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Abstract: Drug-metabolizing enzymes, particularly the cytochrome P450 (CYP450) monooxygenases,
play a pivotal role in pharmacokinetics. CYP450 enzymes can be affected by various xenobiotic
substrates, which will eventually be responsible for most metabolism-based herb–herb or herb–drug
interactions, usually involving competition with another drug for the same enzyme binding site.
Compounds from herbal or natural products are involved in many scenarios in the context of such
interactions. These interactions are decisive both in drug discovery regarding the synergistic ef-
fects, and drug application regarding unwanted side effects. Herein, this review was conducted
as a comprehensive compilation of the effects of herbal ingredients on CYP450 enzymes. Nearly
500 publications reporting botanicals’ effects on CYP450s were collected and analyzed. The countries
focusing on this topic were summarized, the identified herbal ingredients affecting enzyme activity
of CYP450s, as well as methods identifying the inhibitory/inducing effects were reviewed. Inhibitory
effects of botanicals on CYP450 enzymes may contribute to synergistic effects, such as herbal for-
mulae/prescriptions, or lead to therapeutic failure, or even increase concentrations of conventional
medicines causing serious adverse events. Conducting this review may help in metabolism-based
drug combination discovery, and in the evaluation of the safety profile of natural products used
therapeutically.

Keywords: natural product; herbal ingredient; cytochrome P450; herb–herb interaction; herb–drug
interaction; combinatorial synergism

1. Introduction

Absorption, distribution, metabolism, and excretion (ADME) is a pretty complex
process that a drug will go through. Notably, drug metabolism plays a pivotal role in
determining the fate of drugs. Herein, in drug research and development, pharmacokinetics
research must be conducted to identify drugs’ transformed forms and properties in the
body. Drug-metabolizing enzymes (DMEs) can convert drugs/compounds to metabolites
with different biological effects and are critical in determining the bio-availability and
effectiveness of orally administered drugs [1]. The cytochrome P450 (CYP450) enzyme
family is one of the most vital DEMs, has been found in many tissues, e.g., liver, intestine,
lung, heart, and brain [2,3], and is mainly distributed in the liver and intestine, namely
hepatic and intestinal/enteric CYP450s. The CYP450 catalyzes the phase I metabolism
of conventional drugs. The activity of CYP450s could also be inhibited or induced by
various xenobiotics (e.g., herbal ingredients), which will eventually be responsible for the
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most metabolism-based herb–herb or herb–drug interactions. Compounds from herbal or
natural products are frequently involved in such interactions.

Though the traditional usage of herbal medicine is mainly documented in Asia, par-
ticularly in China, South Korea, India, and Japan, such complementary medical therapies
have been applied extensively over the last decade. These interactions are decisive both in
drug discovery regarding the synergistic effects, and drug application regarding unwanted
side effects. The concerns of their effects on CYP450s mainly focus on two aspects. On the
one hand, from the drug development point of view, herbal medicines are often prescribed
in combinations, namely herbal formulae, to enhance efficacy and reduce toxicity [4,5].
Partially due to the affected CYP450s, clearance of the effective compounds may retard,
and the risk of exposure to the toxic ingredients may decrease. On the other hand, from
the perspective of herb–drug interaction (HDI), herbal constituents can act as inducers of
CYP450s, thereby increasing the rate of metabolism of the drug to result in therapeutic
failure; besides, herbal compounds can act as inhibitors of CYP450s as well, resulting in the
reduced activity of CYP450s, thereby enhancing the therapeutic effects by increasing the
concentration of the co-used drug. Since plant-derived products are often self-prescribed
either alone or in combination with over-the-counter medicines, and integrated herbal
therapies with Western medicine are considered to exert better efficacy in clinical. There-
fore, herbal products are noteworthy facts that may affect drug metabolism by modulating
CYP450s.

Currently, the clinical influence caused by inhibiting or inducing effects of various
xenobiotics on DEMs gained increasing attention. Pelkonen et al. have comprehensively
summarized the inhibitors and inducers, including pharmaceuticals and herbal/botanical
natural products, of the specific CYP450s in humans in 2008 [6] and updated in 2020 [7].
Mukherjee et al. [8] reviewed the botanicals as medicinal products and their effects on
DEMs in 2011. Besides, Zhu et al. [9] recently developed a database named INTEDE,
comprehensively collating the interactions on DEMs of drugs approved by the U.S. FDA,
investigational drugs, or xenobiotics, including herbal ingredients. Since CYP450s act as
one of the most significant DEMs.

Herbal ingredients could affect CYP450 enzymes at multi-levels, including the ex-
pression of mRNA [10,11] or protein [12,13], and enzyme activity [14–16]. This review
mainly focuses on the herbal products’ modulation of enzyme activity. Identifying the
specific subtype provides the basis for the compatibility of herbal formulae and integrated
herbal medicine with Western medicine, as well as interactions between drugs and natural
products. We conducted this review as a comprehensive compilation of the effects of herbal
ingredients on CYP450 enzymes compared to conventional pharmaceutics to develop
a broader understanding of the pharmacological/clinical implication of interactions on
CYP450s, to provide the basis for compatibility and rational administration in clinical
practice.

