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Abstract: Examining the drivers of landscape ecological risk can provide scientific information
for planning and landscape optimization. The landscapes of the Amu Darya Delta (ADD) have
recently undergone great changes, leading to increases in landscape ecological risks. However, the
relationships between landscape ecological risk and its driving factors are poorly understood. In this
study, the ADD was selected to construct landscape ecological risk index (ERI) values for 2000 and
2015. Based on a geographically weighted regression (GWR) model, the relationship between each of
the normalized difference vegetation index (NDVI), land surface temperature (LST), digital elevation
model (DEM), crop yield, population density (POP), and road density and the spatiotemporal
variation in ERI were explored. The results showed that the ERI decreased from the periphery of the
ADD to the centre and that high-risk areas were distributed in the ADD’s downstream region, with the
total area of high-risk areas increasing by 86.55% from 2000 to 2015. The ERI was spatially correlated
with Moran’s I in 2000 and 2015, with correlation of 0.67 and 0.72, respectively. The GWR model
indicated that in most ADD areas, the NDVI had a negative impact on the ERI, whereas LST and
DEM had positive impacts on the ERI. Crop yield, road density and POP were positively correlated
with the ERI in the central region of the ADD, at road nodes and in densely populated urban areas,
respectively. Based on the findings of this study, we suggest that the ecological constraints of the
aforementioned factors should be considered in the process of delta development and protection.

Keywords: landscape ecological risk; biophysical and socioeconomic driving factors; geographically
weighted regression; Amu Darya Delta

1. Introduction

A stable ecosystem is the basis for the harmonious development of nature and society. However,
with the intensification of human activities and the changing environment, natural ecosystems have
been disturbed by urban expansion, population growth and natural disasters (e.g., floods [1] and
debris flow [2]), which have led to many ecological risks [3,4]. Ecological risk reflects the possibility
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of degradation of an ecosystem subjected to external pressures [5,6]. Higher ecological risks may
increase the likelihood of ecological problems, such as biodiversity loss, habitat fragmentation and
environmental pollution [7,8]. As an important branch of ecological risk, landscape ecological risk
refers to the adverse effects of the interaction between landscape pattern and ecological process under
the influence of natural or human factors [5]. Landscape ecological risk emphasizes the spatial scale
effect of ecological risks and provides a way to spatially represent multi-source ecological risks [9].
Therefore, landscape ecological risk assessment can provide a theoretical basis and technical support
for regional landscape ecological construction [10].

In recent years, many studies have investigated the landscape ecological risk in various regions, [5,
8,11], and the driving factors of landscape ecological risk have attracted much attention worldwide.
Mo et al. (2017) focused on the relationships between road network expansion and node effects and
regional landscape ecological risk and found that roads can affect the degree and spatial pattern of
regional landscape ecological risk [12]. Yuan et al. (2019) studied the changes in landscape ecological
risk under the background of urbanization in the Qinhuai River basin and reported that with increasing
urbanization level, landscape ecological risk increased [1]. Some studies have addressed the spatial
changes in landscape ecological risk based on land use change [6,11]. All of the aforementioned
studies have contributed to a better understanding of the impacts of human activities on landscape
ecological risk. However these studies have mainly focused on a single factor when attempting to
analyse quantitatively the relationships between landscape ecological risk and driving factors [9,12].
The degree and spatial pattern of landscape ecological risk are affected by multiple factors, such as
nature, society and the economy [7,13,14]. In addition, studies have shown that topography [15,16],
changes in the surface environment [17,18], population [19,20] and crop yield [21] can affect landscape
structure and functions of ecosystems [14], which in turn affect the degree and spatial distribution of
landscape ecological risk. Therefore, focusing on the relationship between individual driving factors
and landscape ecological risk may prevent the identification of factors that have critical impacts on
the landscape ecological risk of a regional landscape and lead to incomplete scientific information
for regional ecological planning [22,23]. It is necessary to explore the impacts of multiple potential
social and biogeographic factors on regional landscape ecological risks and obtain a comprehensive
understanding of the mechanisms underlying ecosystem risk variability.

