranes,

mimicking endogenous Cldn6 expression (Figure 1D). Immuno-

blotting confirmed a ,19.5kDa band corresponding to the

transgene product in skin samples from Inv-Cldn6-CD196 but

not wild type littermates (Figure 1E).

Inv-Cldn6-CD196 neonates displayed no gross phenotypic

anomalies compared to their wild type counterparts; trans-epidermal

water loss (TEWL) measurements (DPM in the range of 98–105)

Figure 1. Inv-Cldn6-CD196 transgenic mice. The Cldn6 protein
sequence is shown; transmembrane-spanning regions are encased
within boxes, the CXXC motifs are underlined, and the truncation site is
indicated with an arrow (A). The Inv-Cldn6-CD196 mutant was created
by deleting the C-terminal half of the cytoplasmic tail domain of Cldn6
after amino acid 196 (B). The Inv promoter was use to drive transgene
expression to the suprabasal compartment of the transgenic mouse
epidermis, where TJs are localized (C). Transgene expression was
confirmed to be restricted to the upper spinous and granular layers of
the epidermis as visualized by immunohistochemistry using anti-FLAG
antibodies (D) and immunoblotting confirmed a ,19.5kDa band
corresponding to the transgene product in skin samples from
transgenic (TG) but not wild type (WT) skin samples using anti-GAPDH
as a loading control (E). Trans-epidermal water loss measurements
confirmed no skin barrier dysfunction in the Inv-Cldn6-CD196
transgenic mice at birth (F). This was further supported by evaluation
of cornified envelopes; which were characterized by a rigid shape and
uniform size comparable to that of the wild type (G). Inv-Cldn6-CD196
mice were easily identifiable by their frizzed and lackluster coat
appearance as compared to the wild type, a phenotype that persisted
throughout life (H).
doi:10.1371/journal.pone.0007814.g001
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(Figure 1F) and the absence of X-Gal (5-bromo-4-chloro-3-indolyl-

b-D-galactopyranoside) penetration (not shown) confirmed no skin

barrier dysfunction in the transgenic mice at birth. Extracts from

Inv-Cldn6-CD196 mouse skin revealed normal looking cornified

envelopes, with a rigid shape and uniform size (Figure 1G), pro-

viding further evidence that early postnatal barrier function was not

perturbed. As was observed in our Inv-Cldn6 and Inv-Cldn6-CD187

mouse models [15,23], however, the emergence of hair fibers

provided a diagnostic identifier for Inv-Cldn6-CD196 transgenic

mice. In comparison to the sleek and lustrous appearance of wild

type mice, the coat of Inv-Cldn6-CD196 mice was frizzed and

lackluster, a phenotype that persisted throughout life (Figure 1H);

however since it does not appear to have any direct relevance to the

aging-related skin barrier defects reported herein, it has not been

further explored.

Epidermal maturation is delayed in Inv-Cldn6-CD196
mice

Although in the epidermis there were no gross phenotypic

abnormalities or barrier dysfunction apparent at birth, histological

examination revealed that the newborn (Figure 2A) and 1 week-

old (not shown) transgenic epidermis was moderately thicker than

that of the wild type, with a thicker stratum corneum, a less-

compacted granular layer and an overall expanded suprabasal

compartment. By 2-weeks of age, the Inv-Cldn6-CD196 epidermis

displayed a more compact and organized granular layer, but it

remained less mature and thicker than that in the wild type

animals (Figure 2B). Typical epidermal thinning had commenced

in the transgenic epidermis by 3-weeks of age (,1 week later than

wild type; not shown) and by 1-month of age the Inv-Cldn6-

CD196 transgenic epidermis was histologically indistinguishable

from that of the wild type (Figure 2C).

Consistent with the histological results, abnormalities in the

expression of epidermal differentiation markers were present in

neonatal Inv-Cldn6-CD196 mice but these also normalized by 1-

month of age (Figure 3; the transgenic and wild type epidermis after

2 weeks and 1 month are shown). For example, K5 and K15 were

restricted to basal cells at all time points in both the wild type and

Inv-Cldn6-CD196 epidermis (not shown), but K14, another basal

compartment marker, occupied an expanded zone extending into

the suprabasal compartment at birth and until epidermal thinning

was achieved in the Inv-Cldn6-CD196 epidermis (Figure 3A). The

suprabasal layers of the epidermis normally express K1 [24], and

when in a state of hyperproliferation, K6 and K17 [25–27]. While

neither K6 nor K17 was expressed throughout the time analyzed

(not shown), a broadened compartment of K1-positive cells,

consistent with the increased number of suprabasal cell layers

observed histologically, was seen early but normalized by 1-month of

age in the Inv-Cldn6-CD196 transgenic epidermis (Figure 3B).