2. Results and Discussion
2.1. Search Results, Study Inclusion

The literature survey and screening resulted in a total of 605 full-text studies for
inclusion in this review (Figure 1; Supplementary File S1). In total, 2385 items were
identified by searching the WOS, after removing the papers that were not concluded in
the life sciences (n = 7), we read the abstracts of 2378 articles for relevance. After deeper
examination, we further excluded 1780 articles for reasons including the papers published
in the journal without an impact factor (n = 68); these papers were published neither as
research articles nor as review articles (n = 57); their topics were not relevant to the effects
of natural products on the enzyme activity of CYP450s (n = 1549), the results were stated in
research articles without experimental validation (n = 28), and some other reasons (n = 22).
These without available full text were excluded as well (n = 48).
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Figure 1. PRISMA flow diagram detailing the number of papers included at each stage and the
reasons for removal. Please see Supplementary File S1 for detail.

2.2. Study Characteristics

The majority (477, ~79.0%) of the papers included were research papers, and the rest
were reviews (128, ~21.0%). This emerging topic is gaining more and more attention in
the scientific community worldwide, particularly in the last decade, as witnessed by the
notable increase in the number of research articles published in peer-reviewed journals in
this field, as shown in Figure 2.
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Figure 2. Publications (research articles and reviews) reporting the activity of natural products on
CYP450s.

Historically, herbal medicines have been used due to traditional and cultural beliefs,
and their usage continues even nowadays. Particularly in recent years, the worldwide
recognition that natural products have gained and the crucial role of naturally derived
products have played in drug discovery [17,18] promote the concern of the effects that the
herbal products may induce on CYP450s.

When analyzing countries by their number of papers on this topic, China was the
most productive country, followed by the United States (USA), South Korea, Japan, India,
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Germany, etc., as shown in Figure 3, the geographical coverage of papers reporting the
activity of natural products on CYP450s, and the top 10 countries ranked by the number of
papers. Though this topic attracted the eyes of a wide range of countries, the majority of
publications were contributed by the Asia countries (especially China) and the USA.
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Undoubtedly, natural products catch more attention in Asia due to their historical
prevalence and clinical benefits, while the view of natural products in Western countries is
more delicate than in Asia due to the potential clinical risks, though approximately 25% of
currently commercialized medications are derived from plants or traditional medicine [18].
Due to the loose regulatory requirements of herbal medicines and possible self-prescribed
remedies, there are still multiple concerns on co-administrated herbs and conventional
drugs, like potential herb–drug interaction-based side effects or therapeutic failure, partic-
ularly in the field of cardiovascular therapy [19]. However, no matter how much or little
herbal products are accepted as recommended clinical medication outside Asia, there is
a consensus that both in the development of small molecular drugs and research on the
herbal medicines, their CYP mediated metabolism and their modulation on CYP450s are
all crucial and essential [20,21].

The data show that natural products’ inhibition and induction activity on CYP450
enzymes gradually obtains a deep concern in the time and geographic span. In the case of
the compounds/constituents/extracts interacting, their activities on CYP450s have been
reported to be clinically relevant. To avoid unwanted side effects of the patient taking
them and the benefit of drug discovery, we further reviewed the current methodologies
in detecting the action and the reported typical affections on the major sub-type CYP450s
accounting for drug metabolism, from a large amount of literature that documents the
modulation effects of natural products on the CYP450 enzyme activity.

2.3. Methods for Detecting CYP450 Enzyme Activity

For new drug research and development (R&D), in January 2020, the FDA updated
two guidelines from the 2017 draft of in vitro and clinical drug–drug interaction (DDI)
guidance, entitled “In vitro Drug Interaction Studies—Cytochrome P450 Enzyme—and
Transporter-Mediated Drug Interactions Guidance for Industry” and “Clinical Drug Inter-
action Studies—Cytochrome P450 Enzyme—and Transporter-Mediated Drug Interactions
Guidance for Industry” [22]. The guidelines for in vitro investigation recommend con-
ducting the essential studies to evaluate the potential for metabolism-mediated drug
interactions, including (1) determining if the investigational drug is a substrate of metabo-
lizing enzymes; (2) determining if the investigational drug is an inhibitor of metabolizing
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enzymes in both a reversible manner (i.e., reversible inhibition) and time-dependent man-
ner (i.e., time-dependent inhibition (TDI)); (3) determining if the investigational drug is
an inducer of metabolizing enzymes [23]. In addition, the clinical guideline aims at (1) de-
termining whether the investigational drug alters the pharmacokinetics of other drugs;
(2) determining whether other drugs alter the pharmacokinetics of the investigational drug;
(3) determining the magnitude of changes in pharmacokinetic parameters; (4) determining
the clinical significance of the observed or expected DDIs; (5) informing the appropriate
management and prevention strategies for clinically significant DDIs [24].