Regression models have been adopted to describe quantitatively the relationships between driving
factors and ecosystem changes [24,25]. For example, a linear regression model was used to study
the impact of biophysical and socioeconomic factors on landscape changes [26]. A multinomial
logistic model was selected to detect the driving factors of forest cover changes [27] and explore the
forces underlying long-term urban expansion [28]. A maximum covariance analysis (MCA) was
applied to reveal the relationship between the extension of a road network and landscape ecological
risk [12]. However, spatial data (e.g., landscape ecological risk) may exhibit spatial autocorrelation
and non-stationarity [9], which makes it difficult to meet the assumptions and requirements of
conventional linear regression techniques (e.g., ordinary least squares, OLS). These regression methods
can produce only “average” and “global” parameter estimates [29,30]; thus, they cannot handle spatial
autocorrelation that exists in variables [9,31]. In recent years, a novel technology called geographically
weighted regression (GWR) has been developed [32], which is a simple but effective method for
exploring spatially varying relationships [9]. A GWR model allows for different relationships at
different locations in a study area. Therefore, local parameters can be estimated instead of global
parameters, which can better describe the relationships between local variables [33]. The GWR model
has been widely used to explain changes in regional vegetation and urban surface environments or
urban expansion [29,31,34–36]. Therefore, in this study, the GWR model was selected to study the
relationships between changes in landscape ecological risk and the driving factors.

The Aral Sea was once the fourth largest inland lake in the world, providing rich ecosystem
services and biodiversity for the region [37]. Moreover, the Aral Sea basin (ASB) is also a very important
food production base in the world, and a large amount of cotton is produced in this area every year [38].
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Representing one of the most shocking environmental disasters in the world, the area of the Aral Sea has
greatly declined due to multiple factors, such as the continued expansion of agriculture, inappropriate
irrigation and frequent land reclamation [39]. The ecosystem around the Aral Sea has been largely
destroyed, particularly in the Amu Darya Delta (ADD) [40]. Characterized by a fragile ecological
environment, the ADD has undergone soil salinization [41] and experienced sandstorms and climate
change [42]. Due to both natural factors and human activities, such as extensive expansion of farmland
and construction land [43], grassland and forestland in this area have been extensively degraded [44,45],
and the structure and function of the landscape are being damaged. These phenomena have led to
high landscape ecological risk. It is important to examine the driving factors of landscape ecological to
provide a scientific reference for upcoming planning and landscape optimization. The main objectives
of this study were to (1) reveal the spatial variability of landscape ecological risk in the ADD over
the past 15 years and (2) use the GWR model to quantitatively distinguish the relationships between
landscape ecological risk and selected potential driving factors. Our research provides a reference for
future assessments of landscape ecological risk and ecological protection in other delta areas.

2. Materials and Methods

2.1. Study Area

The ADD is located downstream of the Amu Darya and crosses Uzbekistan and Turkmenistan
(Figure 1), with an area of 6.3 × 104 km2. The Amu Darya water sources are large permanent glaciers
and snow-covered areas. The Amu Darya is the main source of water in the Amu Darya basin [46],
which provides irrigation water for farmland and domestic water. As the ADD takes in water at the
end of the Amu Darya, it is severely affected by large-scale changes in hydrological conditions [47]. The
ecological environment of the ADD is sensitive to changes in natural conditions and human activities.Int. J. Environ. Res. Public Health 2019, 16, x 4 of 21 

 

 

Figure 1. Location of the study area. 

2.2. Data Description and Processing 

2.2.1. Land Use/Land Cover (LULC) 

The land-use/land-cover (LULC) dataset for 2000 and 2015 in ArcGIS shapefile format used in 

this study was developed by the Chinese Academy of Sciences through the Database of Global 

Change Parameters, with the data interpreted based on Landsat images (http://www.eercasia.com/# 

[51]). According to previous studies [11,12,15] and the environmental characteristics of the ADD, the 

land use types were divided into seven categories: farmland, forest land, grassland, construction 

land, water, wetland, and unused land. 

2.2.2. Biogeographic Variables 

According to previous studies and data availability, digital elevation model (DEM) [15], land 

surface temperature (LST) [35,52] and normalized difference vegetation index (NDVI) [3] data were 

selected as the biogeographic factors. DEM data were obtained from NASA with a spatial resolution 

of 90 m (https://search.earthdata.nasa.gov/search). LST data were derived from the 8-day composite 

MOD11A2 products at 1 km spatial resolution (https://search.earthdata.nasa.gov). The LST data were 

further aggregated into monthly and annual averages for 2000 and 2015. We used the NDVI data 

from the MOD13A1 product, which originated from the National Oceanic and Atmospheric 

Administration (NOAA)/Advanced Very High-Resolution Radiometer (AVHRR) land dataset at a 

spatial resolution of 1 km and a temporal resolution of 16 days for the study periods 

(https://search.earthdata.nasa.gov). We chose the maximum value composite (MVC) method to 

obtain the NDVI values for the year 2000 and 2015. The MVC method is a procedure used in satellite 

imaging, which is applied to vegetation studies [53–56]. It requires that a series of multitemporal geo-

referenced satellite data be processed into NDVI images. On a pixel-by-pixel basis, each NDVI value 

is examined, and only the highest value is retained for each pixel location [56]. 