Similarly the expression compartments of various structural proteins

in the stratum corneum, including involucrin (Figure 3C), filaggrin

and loricrin (not shown), were also expanded in the juvenile Inv-

Cldn6-CD196 epidermis, and a tightly compacted stratum corneum

was not observed in the transgenic epidermis until thinning

comparable to that in the wild type was achieved.

In parallel with changes in epidermal markers, the thickened

newborn and 1-week-old Inv-Cldn6-CD196 epidermal basal layer

was devoid of Cldn1, which was clearly present in the wild type

epidermis (not shown). However, after 2 weeks, sporadic Cldn1-

positive basal cells were evident, and the frequency increased as

thinning progressed until 1-month of age when Cldn1-positive

cells completely occupied the basal and suprabasal compartments

in both the transgenic and wild type mice (Figure 3D). The

suprabasal-specific Cldns, Cldn6 (Figure 3E), Cldn11, Cldn12

and Cldn18 (not shown) were seen in the expanded suprabasal

region of the Inv-Cldn6-CD196 epidermis; each Cldn evaluated

maintained a strictly membranous localization and normalized by

1-month to a zone comparable to wild type. Cldns that are not

normally expressed in the epidermis (e.g. Cldn2, Cldn3 and

Cldn5) [16] were not observed in either the wild type or Inv-

Cldn6-CD196 epidermis at any time evaluated (not shown). The

data suggest that Inv-Cldn6-CD196 transgenic mice are born with

differentiation abnormalities leading to slower epidermal matura-

tion, but these are too mild to manifest in skin barrier defects or

death, and are repaired between birth and 1-month of age.

Inv-Cldn6-CD196 mice experience age-related
perturbations in epidermal differentiation and injury
repair resulting in chronic dermatitis

Although by 1-month of age the Inv-Cldn6-CD196 epidermis

was morphologically and biochemically indistinguishable from the

Figure 2. Histological abnormalities in the Inv-Cldn6-CD196
transgenic epidermis. Histological analysis of newborn (A) Inv-
Cldn6-CD196 transgenic mice as compared to the wild type revealed a
moderately thicker epidermis in transgenic samples, with a thicker
stratum corneum, a less-compacted granular layer and an overall
expanded suprabasal compartment. At 2-weeks of age (B), the Inv-
Cldn6-CD196 epidermis remained somewhat less mature and thicker
than that of the wild type; however by 1-month of age (C) the
transgenic and wild type samples were histologically indistinguishable.
doi:10.1371/journal.pone.0007814.g002

Aging Related Skin Phenotype

PLoS ONE | www.plosone.org 4 November 2009 | Volume 4 | Issue 11 | e7814



wild type (Figure 2 and Figure 3), as early as 2-months (not

shown) of age, the transgenic epidermis showed histological

evidence of thickening that persisted, and was somewhat

exacerbated, at 3 (Figure 4A) and 6 (Figure 4B) months. At

the latter ages, an expanded stratum corneum, increased number

of suprabasal/spinous cell layers and a less compacted granular

layer were clearly present, and reminiscent of the 2-week-old Inv-

Cldn6-CD196 epidermis (see above).

The histological results suggested that intrinsic changes

occurred in the transgenic epidermis, a possibility supported by

the perturbed expression of differentiation markers; because results

were similar from 2- to 6-months of age, we report results from 3-

month-old Inv-Cldn6-CD196 transgenic mice only (Figure 5).

K14 was expressed throughout the basal and suprabasal

compartments in the aging Inv-Cldn6-CD196 epidermis

(Figure 5A), while K5 (not shown) and K15 (Figure 5B)

remained restricted to basal cells as in the wild type epidermis. K1

(Figure 5C) was seen throughout an expanded suprabasal zone in

the transgenic epidermis corresponding to the increased number of

spinous cell layers; however, neither K6- (Figure 5D) nor K17-

positive (Figure 5E) interfollicular epidermal cells were observed

nor was there any up-regulation in the expression of Ki67 or CD3

(not shown), suggesting no detectable hyperproliferation or

immune cell infiltration. The localization of involucrin

(Figure 5F), loricrin (not shown) and filaggrin (Figure 5G)

suggested that there were also perturbations in terminal differen-

tiation in the aged Inv-Cldn6-CD196 epidermis, with each marker

occupying an expanded zone of expression consistent with the

abnormal morphological appearance of the stratum corneum

described above.