These guidelines for new drug R&D are also directly related to research on natural
products. Currently, to detect the activity of natural products on CYP450s mainly via
in vitro and in vivo experiments (in rats/mice, or heather volunteers, namely clinical trials).
The in vitro investigation allows a preliminary detection of the activity on CYP450s of
natural products.

2.3.1. In Vitro

In in vitro testing, different models can be used to evaluate the inhibitory or inducing
effects on cytochromes: human/rat liver microsomes [25,26], human hepatocytes, and
recombinant human CYP enzyme assay [27,28], human intestinal microsomes [29], human
intestinal cell lines [30], etc. Furthermore, in recent years, there are some commercialized
products available based on these models, e.g., Vivid® CYP450 screening kits, P450-Glo™
assays, etc., were used to detect the Coptidis Rhizoma’s activity on CYP3A [31] and Bulbine
natalensis’s activity on CYP3A4, CYP2C9, CYP2B6, and CYP1A2 [32,33], Stevia rebaudiana
Bertoni and steviol’s activity on CYP3A4 and CYP2C9 [34], Uncaria tomentosa (Samento)
and Otoba parvifolia (Banderol)’s activity on CYP3A4 and CYP2C19 [35].

CYP450s that participate in drug metabolism are mainly distributed in the liver and
intestine [36]. We retrieved the method information on detecting the activity of CYP
enzymes from research articles, and we found that, for evaluating the natural products’
modulation effects, over 60% of the in vitro studies were conducted on liver microsomes of
humans/rats, seldom (~2%) on intestinal microsomes, indicating the emphasis routinely
has been placed on hepatic events. However, as emphasized [37], enteric metabolism can
arguably be as important as liver metabolism; both are determinants of orally administered
drugs, especially natural products, since oral dosing is the preferred and predominant
route of administration for these herbal medicines or health supplements. In oral dosing,
the small intestine serves as the gateway into the systemic circulation via the provision
of a biological barrier, uptake and efflux transport, and metabolic clearance. Indicating
both liver- and intestinal-based experimental systems serve essential functions in assessing
natural products’ affection on the enzyme activity of CYP450s.

The inhibitory effects of natural products on CYP450s are mainly divided into two
modes: reversible (competitive or non-competitive) inhibition and irreversible (mechanism-
based inhibition, MBI, namely suicide inhibition). The phenomenon that the metabolism
of drugs by CYP450s to form reactive metabolites that bind tightly to the active site of
an enzyme is referred to as MBI, leading to long-lasting irreversible inhibition of the
enzymes [38]. In early 2005, Fontana et al. has summarized that the mechanism-based
inhibitors have particular features, which make them recognizable by in vitro tests [39].
Herein, the in vitro assays could be utilized to test the influence of herbal xenobiotics on
enzyme activity and could be mainly conducted to detect whether the inhibition is time-,
concentration- and NADPH-dependent.

2.3.2. In Vivo

Next, the tests conducted in vivo identify whether the tested natural products will
influence the clearance of specific substrate which has been known to be metabolized by
particular isoforms of CYP450s. Then, the inhibitory or inductive potential will be inferred
from the reduced or increased clearance of the substrate. Among the research articles
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we included in the detailed analysis, nearly one-third of the research conducted in vivo
experiments in rats/mice (preclinical, ~21%) and health volunteers (human clinical, ~12%).

The strength of in vivo study lies in that it considers the utmost complexity of lives
and the exposure to a large number of other chemical substances through diet, environment,
etc., thus making the result more reliable and indicative of clinical significance. However,
the major drawback is that unlike in vitro study which has the capacity to identify the
inhibitory or inductive activity directly and unveil their mechanism, in vivo studies can
solely reveal the influence of natural products on the metabolism of substrate concurrently
intake. Therefore, if we want to illustrate the underlying mechanism of inhibition or
induction, subsequent in vitro studies will be needed.

2.3.3. Probe Drug Assay

In both in vitro and in vivo investigation, the probe drug assay has been extensively
applied, which analyzes the modulated enzyme activity by monitoring the concentration
change of metabolites of probe drug, in the presence or absence of the tested natural prod-
ucts (herbal ingredients, herbal extracts, etc.) [40,41]. Furthermore, the cocktail probe assay
was established based on probe assay to evaluate the modulating effects on multiple en-
zymes simultaneously. A cocktail approach can simultaneously evaluate a drug’s inhibition
or induction potential for multiple CYP450s as long as the study is properly designed [22].