2.2.3. Socioeconomic Variables 

Collecting detailed and complete socioeconomic data in this region is difficult. Hence, we 

selected three types of data that could be obtained for free as socioeconomic drivers, population 
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The ADD has an extremely continental climate characterized by extremely dry conditions
throughout the year, with hot summers and cold winters. The annual average temperature is
approximately 13 degrees Celsius, and the average frost-free period is 205 days [48]. The potential
annual evapotranspiration is 1400–1600 mm, and the average annual precipitation is only 100 mm [43].
The dry climate makes the ADD one of the most sensitive and ecologically fragile regions in the
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world. The initial landscape types in the delta were primarily marsh wetlands, reed forests and typical
riverine forests [43]. However, in recent decades, this region has experienced rapid economic and
population growth with the conversion of forests and grasslands to agricultural and construction
land, and the fragile ecological environments are highly sensitive to changes in natural factors [44,49].
These socioeconomic and biogeographic factors shape the ecological processes in the region and
contribute to the increasing ecological crisis and risks. To mitigate the gradual deterioration of the
ecological environment of the ADD, ecological restoration projects have been implemented [50].
However, the impacts of biogeographic and socioeconomic driving factors on the landscape ecological
risks of this region remain unclear. Understanding the ecological structure and function of the ADD
and exploring the impacts of these potential drivers on the ecological environment are important.

2.2. Data Description and Processing

2.2.1. Land Use/Land Cover (LULC)

The land-use/land-cover (LULC) dataset for 2000 and 2015 in ArcGIS shapefile format used in this
study was developed by the Chinese Academy of Sciences through the Database of Global Change
Parameters, with the data interpreted based on Landsat images (http://www.eercasia.com/# [51]).
According to previous studies [11,12,15] and the environmental characteristics of the ADD, the land
use types were divided into seven categories: farmland, forest land, grassland, construction land,
water, wetland, and unused land.

2.2.2. Biogeographic Variables

According to previous studies and data availability, digital elevation model (DEM) [15], land
surface temperature (LST) [35,52] and normalized difference vegetation index (NDVI) [3] data were
selected as the biogeographic factors. DEM data were obtained from NASA with a spatial resolution
of 90 m (https://search.earthdata.nasa.gov/search). LST data were derived from the 8-day composite
MOD11A2 products at 1 km spatial resolution (https://search.earthdata.nasa.gov). The LST data were
further aggregated into monthly and annual averages for 2000 and 2015. We used the NDVI data from
the MOD13A1 product, which originated from the National Oceanic and Atmospheric Administration
(NOAA)/Advanced Very High-Resolution Radiometer (AVHRR) land dataset at a spatial resolution of
1 km and a temporal resolution of 16 days for the study periods (https://search.earthdata.nasa.gov).
We chose the maximum value composite (MVC) method to obtain the NDVI values for the year 2000
and 2015. The MVC method is a procedure used in satellite imaging, which is applied to vegetation
studies [53–56]. It requires that a series of multitemporal geo-referenced satellite data be processed into
NDVI images. On a pixel-by-pixel basis, each NDVI value is examined, and only the highest value is
retained for each pixel location [56].

2.2.3. Socioeconomic Variables

Collecting detailed and complete socioeconomic data in this region is difficult. Hence, we selected
three types of data that could be obtained for free as socioeconomic drivers, population density
(POP), crop yield (tons/ha) and road network data, to investigate their relationships with landscape
ecological risk. Because agricultural production remains the principal socioeconomic activity of the
ADD [51,57], we selected the 2000 and 2015 crop yield data provided by the WUEMoCA database
(http://wuemoca.net/app/#) as one of the socioeconomic drivers in this study. In recent decades, the
population of the ADD has experienced large-scale growth, which has resulted in a series of negative
impacts to the ecological environment [57]. POP data for 2000 and 2015 were downloaded from
WorldPop (https://www.worldpop.org/geodata) with a spatial resolution of 1 km. Road network will
affect the ecological environment while promoting regional economic development [7,58]. Previous
research has shown that road networks as part of socio-economic factors can exacerbate the shift in
landscape types [59–61], particularly driving the conversion of forest land to non-forest land [62]. Kernel

http://www.eercasia.com/#
https://search.earthdata.nasa.gov/search
https://search.earthdata.nasa.gov
https://search.earthdata.nasa.gov
http://wuemoca.net/app/#
https://www.worldpop.org/geodata


Int. J. Environ. Res. Public Health 2020, 17, 79 5 of 21

density estimation has been proven to better reflect road density and network characteristics [63,64],
and are linked to landscape ecological risk [9,12]. Therefore, we used the methods used in previous
studies [12] to obtain the road kernel density (KD) data, and the road data were extracted in 2015 from
OpenStreetMap (https://www.openstreetmap.org [65]).