Cldn expression was also modified with striking anomalies

consistent with those we reported earlier in an acute irritant (12-O-

tetradecanoylphorbol-13-acetate (TPA))-induced epidermal injury

response [23]. The number of Cldn1-positive basal and suprabasal

Figure 3. Perturbation of markers of epidermal differentiation. Immunofluorescence was used to evaluate various markers of epidermal
differentiation including K14 (A), K1 (B), involucrin (C), Cldn1 (D) and Cldn6 (E) in Inv-Cldn6-CD196 mice as compared to their age-matched wild type
counterparts. In each case abnormalities were present in samples from 2-week old (left panel) transgenic mice that were normalized by 1-month of
age (right panel). For example, the K14 expression zone was extended into the suprabasal compartment the Inv-Cldn6-CD196 epidermis until
epidermal thinning was achieved. In addition, broadened K1 and involucrin expression compartments was seen early but normalized by 1-month of
age. Sporadic Cldn1-positive basal cells were evident in the 2-week old transgenic epidermis; by 1-month of age Cldn1-positive cells occupied both
the basal and suprabasal compartments reminiscent of the wild type. Cldn6, a suprabasal-specific Cldn, was observed in an expanded zone early on,
and was normalized by 1-month of age.
doi:10.1371/journal.pone.0007814.g003

Aging Related Skin Phenotype
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cells was reduced (Figure 6A) and an expanded suprabasal zone

of Cldn6- (Figure 6B), Cldn11- (Figure 6C), Cldn12-

(Figure 6D) and Cldn18-positive cells (Figure 6E) was seen in

the transgenic epidermis; concomitantly, a shift away from a

strictly membrane localization was evident. Cldn2, Cldn3 and

Cldn5 were not expressed in either wild type or transgenic animals

(not shown).

Taken together, the data suggest an intrinsic propensity for

injury and inefficient repair that increases with aging in the Inv-

Cldn6-CD196 epidermis. This is further supported by two lines of

evidence. First, histological and biochemical changes resulting

from TPA treatment were seen earlier (4 hours versus 12 hours)

and repaired more slowly (no repair versus normalization by

96 hours) in Inv-Cldn6-CD196 versus wild type epidermis when

mice were tested at 1 month of age (data not shown). Second,

obvious signs of dermatitis, especially in areas subjected to

repetitive mechanical stress during grooming (e.g. the neck and

behind the ears), were seen in the aging Inv-Cldn6-CD196

epidermis (Figure 7A). Histological evaluation of skin samples

from these regions revealed a significantly thickened epidermis

with an increased number of spinous/suprabasal cell layers and

cellular disorganization; the upper differentiation layers were also

abnormal, with parakeratosis, the prevalent appearance of nuclei,

an improperly packed granular layer and a thicker stratum

corneum (Figure 7B). In the dermatitis-affected areas, K14

(Figure 5H) and K5 (not shown) were expressed in an expanded

zone far into the suprabasal compartment, and K15 expression

was only sporadically expressed (Figure 5I). K1 was localized

throughout the thickened suprabasal zone of the dermatitis-

affected Inv-Cldn6-CD196 epidermis, and staining appeared punc-

tate, suggesting a keratin filament bundling defect (Figure 5J).

K6 was seen consistently throughout the basal and suprabasal

layers of the dermatitis-affected epidermis (Figure 5K); K17-

positive basal and suprabasal cells were somewhat more spo-

radically seen (Figure 5L). Expression compartments for

involucrin (Figure 5M), loricrin (not shown) and filaggrin

(Figure 5N) were also expanded, with an obvious packing defect

reminiscent of the observed histological abnormalities of the

Figure 4. Histological evidence of epidermal abnormalities in
the aging Inv-Cldn6-CD196 transgenic epidermis. Histological
evidence of epidermal abnormalities emerged in aging Inv-Cldn6-
CD196 transgenic mice after 3 (A) and 6 (B) months as compared to the
wild type. These included an expanded stratum corneum, as well as an
expanded suprabasal zone and a less compacted granular layer
suggesting an intrinsic propensity for injury and inefficient repair that
increases with aging in the Inv-Cldn6-CD196 epidermis.
doi:10.1371/journal.pone.0007814.g004