In a probe drug assay or cocktail probe assays, firstly, the CYP450s to be investi-
gated should be determined. In the FDA guidance of in vitro and clinical studies, the
isoforms of CYP450s that need to be focused on are CYP1A2, CYP2B6, CYP2C8, CYP2C9,
CYP2C19, CYP2D6, and CYP3A, due to the most clinical drugs undergo biotransformation
in the body through these CYP450 isozymes; thus, they are accounting for the most of
potential HDI/DDI. In addition, the current studies for herbal ingredients’ modulation on
CYP isoforms are also based-on CYP1 family (CYP1A1, CYP1A2), CYP2 family (CYP2A6,
CYP2B6, CYP2C8, CYP2C11, CYP2D6, CYP2C9, CYP2C19, CYP2E1, CYP2J2), and CYP3
family (mainly CYP3A, including CYP3A1, CYP3A4, CYP3A5). The number of papers
reporting the modulation effects of natural resources on each CYP450 enzyme was summa-
rized. As shown in Figure 4., the CYP3A possessed the highest attention, particularly the
CYP3A4 (247/337). As reported, in FDA-approved drugs, roughly 65% were substrates,
30% inhibitors, and about 5% inducers of CYP3A, and inhibition and induction of CYP3A
explained most of all observed clinical interactions [7,42,43]. Based on the frequency, the
CYP1A2, CYP2D6, CYP2C9, CYP2C19, CYP2E1, CYP2B6, CYP2C8 are also caught close
attention. Among the ~200 research articles reporting the modulation activity of CYP1
family, more than 90% were focused on CYP1A2, which is the major hepatic member of the
CYP1 family [6].

Both the FDA’s recommendation and the current frequently studied isoforms provide
an overview of the isoforms concerned in existing studies, and in future work, the isoforms
selected may vary depending on the property of natural products, the potential HDIs, and
research aims.

Secondly, proper probe drugs need to be selected. Before the past decade, as summa-
rized [8], the detection methods were mainly based on Spectro, fluorimetry, radiometry,
and high-performance liquid chromatography (HPLC). From the information we retrieved,
however, the majority of the studies detected the concentration of metabolized probes
by HPLC (including HPLC-MS, UPLC-MS), which are non-optical methods. Generally,
the criteria for an excellent probe substrate are high selectivity, good sensitivity, and high
conversion rate (turnover), as well as commercial availability and good chemical stability
for both substrate and metabolite(s) [21,44].

The detailed information of commonly used probe substrates for CYP450s (human/rat),
along with the HPLC-MS methods used for their analysis, is listed in Table 1.
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Table 1. Commonly used CYP450s and their substrate in probe assays along with the HPLC-MS
methods.

Enzyme Tissue Sites Probe Metabolite Ref.

CYP1A1 Liver, intestine Phenacetin Phenacetin O-deethylation
(Acetaminophen) [45]

Ethoxyresorufin Ethoxyresorufin
O-de-ethylase [46]

CYP1A2 Liver
Phenacetin Phenacetin O-deethylation

(Acetaminophen) [47]

Caffeine Paraxanthine [48–50]

Methoxyresorufin Methoxyresorufin
O-demethylase [46]

CYP2A6 Liver, lung Coumarin Coumarin 7-hydroxylation [47]
Methoxsalen N/A [51]

CYP2B6 Liver, lung Bupropion Bupropion hydroxylation [47]
CYP2C6 Liver Tolbutamide N/A [52]
CYP2C8 Liver Paclitaxel Paclitaxel 6-hydroxylation [47]

CYP2C9 Liver, intestine Diclofenac Diclofenac 4′-hydroxylation [47,53]
Tolbutamide Tolbutamide 4-hydroxylation [54]

CYP2C19 Liver, intestine (R)-Omeprazole (R)-Omeprazole
5-hydroxylation [47]

S-Mephenytoin S-Mephenytoin
4-hydroxylation [55,56]

CYP2C11 Liver
S-Mephenytoin S-Mephenytoin

4-hydroxylation [57]

Tolbutamide Tolbutamide 4-hydroxylation [49,58]

CYP2D6 Liver, intestine Dextromethorphan
Dextromethorphan
O-demethylation

(dextrorphan)
[47,59]

Bufuralol Bufuralol 1-hydroxylation [55]

CYP2E1 Liver, lung Chlorzoxazone Chlorzoxazone
6-hydroxylation [47]

4-Methylpyrazole N/A [60]

CYP3A1 Liver
Dapsone N-acetyl dapsone [61]

Midazolam Midazolam 1-hydroxylation [62]

CYP3A4 Liver, intestine
Midazolam Midazolam 1-hydroxylation [47]
Daclatasvir N/A [63]

Testosterone Testosterone
6β-hydroxylation [21,64,65]
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2.4. Natural Products’ Modulation on CYP450 Isoforms

To date, the use of herbal supplements has been world-widely recognized and plays a
vital role in nearly every culture, including Asia, Africa, Europe, and the Americas. In this
study, we manually annotated 477 eligible papers, implying evidence is emerging that par-
ticular herbs and herbal ingredients can modulate the activity of CYP450s. The 477 papers
focused on multifarious objects, vary from herbal ingredients, herbal extracts, preparations
containing multiple ingredients/herbal extracts, or marketed products. Several therapeu-
tically active dietary supplements or herbal medicines have been highly concerned. As
shown in Figure 5, before the past decade, a higher number of publications reported the
CYP450s’ modulation of St. John’s wort, Ginkgo biloba, Echinacea, Goldenseal, Kava, and
Garlic, while in the past decade the focus of attention gradually shifted to Milk thistle,
Black cohosh, Renshen (Ginseng), and Danshen (Salvia miltiorrhiza).
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popular natural products.