3. Methods

3.1. Construction of the Ecological Risk Index (ERI)

3.1.1. Landscape Disturbance Index (LDI)

The landscape disturbance index (LDI) correctly reflects the fact that external disturbances [12],
including biogeographic and socioeconomic factors, positively affect ecosystems represented by
different landscapes, which include a specific combination of the fragmentation index (Fi) (indicating
the degree of patches fragmentation for a certain landscape type [9,66]), splitting index (Si) (indicating
the degree of patches separation for a certain landscape type [9,13]) and dominant index (Di) (describing
the degree of patches importance for a certain landscape type [9,66]). The formulas for these indexes
are as follows:

Fi =
ni
Ai

(1)

Si =
A

2Ai

√
ni
A

(2)

Di =
(Qi + Mi)

4
+

Li
2

, Qi =
ni
N

, Mi =
Bi
B

, Li =
Ai
A

(3)

LDIi = aFi + bSi + cDi (4)

where ni is the number of patches of landscape i; N is the total patch number; Ai is the area of landscape
i; A is the total area; Qi is the ratio of the number of patches of landscape i to the total patch number;
Mi is the ratio of samples for landscape i to the total number of samples; Bi is the number of samples
for landscape i; B is the total number of samples; Li is the ratio of the area of patches of landscape i to
total area; and a, b and c represent the weights of the landscape metrics, where a + b + c = 1; according
to previous studies [6,9,12], these were set as a = 0.5, b = 0.3, c = 0.2.

3.1.2. Landscape Fragility Index (LFI)

The landscape fragility index (LFI) represents the vulnerability of the internal structure of the
ecosystem. This index mainly measures the stability or anti-interference ability of the landscape
structure itself [12]. A higher LFI indicates lower resistance and more significant ecological risk.
Previous studies have provided methods for determining the vulnerability of different landscape
types [11,12]. In this study, the vulnerability of the seven landscape types, consisting of construction
land, forest land, grassland, farmland, water, wetland, and unused land were ordered from lowest
to highest. Vulnerability was normalized to generate a vulnerability index for the corresponding
landscape types.

3.1.3. Ecological Risk Index (ERI)

Based on the LDI and LFI mentioned above, we constructed the landscape ecological risk index
(ERI). This index can accurately describe the relative sizes of integrated ecological losses in a specifically
selected sample and can adequately reflect the possible changes in ecological risks attributed to
landscape pattern changes. Furthermore, the indicator can be used to transform the landscape

https://www.openstreetmap.org
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structure into spatial ecological risk variables through sampling [12]. The formula that was used is as
follows [9,11,13]:

ERI =
j∑
i

Aki
Ak

√
LDIi·LFIi (5)

where ERI represents the landscape ecological risk index; Aki is the area of landscape i in sample k; Ak
is the area of sample k; and j is the number of landscape categories in sample k.

Referring to previous studies and the characteristics of landscape coverage in the study area,
we used the equal interval method to divide the study into a total of 1606 sample units with a grid
cell size of 5 × 5 km for spatial analysis of the ERI (Figure 2). Then, the ERI was calculated for each
sample area as the ecological risk value at the centre of the sample area. The ERI of the entire study
area was obtained by interpolating the total of 1606 cell points via ordinary kriging in ArcGIS 10.2
software [12,15]. Finally, the natural breaks method was used to divide the ERI into five levels: low
risk, sub-low risk, medium risk, sub-high risk and high risk [9,11].
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3.2. Spatial Autocorrelation Analyses

Spatial autocorrelation analysis is a commonly used method of spatial statistics and can
quantitatively describe the spatial distribution characteristics of statistics [67]. Xue et al. (2019)
and Hu et al. (2018) revealed the distribution patterns of regional landscape ecological risk and
ecological security, respectively, by using spatial autocorrelation analysis [15,68]. In this study, the
global Moran’s I index and local indicators of spatial association (LISA) were employed to analyse the
spatial statistics of the ERI.