Figure 5. Aberrance in markers of epidermal differentiation
during aging. Changes in the epidermal differentiation program of
the aging Inv-Cldn6-CD196 transgenic epidermis were evaluated by
immunofluorescence and compared to their age-matched wild type
counterparts (samples from 3-month-old mice are shown – left panel);
their expression/localization in dermatitis-affected areas is also indicat-
ed (right panel). K14 was expressed throughout the basal and
suprabasal compartments in the aging Inv-Cldn6-CD196 epidermis
(A), while K15 remained restricted to basal cells (B). The zone of K1
expression was expanded in the 3-month-old transgenic epidermis (C);
however, neither K6- (D) nor K17-positive (E) cells were observed. An
expanded zone of expression, and improper packing, of involucrin (F)
and filaggrin (G) suggested perturbations in terminal differentiation
program of the aged Inv-Cldn6-CD196 epidermis. In the dermatitis-
affected areas, K14 (H) expression was expanded far into the suprabasal
compartment, while K15 was only sporadically observed (I). A punctate
K1 localization was evident throughout the thickened suprabasal zone
of the dermatitis-affected Inv-Cldn6-CD196 epidermis (J), and K6- (K)
and K17-positive (L) basal and suprabasal cells were observed. In
addition, involucrin (M) and filaggrin (N) expression compartments
were also expanded, with obvious packing defects evident.
doi:10.1371/journal.pone.0007814.g005
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Figure 6. Evaluation of Cldns in the aging Inv-Cldn6-CD196 transgenic epidermis. The expression/localization of Cldns was also perturbed
in the aging Inv-Cldn6-CD196 transgenic epidermis (samples are from 3-month-old mice – left panel); the dermatitis-affected zones are also shown
(right panel). Cldn1-positive basal and suprabasal cells were reduced in the aging Inv-Cldn6-CD196 epidermis (A). In addition, a shift away from a
strictly membrane localization and an expanded zone of suprabasal Cldns was evident - Cldn6 (B), Cldn11 (C), Cldn12 (D) and Cldn18 (E). These
abnormalities in were strikingly exacerbated in the dermatitis-affected epidermis. For instance, the basal and lower suprabasal layers were void of
Cldn1 localization (F). In addition, Cldn6 (G), Cldn11 (H), Cldn12 (I) and Cldn18 (J) localization was observed throughout the expanded suprabasal
zone with membranous localization less evident in the lower suprabasal layers.
doi:10.1371/journal.pone.0007814.g006
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stratum corneum. Abnormalities in Cldn1, Cldn6, Cldn11,

Cldn12 and Cldn18 localization observed in the aged Inv-

Cldn6-CD196 transgenic epidermis (see above) were strikingly

exacerbated in the dermatitis-affected epidermis. Cldn1 was

completely absent in the basal and lower suprabasal layers, but a

strictly membranous localization was preserved in the Cldn1-

positive upper suprabasal zone (Figure 6F). While the distribution

of Cldn6 (Figure 6G), Cldn11 (Figure 6H), Cldn12 (Figure 6I)

and Cldn18 (Figure 6J) corresponded to the expanded suprabasal

compartment of the dermatitis-affected Inv-Cldn6-CD196 epider-

mis, immunostaining was less intense and membranous localiza-

tion less evident in lower suprabasal layers.

The morphological and biochemical abnormalities described

predict altered permeability barrier properties and potentially

barrier dysfunction in areas of repeated insult of the aged

Inv-Cldn6-CD196 transgenic epidermis. In keeping with this

hypothesis, TEWL measurements across the dermatitis-affected

transgenic skin increased ,8-fold (DPM in the range of 790–830

versus 95–100 of normal adult skin) (Figure 7C).

Discussion

In this study, we used transgenic mouse technology to expand

on our structure-function approach to elucidating the role of

the cytoplasmic tail of Cldn6 in epidermal development and

the formation and maintenance of skin barrier integrity. We

demonstrate that Inv-Cldn6-CD196 mice display epidermal

differentiation abnormalities at birth that result in slower

epidermal maturation but are apparently normalized by 1-month

of age. However, with aging, intrinsic properties of the Inv-Cldn6-

CD196 epidermis are manifested by a propensity for injury and

inefficient repair, eventually resulting in chronic dermatitis

especially in areas subjected to frequent insult via grooming.