Multiple reviews have summarized relevant results on this topic narratively in de-
tail [8,66,67], which have provided a wealth of content. Besides, many other reports have
also reviewed specific natural products notably widely reported from the years 2000 to
2010, including their effects on CYP450, e.g., Echinacea in hepatopathy [68], from its phyto-
chemistry, pharmacology, to safety; clinical risks of St John’s Wort co-administration [69];
interactions of Ginseng with therapeutic drugs [70].

Considering the pioneer works have provided wealth of content regarding to the
effects of St. John’s wort, Ginkgo biloba, Echinacea, Goldenseal, Kava, and Garlic on
CYP450s, in this study, we preferred to emphasize on the discussion of Milk thistle, Black
cohosh, Renshen (Ginseng), and Danshen (Salvia miltiorrhiza), as presented in Table 2. For
much more detailed annotated literatures and summaries of other natural products, please
refer to Supplementary File S1.

2.4.1. Milk Thistle

Milk thistle (Silybum marianum), known as Mary thistle and holy thistle, is a thistle of
the genus Silybum, a flowering herb related to the daisy and ragweed family (Asteraceae).
The plant is native to the Mediterranean regions of Europe, North Africa, and the Middle
East [66]. People have traditionally used milk thistle for problems with the liver and
gallbladder and therapeutic potential in diabetes [71,72].

Some in vitro studies indicated the extracts or main ingredients of Milk thistle may
inhibit multiple CYP450s, i.e., CYP2C8, 2C9, 2B6, 2C19,3A4/5 (Table 2); however, the
clinical study in 2014, implied that the exposure to Milk thistle extract has no significant
influence on CYP1A2, CYP2C9, CYP2D6, or CYP3A4/5 activities [73], and the clinical
outcome consistent with human studies that conducted more earlier [74–76]. To date, the
reasons for the conflict of results in in vitro and in vivo studies remain unknown.
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2.4.2. Black Cohosh

Black cohosh (Actaea racemose) is a shrub-like plant native to the eastern forests of
North America, and Native Americans have used it for menopausal symptoms such as hot
flashes, premenstrual discomfort, and dysmenorrhea [67].

The most recent in vitro studies indicated that the Black cohosh could inhibit CYP2D6,
2C8, 2C19, and 3A4 (Table 2). The inhibition effects on 2D6 and 3A4 by 75% ethanolic extract
of black cohosh are controversy from the previous reported in vitro test of commercialized
black cohosh products [77] or clinical results [74]. The different results may be induced by
different extract methods. Nevertheless, additional studies in humans by using extracts
with essential quality control are desirable to evaluate the safety of concomitant use of
black cohosh and conventional drugs.

2.4.3. Renshen

Renshen (Ginseng, Panax ginseng Meyer) is a traditional herbal medicine used world-
wide. Ginseng and Red Ginseng (the prepared products of Ginseng) are the world’s most
popular herbal medicines and exhibit a wide range of pharmacologic activities [67].

The major updates of Ginseng come from the clinical trials demonstrating a negligi-
ble effect on CYP1A2, 2C9, 2C19, 2D6, 3A [78–80], while some other research indicated
induction effect Ginseng/Red Ginseng on CYP3A [81,82]. In addition, the in vivo cocktail
studies on rats showed an inhibitory effect of Sailuotong (SLT, a fixed combination of Panax
ginseng, Ginkgo biloba, and Crocus sativus extracts) on CYP3A, which may be attributed
to Ginseng and ginkgo cooperatively, and induction effects on CYP1A2 which may be
attributed to its herbal component of Ginseng to a large extent [40].

2.4.4. Danshen

Danshen derived from the roots and rhizome of Salvia miltiorrhiza Bge., which pos-
sesses antithrombotic properties have a long history of treating cardiovascular diseases (e.g.,
arteriosclerosis, ischemic heart disease, stroke) [83], and is widely used in Asia, including
China, Japan, and Korea, in United States, Australia, and Holland, etc. [84].