The global Moran’s I provides an overall measure of spatial autocorrelation, with Moran’s I
ranging from +1 to −1 [69]. Moran’s I values >0 would indicate positive spatial autocorrelation of the
ERI; values closer to +1, indicate strong spatial autocorrelation of the ERI. Moran’s I = 0 indicates no
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spatial autocorrelation, and the ERI exhibits a random spatial distribution; Moran’s I values <0 would
indicate negative spatial autocorrelation of the ERI. LISA represents a set of local statistical methods
that can measure the spatial autocorrelation of each observed object in a spatially adjacent area to reveal
the spatial clustering pattern of the research object. The spatial clustering can be defined using the
local Moran’s I index [67]. A positive LISA indicates that the object value is similar to the neighbouring
values and exhibits a high-high cluster (H-H, high value in a high-value neighbourhood) or low-low
cluster (L-L, low-value in a low-value neighbourhood) spatial clustering mode. A negative LISA
indicates potential spatial outliers of target values, including high and low outliers (H-L, high values
in low-value neighbourhoods) and low-high outliers (L-H, low values in high-value neighbourhoods),
that are significantly different from the values in the surrounding area [67].

3.3. Geographically Weighted Regression (GWR) Model

As a form of regression model, the GWR has demonstrated superiority in reflecting the spatial
variation in observed variables by considering the spatial position of the sample [70]. This regression
method is different from a traditional linear regression because it allows for local parameter estimation.
The results of these parameters show how the relationships between variables changes throughout
the space, and local spatial patterns can be detected and estimated to understand the possible causes
of this pattern [71]. In GWR, the parameters for each observation at each location can be estimated
by weighting all observations around a specific point according to their spatial proximity. Gaussian
distance decay can be used to express the weighting function:

Wij = exp

d
2
i j

h2

 (6)

where Wij represents the weight of observation j for location i, dij is the Euclidean distance between
points i and j, h is a kernel bandwidth that affects the distance-decay of the weighting function. The
kernel bandwidth [31,72] is very important when building a GWR model, which is usually determined
by cross-validation (CV) or the Akaike information criterion (AICc) [72,73]. Since the AICc method
considers the difference in the degree of freedom of different models compared to the CV method, it
can solve the problem more quickly and conveniently. In this paper, we use a Gaussian function to
determine the weight and the AICc method to determine the optimal bandwidth [9,64]. The GWR
equation is defined as follows:

yi(ui, vi) = βo(ui, vi) +
∑
β j(ui, vi)xi + ei(ui, vi) (7)

where yi is the value of the ERI for the i th grid; xi is the selected factor of ERI (e.g., DEM, LST, NDVI,
POP, crop yields, road KD); βo and βj are the coefficients of the constant and the explanatory variables,
and ei is the stochastic error term; (ui, vi) is the geographic coordinates of the ith grid. The GWR model
generates a coefficient for each grid, and the coefficient is obtained by the following formula:

β̂(ui, vi) = (X′w(ui, vi)X)−1X′w(ui, vi)Y (8)

where w(ui, vi) is the spatial weight matrix, which is unique for each grid [64]. In this study, the
biogeographic and socioeconomic variables were resampled to 5 × 5 km grids by using the bilinear
interpolation method [45,74,75] to match the ERI data and used the spatial modelling tool in ArcGIS
10.2 software to calculate the GWR parameters.
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4. Results

4.1. Landscapes Change

During the study period, the dominant landscape in the study area remained farmland, which
accounted for almost 56% and 58% of the total area in 2000 and 2015, respectively (Figure 3). Unused
land was also widely distributed in the ADD, mainly in the lower reaches and the edge of the ADD,
occupying 17.07% and 19.93% of the total area in 2000 and 2015, respectively. Grassland accounted for
15.82% and 10.65% of the total area in 2000 and 2015, respectively. Forest lands, water and wetlands
were the least extensive landscape types in the ADD, each accounting for less than 7% of the total area.
Forest land was mainly distributed along the Amu Darya.
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Figure 4 shows how the landscapes have changed over the 15 years. Over the period 2000–2015,
there were increases in the proportions of farmland, unused land and construction land in the ADD.
Construction land and unused land increased by 16.83% and 16.79%, respectively, while farmland
increased by 5% over the past 15 years. However, opposite trends were observed for wetland,
water, grassland and forest land areas, which showed varying degrees of decline. Among these,
the most obvious reductions were in forestland and grassland, which decreased by 37.55% and
32.70%, respectively.
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4.2. Changes in Landscape Metrics

As shown in Figure 5, there were pronounced changes in the landscape indexes from 2000 to
2015. In terms of fragmentation (Figure 5a), as measured by the landscape fragmentation index, the
wetland and water areas possessed high values in 2000 and 2015, whereas the farmland, construction
land and unused land had low values in both years. The results revealed that among the landscape
types wetland and water landscapes exhibited the highest degrees of patch separation. Additionally,
farmland, construction land and unused land exhibited low degrees of patch separation. The extent of
landscape fragmentation in 2015 was higher than that in 2000 for all landscape types, which implied
that landscape fragmentation had increased during the study period. The landscape fragmentation
index of forest land and grassland increased significantly between the two years, revealing rapid
increases in the fragmentation of forest land and grassland patches.
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splitting index (c).