Changes in Cldn expression and localization suggest marked

changes in the presence and function of TJs, as also evidenced by

skin barrier dysfunction. Taken together, our data suggest that the

overexpression of a Cldn tail truncation mutant in the suprabasal

compartment of the mouse epidermis results in its delayed

maturation, a propensity for injury, diminished repair and skin

barrier deficiency reminiscent of the intrinsic aging process of

human skin.

It is well established that the formation of the epidermal per-

meability barrier (EPB) is developmentally regulated [16,28–30]

and that disruption or delay in its formation before birth has a

critical role in the survival of the organism [31–34]. Previously we

reported that a perturbation of Cldn6 expression levels at its

endogenous site of expression - the suprabasal layer of the

epidermis - alters epidermal development and the formation of the

EPB [15,16]. However, depending on whether normal or mutant

forms of Cldn6 are expressed and at what levels, the severity of

phenotypic anomalies varies markedly [15–17,19]. For example,

perinatal lethality resulting from a severely compromised epider-

mal differentiation program and dysfunctional EPB results when

native Cldn6 is expressed at high levels [16]; while with lower

levels of expression, less severe defects occur with the capacity for

normalization of EPB function [15]. In contrast, apparently

normal prenatal epidermal development and formation of a

functioning EPB, but an abnormal postnatal lifelong keratinocyte

hyperproliferation leading to progressive thickening of the

epidermis - but no dermatitis, results when a mutant form of

Cldn6 lacking its entire tail domain (Inv-Cldn6-CD187) is

expressed [17]. On the other hand, high overexpression of a

different mutant lacking only the C-terminal half of the tail

domain of Cldn6 (Inv-Cldn6-CD196) results in a lethal barrier

dysfunction with marked hyperproliferative squamous invagina-

tions/cysts replacing hair follicles [19]. We now show that in Inv-

Cldn6-CD196 mice with lower levels of transgene expression the

abnormalities are much more subtle, and manifested by a slower

than usual (i.e., 1 month versus 2 week) but otherwise apparently

normal maturation of the epidermis from the multilayered

structure seen at birth to the thinner 2–3 cell layer mature

structure [15]. These early postnatal changes in maturation are

not accompanied by abnormalities in the formation of a functional

skin barrier. It is interesting to note that K6- and K17-positive

suprabasal cells, which are normally not present in the mature

epidermis except in situations of abnormal cell proliferation and

differentiation [25–27], are not detectable in the interfollicular

epidermis of either the juvenile or aged Inv-Cldn6-CD196

transgenic samples, until patent dermatitis is evident (see below).

Phenotypic differences observed in the different transgenic mice

appear to reflect different mechanistic consequences of expression

of native or mutant Cldn6. Structure-function details of different

Cldns are only beginning to emerge, but the COOH-terminal tail

varies considerably in length and is the region with the most

Figure 7. Aging-associated barrier dysfunction. Upon gross
observation, obvious signs of dermatitis were evident in aging Inv-
Cldn6-CD196 transgenic mice, especially in areas subjected to repetitive
mechanical stress such as the neck and behind the ears (A). Histological
evaluation revealed a significantly thickened epidermis with an
increased number of spinous/suprabasal cell layers and cellular
disorganization; the upper differentiation layers were also abnormal,
with parakeratosis, the prevalent appearance of nuclei, an improperly
packed granular layer and a thicker stratum corneum (B). TEWL
measurements across the dermatitis-affected transgenic skin confirmed
an approximately 8-fold increase in water loss and a barrier deficient
phenotype (C).
doi:10.1371/journal.pone.0007814.g007
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sequence heterogeneity among Cldn isoforms, and in most cases