The recent updates of Danshen’s effect on CYP450s are listed in Table 2. Except
several opposite results that have been concluded from different studies (including, the
induce [16] or negligible effects on CYP3A4 [85]), multiple investigations of Danshen [86]
or its typical ingredients suggested an inhibition potential on CYP1A2 or/and CYP2C9.
Tanshinone I, tanshinone IIA, and cryptotanshinone were potent competitive CYP1A2
inhibitors, medium competitive inhibitors of CYP2C9 [87]; Miltirone showed moderate
inhibition on CYP1A2 (IC50 = 1.73 µM) and CYP2C9 (IC50 = 8.61 µM) [88]. Furthermore,
these results are consistent with the results published in 2008, that tanshinone I, tanshinone
IIA, and cryptotanshinone were potent competitive inhibitors of CYP1A2, danshensu was
a competitive inhibitor of CYP2C9 [86]. Meanwhile, the Guanxinning injection, a marketed
herbal product composed of Danshen and Chuanxiong (Ligusticum chuanxiong Hort.),
showed an induced effect on CYP1A2 [89], indicating the activity of Danshen may be
altered by the combinatorial effects when combined with Chuanxiong.

Unlike the Milk thistle and Black cohosh that could be used solely, Renshen and
Danshen are representative herbal medicines that are frequently applied in combination
with others in traditional Chinese medicines. Many studies have investigated the combina-
torial rules behind the herbal pairs [90] or drug pairs [91] that mainly focus on the direct
targets or genes. Inferred from the cases mentioned above of Sailuotong and Guanxinning
preparation, the altered CYP modulation effects, from one aspect, might be contributed by
the combinatorial synergism, while further exploration is wanted.
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Table 2. Effects of selected natural products on CYP450s (from 2010~2020).

Natural Products CYP450
Species CYP450 Effects on CYP450 Method Ref.

Milk thistle extracts
and eight isolated

constituents
Human CYP3A

Inhibit (The extract silymarin and constituents . . .
demonstrated >50% inhibition of CYP3A activity

. . . )

In vitro (human liver and
intestinal microsomes) [29]

Milk thistle extract Human

CYP1A2
CYP2C9
CYP2D6

CYP3A4/5

——(Exposure to milk thistle extract produced no
significant influence on CYP1A2, CYP2C9,

CYP2D6, or CYP3A4/5 activities.)
Clinical trial [73]

Milk thistle extract Human

CYP1A2
CYP2A6
CYP2B6
CYP2C8
CYP2C9
CYP2C19
CYP2D6
CYP2E1
CYP3A4

Inhibit ( . . . the extract significantly inhibited CYP
2B6, 2C8, 2C9, 2C19, 2E1, and 3A4 . . . )

——(but not likely, and are remote for CYPs 2C19,
2D6, and 3A4.)

In vitro (human
hepatocytes and human

liver microsomes),
HPLC-MS

[92]

Milk thistle Human CYP2C9 Inhibit (The results indicated milk thistle as the
most potent CYP2C9 inhibitor.)

In vitro (human liver
microsomes), HPLC [93]

Milk thistle Human CYP2C8

Inhibit (Isosilibinin, a mixture of the
diastereoisomers isosilybin A and isosilybin B, was
found to be the most potent inhibitor, followed by

isosilybin B...)

In vitro (human liver
microsomes),
LC/MS-MS.

[94]

7-O-methylated
analogues of

flavonolignans from
Milk thistle

Human CYP2C9
CYP3A4/5

Inhibit (CYP2C9 activity was most sensitive to
inhibition, . . . followed by CYP3A4/5 and . . . )

In vitro (human liver or
intestinal microsomes),

HPLC
[95]

Milk thistle aqueous/
methanolic extracts Human

CYP2C9
CYP2B6

CYP2C19
CYP3A4

Inhibit (The present work indicates that inhibition
of CYP2C9 occurs with the aqueous extracts, IC50
= 64.2 µg/mL . . . The methanolic extract caused

significant inhibition of CYP2B6, CYP2C9,
CYP2C19, and CYP3A4.)

In vitro (N-in-one
cocktail), LC/MS-MS [96]

Black cohosh Human CYP2D6
CYP3A4

—— (Previous in vivo studies in humans have
concluded that CYP2D6 and CYP3A4 are not

inhibited by black cohosh. The present data are in
agreement with these findings.)

In vitro (N-in-one
cocktail), LC/MS-MS [96]

Commercial liquid
(ethanol) extracts of

black cohosh
Human CYP2C19

Inhibit (one of the three most potent interactions
were: Black cohosh and CYP2C19 (IC50 0.37

µg/mL).

In vitro
(microplate-based assays
using cDNA-expressed
CYP450 isoforms and

fluorogenic substrates)

[97]

75% ethanolic extract
of black cohosh Human CYP2D6

CYP3A4

Inhibit (In vitro metabolic interactions between
black cohosh and tamoxifen via inhibition of

cytochromes P450 2D6 and 3A4.)

In vitro (human liver
microsomes), LC-MS [98]

Methanol extracts of
garlic, echinacea, saw

palmetto, valerian,
black cohosh and

cranberry

Human CYP2C8 Inhibit (All herbal extracts showed inhibition of
CYP2C8 activity...)