In terms of dominance (Figure 5b), the landscape dominance index values for farmland and
unused land were higher than those for the other landscape types, indicating that farmland and unused
land were the dominant landscape types in the ADD according to the size of the area of each landscape
(Figure 3). The landscape dominance index values of the farmland and unused land showed increasing
trends from 2000 to 2015, whereas those values of forest land, grassland, water and wetland decreased
over the studied period. The landscape dominance index of construction land changed little over the
studied period.

In terms of separation, wetlands had the highest landscape splitting index value among the
landscape types, followed by water (Figure 5c). During the studied period, the separation of all the
landscape types showed an increasing trend, with that of forest land increasing significantly over the
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15 years. However, the changes in landscape splitting index for farmland, construction land, unused
land and grassland were small, with weakly increasing trends from 2000 to 2015.

4.3. Changes in Ecological Risk Index (ERI)

Figure 6 shows the spatial distribution of the ERI in the ADD in 2000 and 2015. The figure reveals
that the ERI distribution varied over space and time. In 2000 (Figure 6a), the high-risk areas were
mainly located at the periphery of the ADD, with some small zones near the city of Nukus, whereas
the sub-high-risk areas were mainly distributed in the lower reaches of the ADD. Furthermore, most
of the low-and sub-low risk regions were located in the west and central region of the ADD, and the
medium-risk zones were mainly distributed at the periphery of the ADD. The most significant changes
in the spatial distribution of the ERI from 2000 to 2015 (Figure 6b) were in the high-risk regions, which
were mainly located in the lower reaches of the ADD. Moreover, the spatial distributions of the ERI
(Figure 6) in 2000 and 2015 showed that the risk degree gradually decreased from the outside to the
inside of the study area, indicating that the degree of risk on the outside of the study region was
relatively higher than that on the inside of the study region during the research period.
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The areas and variations in different levels of the ERI during the study period are shown in Table 1.
The ecological risk levels of low and sub-low risk accounted for more than half the total area of the
ADD in both 2000 and 2015. The high ecological risk zones covered 2832.35 km2 and 5283.65 km2 in
2000 and 2015, respectively, which indicated that the total area of high-risk areas exhibited a significant
increase trend (by 86.55%) from 2000 to 2015. The total area of medium ecological risk areas decreased
from 6718.05 km2 in 2000 to 6186.15 km2 in 2015, representing a decrease of 7.92%, and the sub-high
ecological risk areas represented 17.86% and 12.8% of the study area in 2000 and 2015, respectively.

Table 1. Changes in the proportion of the ecological risk index (ERI) from 2000 to 2015.

Risk Grade 2000 2015 2000–2015

Area (km2) Ration Area (km2) Ration Area (km2) Ration
Low 10,409.3 28.81% 10,811.8 29.92% 402.5 3.87%

Sub-low 9717.7 26.90% 9231.98 25.55% −485.72 −5.00%
Medium 6718.05 18.59% 6186.15 17.12% −531.9 −7.92%
Sub-high 6452.08 17.86% 4625.73 12.80% −1826.35 −28.31%

High 2832.35 7.84% 5283.65 14.62% 2451.3 86.55%
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Using intersect tool, as implemented in ArcGIS, we created a spatial map of risk levels changes in
the ADD between 2000 and 2015, and there were 21 different combinations. The combinations with
no risk level transformation or smaller conversion areas were merged into “Stable or little change”.
Finally, 10 combinations of risk level transformation were formed as shown in Figure 7. Among
them, there were five combinations that transformed from low level risk to high level risk and four
combinations that transformed from high level risk to low level risk. As shown in the figure, most risk
levels remained stable or little changes spatially during the study period, although large changes were
observed in the lower reaches of the ADD, mainly comprising changes from sub-high to high ecological
risk. Changes from the sub-low to low ecological risk levels mainly occurred in the Turkmenistan
(TKM) region of the ADD. The changes in risk level showed that the regions of higher risk degree
were mainly in the Uzbekistan (UZB) part of the delta, especially in the downstream part of the ADD,
whereas the regions with lower risk degree were concentrated in TKM. Table 2, shows the changes
in the distribution of risk levels in the TKM and UZB regions of the ADD. High ecological risk areas
increased by almost 160%, but other risk levels all showed a downward trend in the UZB part of the
ADD over the past 15 years. In the TKM, the low ecological risk increased by almost 20% and other
ecological risk levels tended to decrease, with the high ecological risk decreasing significantly (54%).Int. J. Environ. Res. Public Health 2019, 16, x 11 of 21 
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Table 2. Percentage changes in the ERI from 2000 to 2015 in different regions.