contains a PDZ-binding motif that enables Cldns to directly interact

with the TJ-associated MAGUKs (ZO-1, ZO-2, and ZO-3) as well

as with MUPP1 and PATJ [35–38]. For at least some Cldns (e.g.,

1 and 5), the cytoplasmic tail upstream of the PDZ-binding motif is

thought to be required for targeting to the TJ complex [39] and

contributes to protein stability [17,40]. Post-translational modifica-

tions within the tail domain, including phosphorylation and

palmitoylation, are also thought to regulate Cldn activities,

including their targeting to the membrane and insertion into TJs

[41], but to date most Cldns have not been subjected to exhaustive

analysis. Thus, the similarities and differences between Inv-Cldn6-

CD187 and Inv-Cldn6-CD196 mice are of interest. Our data

suggest that the phenotype observed in the Inv-Cldn6-CD187

epidermis reflects protein instability and an unfolding protein

response. On the other hand, the delayed maturation and age-

related deficit in wound healing and repair in the Inv-Cldn6-CD196

epidermis most likely involves an aberrant interaction with the

cytoskeleton. Although to date no direct interaction between the

cytoplasmic tail of Cldns and cytoskeletal molecules has been

shown, the possibility of such direct interactions is not unlikely

considering the known role of the actin cytoskeleton, for example, in

cell shape and cell polarity [42–44].

Despite the importance of the skin barrier to the survival of the

mammalian species, the molecular mechanisms governing its

formation and maintenance are not well-understood, nor are the

changes that occur during the intrinsic aging process of the skin. In

humans, aging-related changes in the skin are widespread and

result from both intrinsic (gene mutations, hormonal changes,

cellular metabolism) and extrinsic (UV exposure, chemicals,

pollutants) factors. While extrinsic factors affect mainly the dermis,

the epidermis is the main target of intrinsic skin aging processes

where, especially in sun-exposed skin, changes occur often with

initial generalized epidermal thickening, indicative of epidermal

hyperplasia and reduced capacity to repair, such that the

epidermis becomes prone to a number of skin conditions including

dermatitis, eczema and ulceration [6,7,45–49]. Only recently has

it been appreciated that abnormal skin barrier function might

underlie these skin conditions [50], although no analysis of Cldn

expression has been reported. The murine epidermis, however,

does not normally undergo comparable aging-related changes; in

fact, once the mouse epidermis is matured it maintains a

homeostatic balance and undergoes morphological and biochem-

ical changes only in response to injury or disease. Thus, it was

extremely interesting to note that in spite of the fact that Inv-

Cldn6-CD196 mice achieve a normal-appearing epidermis by one-

month of age (by morphology and biochemical markers), with

aging they have a high propensity for epidermal injury and a

diminished ability to repair lesions, leading eventually to severe

dermatitis with associated changes in skin barrier function. It

should be noted that this sensitivity to injury and inefficient repair

were seen also in young mice subjected to acute injury by

application of the irritant TPA (data not shown).

As already indicated, the precise mechanisms by which

expression of low levels of Cldn6-CD196 in the suprabasal layers

of the epidermis leads to age-related changes appearing to mimic

those seen in humans are currently not known, but our observations

suggest that changes in Cldn homeostasis leading to changes in the

epidermal differentiation program play important roles. In this

regard, not only changes elicited directly by changes in Cldn6

signaling but also changes imparted by alterations in the expression

of other Cldns, notably Cldn1, must be considered. In the

developing epidermis, Cldn1 is first restricted to the stratifying

layers and matures to occupy the basal layer upon the completion of

barrier formation at E17.5 [19]. However, in response to TPA-

induced injury and loss of cell polarity seen in tumorigenesis, Cldn1

expression is downregulated in both the basal layer and immediate

suprabasal layers of the epidermis [23,51], alterations seen also with

aging of the Inv-Cldn6-CD196 epidermis. The drastic changes in

TEWL that we observed in severely affected areas of the Inv-Cldn6-

CD196 epidermis also appear to mimic those seen in the aging

human epidermis subjected to stress or injury [47]. Thus the data

reported here suggest that the changes in Cldn expression and

localization in mice with low expression of Cldn6-CD196 in the

epidermis lead to relatively subtle changes in the epidermal

differentiation program and permeability in the young animal,

but render them prone to injury and diminished repair that are

exacerbated especially in areas subjected to repeated mechanical

trauma, leading to chronic and increasingly severe dermatitis.

In summary, our data add to the evidence that Cldn6, and in

particular the C-terminal half of the Cldn6 tail, contribute to the

regulation of epidermal differentiation and skin barrier function

throughout life. They also support the utility of the Inv-Cldn6-

CD196 mouse model for studies aimed at understanding intrinsic

changes in the aging epidermis and point towards a need to

investigate Cldn expression profiles in the aging human epidermis.
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