In vitro (human liver
microsomes),
LC/MS/MS

[99]

Red ginseng Human

CYP2C9
CYP3A4
CYP1A2
CYP2C19
CYP2D6

——(Red ginseng poses minimal risks for clinically
relevant CYP- or OATP-mediated drug

interactions and is well tolerated.)
Clinical trials, Cocktail [78]

Sailuotong (SLT), a
fixed combination of

Panax ginseng,
Ginkgo biloba, and

Crocus sativus
extracts

Rat CYP1A2
CYP3A1/2

Induce-CYP1A2 (repeated administration of SLT
induced CYP1A2 by enhancing... The influence is
attributed to its herbal component of ginseng to a

large extent.)
Inhibit- CYP3A (The inhibition of SLT on CYP3A

was likely attributed to ginseng and gingko
cooperatively.)

In vivo (cocktail),
LC-MS/MS [40]
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Table 2. Cont.

Natural Products CYP450
Species CYP450 Effects on CYP450 Method Ref.

Red ginseng Human

CYP1A2
CYP2C9
CYP2C19
CYP2D6
CYP3A4

——(No significantly different drug interactions
were observed between fermented red ginseng

and the CYP probe substrates)
Clinical trial [79]

Red ginseng Human

CYP1A2
CYP2C9
CYP2C19
CYP2D6
CYP3A4

——(RG has no relevant potential to cause CYP
enzyme- or P-gp-related interactions.) Clinical trial [80]

Panax ginseng Human CYP3A
Induce (Ginseng appeared to induce CYP3A

activity in the liver and possibly the
gastrointestinal tract.)

Clinical trial [81]

Korean red ginseng
(KRG)

Human &
Mice

CYP3A
CYP2D

Induce-CYP3A
Inhibit-CYP2D

(The area under the curve for
OH-midazolam/midazolam catalysed by CYP3A
was increased significantly by the administration

of 2.0 g/kg KRG extract for 2 and 4 weeks.
CYP3A-catalysed midazolam 1′-hydroxylation

also increased significantly in a dose- and
time-dependent manner . . . Whereas
CYP2D-catalysed dextromethorphan

O-deethylation decreased in a dose- and
time-dependent manner in vivo.)

In vitro (human liver
microsomes), in vivo,

LC-MS/MS
[82]

Tanshinones of
Danshen Human

CYP1A2
CYP2C9
CYP2E1
CYP3A4
CYP1A2

Inhibit (Tanshinone I, tanshinone IIA, and
cryptotanshinone were potent competitive

CYP1A2 inhibitors; medium competitive inhibitors
of CYP2C9; medium competitive inhibitors of

CYP2E1 for tanshinone I and 10.8 µM for
crytotanshinone; but weak competitive inhibitors
of CYP3A4. Dihydrotanshinone was a competitive

inhibitor of human CYP1A2 and CYP2C9, a
noncompetitive inhibitor of CYP3A4 but an

uncompetitive CYP2E1 inhibitor.)

In vitro (human Liver
Microsomes), HPLC [87]

Danshen capsules Human CYP3A4

Induce (The results suggested that multiple dose
administration of Danshen capsules could induce

cytochrome P450 (CYP) isoenzymes, thereby
increasing the clearance of clopidogrel.)

Clinical trial [16]

Danshen extract Rat CYP3A

—— (Orally administered Danshen had no
substantial effect on the pharmacokinetics of

docetaxel and clopidogrel, suggesting the
negligible safety concern of Danshen in P-gp- and

CYP3A-mediated interactions in vivo.)

In vivo (cocktail),
LC-MS/MS [85]

Miltirone (from
Danshen) Human

CYP1A2
CYP2C9
CYP2D6
CYP3A4

Inhibit (Miltirone showed moderate inhibition on
CYP1A2 (IC50 = 1.73 µM) and CYP2C9 (IC50 =

8.61 µM), and weak inhibition on CYP2D6 (IC50 =
30.20 µM) and CYP3A4 (IC50 = 33.88 µM).)

In vitro (human liver
microsomes), HPLC [88]

Danshen components Human CYP2C8
CYP2J2

Inhibit (salvianolic acid A was a competitive
inhibitor of CYP2C8 and mixed-type inhibitor of

CYP2J2. alvianolic acid C had moderate
noncompetitive and mixed-type inhibitions on

CYP2C8 and CYP2J2, respectively. Tanshinone IIA
was a moderate competitive inhibitor of CYP2C8.

Dihydrotanshinone I had moderate
noncompetitive inhibition on CYP2J2, but
mechanism-based inhibition on CYP2C8.

Tanshinone I was a moderate competitive inhibitor
of CYP2C8.

In vitro (recombinant
human CYP2C8 and

CYP2J2 systems),
LC-MS/MS

[100]
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Table 2. Cont.

Natural Products CYP450
Species CYP450 Effects on CYP450 Method Ref.

Danshen Human CYP1A2
Inhibit (CYP1A2 activity was decreased with an

increasing inhibitor concentration, confirming the
inhibition of caffeine metabolism in vivo.)