Risk Grade Low Sub-Low Medium Sub-High High

UZB (Uzbekistan) −4.84% −6.46% −11.76% −34.32% 157.57%
TKM (Turkmenistan) 11.93% −1.19% −2.99% −0.08% −54.83%

4.4. Spatial Autocorrelation of ERI

GeoDa is a free and open source software tool that serves as an introduction to spatial data
analysis. Using GeoDa 1.14 (University of Chicago, Chicago, IL, USA) (http://geodacenter.github.io/

download.html), we conducted spatial autocorrelation analysis of the ERI values in 2000 and 2015.The
values of Moran’s I were 0.669318 and 0.718535 in 2000 (Figure 8a) and 2015 (Figure 8b), respectively.

http://geodacenter.github.io/download.html
http://geodacenter.github.io/download.html
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The global Moran’s I value of the ERI was greater than zero during the studied period, which revealed
spatial clustering of the ERI, which also indicates a strong positive correlation. Moran’s I of the ERI
significantly increased from 2000 to 2015, indicating that the spatial clustering in ERI distribution was
enhanced over time in the ADD.
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A spatial LISA cluster map for the ERI in 2000 and 2015 was obtained (Figure 8c,d). The spatial
distribution of the ERI in the study periods was dominated by the “L-L” and “H-H” trends. The “L-L”
areas were mainly distributed in the central ADD, and the “H-H” areas were mainly concentrated
on the edge and lower reaches of the ADD in 2000 and 2015. However, the “H-H” areas that were
distributed in the lower reaches of the ADD exhibited a significant increasing trend from 2000 to 2015,
which revealed that the areas with high ecological risk in this region increased significantly.

4.5. Geographically Weighted Regression (GWR) Model

4.5.1. Biogeographic Factors

Using the ERI as the independent variable and biophysical and socioeconomic variables as
explanatory factors, we mapped the correlation coefficients between the various variables and the
ERI at the grid level through the GWR model (Figures 9 and 10). In the GWR model, the coefficients
described statistically significant associations between the independent variable and explanatory
factors; coefficients >0 revealed a positive relationship while coefficients <0 revealed a negative
relationship with the independent variable.
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Figure 10. Spatial distribution of the coefficients for the socioeconomic factors in the GWR model:
(a,d) population density (POP); (b,e) crop yield; and (c,f) road kernel density (KD).

Figure 9a,d show the spatial distribution of the coefficients of the correlation between LST and the
ERI in 2000 and 2015, respectively. A positive relationship between LST and ERI was observed in most
areas of the delta, and a small portion of the northern delta region exhibited a negative relationship in
the two years. The area with positive correlation coefficients (red colour) increased from 2000 to 2015
and became concentrated in the TKM region in 2015, and the negative-relationship areas increased in
the north of the ADD.

In contrast to the patterns observed with the LST, a negative correlation between the NDVI and
ERI was observed in most areas of the ADD, and a small part showed a positive correlation (Figure 9b,e).
Over the 15 years, the areas with positive relationships tended to decrease in the ADD, although an
upward trend was observed in the lower parts of the ADD. The coefficients for the DEM were mapped
in Figure 9c,f, which showed that most regions showed a positive relationship of DEM with the ERI
in 2000 and 2015 and that there were areas with negative relationships in the northern part of the
ADD. From 2000 to 2015, the areas with strong positive correlations increased significantly, which were
mainly located in the southern part of the ADD (the regions in red).
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4.5.2. Socioeconomic Factors

Figure 10a,d show the correlation coefficients between the POP and ERI at the grid level according
to the GWR model. The positive correlation areas were mainly distributed in the centre of the ADD
in 2000 and 2015. However, in the lower reaches of the ADD, the areas with positive correlations
increased between 2000 and 2015. The areas with negative coefficients for POP were mainly located at
the borders of the ADD during the study period.