In vitro (human liver
microsomes), clinical

trials, HPLC.
[101]

Guanxinning
injection (Danshen,

Chuanxiong)
Rat CYP1A2

Inhibit (The in vivo and in vitro results
demonstrated that GXNI could induce CYP1A2

activity in rats.)

In vivo, in vitro,
UPLC-MS/MS. [89]

Tanshinone I,
tanshinone IIA, and
cryptotanshinone,
baicalein, osthole,

quercetin,
cordycepin, and

sodium tanshinone
IIA sulfonate (From

Danshen)

Human CYP1A2

Inhibit (tanshinone I, tanshinone IIA, and
cryptotanshinone exhibited remarkable inhibition

on CYP1A2,... baicalein, osthole, quercetin,
cordycepin, and sodium tanshinone IIA sulfonate
showed moderate inhibition on the CYP1A2 . . . )

In vitro (high throughput
inhibitor screening kit) [102]

3. Materials and Methods
3.1. Data Retrieval

The Web of ScienceTM platform was used for the literature survey to achieve a dataset
of studies reporting the inhibition/induction effects of natural products on CYP450. The
search query was performed in the WOS core collection based on keywords: CYP, drug-
metabolizing enzyme, and herbal product. Search Terms: All Fields = (CYP OR cytochrome-
P450 OR drug-metabolizing-enzyme*) AND Topics = (herb* OR herbal-products OR herbal-
supplements OR natural-supplement* OR botanical-supplement* OR phytotherap* OR
dietary-supplementation OR plant-extract OR traditional-medicine* OR natural-product*
OR botanical*), and in life/medical science focused.

3.2. Screening and Eligibility

As per the preferred reporting items for systematic reviews and meta-analyses (PRISMA)
guidelines selection criteria [103], publications were extracted from the WOS database,
and we have all the search results listed and systematically integrate and screen the listed
sources, and carefully label each item the reason for including or excluding in the excel.
Firstly, the duplicates are screened. Secondly, eligibility criteria were determined prior to
the commencement of this review, as shown in Table 3.

Table 3. Eligibility criteria of selected articles.

No. Eligibility Criteria

1 Not in the life Sciences

2 Not in English

3 Not included article types. e.g., proceedings, feature, editorial material.

4 Journal without an impact factor

5

Irrelevant object/topic (The studies focusing on the regulation of gene expression or
protein level were not included; the studies discussing the CYP450s that participate
in the biosynthesis of bioactive natural products were not included as well. ONLY
the studies that demonstrate the inhibition or induction on the activity of the
CYP450 enzyme were included.)

6 Without experiments (for research article)

7 Full text not available

8 Other
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3.3. Annotated Bibliography

The country information of the authors that contributed to each record was also
retrieved to generate the data for describing the geographical coverage of papers reporting
the activity of natural products on CYP450s. Due to the multi countries collaboration,
an article might be contributed by authors from different countries, so in this case, each
country will be counted once in this study.

After finishing the primary screening, we have all the eligible papers downloaded,
and we read the abstract or whole text of each research article to decide if the source is still
relevant. Then, we labeled each eligible research article by adding the information that
retrieved manually, including the natural products that each paper investigated (ingredi-
ents, herbal extracts, or formulae/preparations.), the tested CYP450s, the effects and the
type of effects on CYP450s, the species of CYP450s tested, the methods used, the probes or
substrates if mentioned. The statistical data were then generated to describe the current
status of research in this field, like the conventionally used methods in detecting such
effects, the natural products that were commonly concerned, the CYP450s that are most
likely to be affected. Additionally, the eligible reviews were not processed as the research
articles, but they were still important to inform us of what has already been reviewed and
what new knowledge we can add in this field.

4. Conclusions

Drug discovery involves targets’ identification/validation, and candidates’ ADMET
evaluation, which remains complex, costly, and unpredictable. Good knowledge of the
potential mechanisms of herbal drug interactions is necessary for assessing and minimizing
clinical risks in drug R&D and may even shed light on developing synergism combinations.

CYP enzymes are crucial in metabolism and could be influenced by a wide range of
xenobiotics, including natural products/herbal supplements. In this review, we system-
atically collected the current studies reporting the natural products’ modulation on the
activity of CYP450s. Then, we summarized them from a global perspective rather than a
narrative review by reporting the increasing attention in the time and geographic span,
the conventional methods for detecting the modulated activity in vitro and in vivo, as well
as the natural products that were most concerned. Regarding future research, it is worth
noting that there are numerous investigations on regulating CYP450s’ activity that have
been conducted, and the results may provide valuable references. While some limitations
still exist in this study, we did not consider the research on the regulation of mRNA level or
protein level, and the natural products acting as the substrate of CYP450s are not discussed
either, though these processes are also crucial in affecting drug metabolism. In the future,
we will look into the CYP450s-based HDI or DDI more comprehensively by taking these
issues into account.
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