Figure 10b,e show that the areas with positive coefficients for crop yield were located in the central
region of the ADD and that from 2000 to 2015, the positive-coefficient areas were reduced near northern
Nukus. Most areas with negative correlations were located in the north and south of the ADD, and
areas with small negative coefficients increased in the upper reaches and lower reaches of the ADD
over the 15 years.

The coefficients for road KD in 2000 and 2015 are mapped in Figure 10c,f, respectively. In 2000
and 2015, most of the ADD was represented by negative coefficients, and the smallest coefficients
(the regions in blue) were mainly located within the boundaries of the ADD. The positive coefficients
mainly occupied the nodes of the road network and areas near the cities during the study period.

5. Discussion

5.1. Temporal and Spatial Patterns of the ERI

The spatial distribution of the ERI in 2000 and 2015 showed a consistent pattern, with higher ERI
levels at the periphery of the ADD and lower ERI levels in the interior of the ADD (Figure 6). A possible
reason for this pattern is that at the boundary of the ADD, the main landscape type was forest land;
the fragmentation and separation of forest land was high (Figure 5), increasing the ERI at the ADD
boundaries. On the other hand, this difference may be due to the poor soil and water conservation
functions at the boundary of the ADD [57], the lack of management, and the inappropriate land use
patterns, which led to more fragmented landscapes and increased the landscape risks [76]. The high
landscape ecological risks at the edge of ADD serve as a reminder to policymakers to pay attention to
the outlying regions of the regional ecosystems, such as delta margins. Because these regions are in the
interlaced regions of the ecosystem [77], the ecological environment and ecosystem stability may be
more sensitive to external disturbances [78], a possibility that should be considered when developing
eco-planning policies.

The ERI inside the ADD is low, which may be related to the type of internal landscape. The interior
of the ADD consists mainly of farmland and construction land. The fragmentation and separation of
the landscape are small; moreover, the ecosystem in the internal delta is stable and strong and may
produce lower ERI values, which is consistent with previous studies [5,12].

The greatest changes in the spatial distribution of the ERI were mainly concentrated downstream
of the ADD. These changes correspond to the increase in the ERI from sub-high risk to high risk
(Figure 7). The landscape ecological risk increased over time in the lower reaches of the ADD, which
might be predominantly due to the degradation of a large number of grasslands to unused land
(Figures 3 and 4). Compared with the coverage in 2000, large areas of grassland have been degraded,
resulting in increased grassland dispersal, landscape separation and fragmentation and ecological risks.
In this study, we found that the ecology downstream of the ADD showed significant degradation,
which has also been confirmed by previous studies [44,51,79].

The ERI of the UZB region of the ADD was significantly higher than that of the TKM region
(Table 2). The UZB had a high level of ecological risk associated with large-scale degradation of
grasslands and forestlands. In addition, studies have shown that due to agricultural expansion in
the southwestern part of the ADD, a water supply channel has been established to supply water for
agriculture in the TKM portion from the Amu Darya [51,80]. Therefore, most of the expanded farmland
that was converted from highly fragmented grassland and forestland is concentrated in this area
(Figure 3), which may improve the stability of the ecosystem and reduce the ecological risk of the area.
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After the disintegration of the Soviet Union in 1991, UZB and TKM shifted from a socialist society
to a capitalist society, and many individuals from rural populations migrated to the cities because of
the transition from a planned economy to a free market [51,81]. The decline of the rural population and
the subsequent disappearance of large agricultural subsidies have contributed to the abandonment of
degraded farmland in the ADD, and this phenomenon is more common in UZB than in TKM [82,83].
In addition, the secondary vegetation that forms after the abandonment of farmland has a simple
structure low biodiversity [15]. The abandonment of farmland not only entails an increased ecological
risk for UZB but also has adverse socio-economic impacts, including increased food insecurity, a
reduction in the number of households and increased unemployment [83].

In the last century, due to human activities, the amount of water transported from the Amu Darya
into the Aral Sea decreased, triggering the Aral Sea crisis [37]. Maintaining a stable ecosystem of the
ADD is extremely important for promoting the ecological environment of the Aral Sea and surrounding
areas. Therefore, the landscape ecological risk of ADD should be addressed and efforts made to reduce
risk to avoid further ecological disasters.

5.2. Effects of Biogeographic Factors on the ERI

In this paper, the impacts of biogeographic factors on the ecological environment in the ADD
were quantitatively analysed using a GWR model, and the relationships between the landscape
ERI and the selected driving factors of LST, NDVI and DEM were analysed. The LST can reveal
substantial information about the ecological environment [84]. Changes in the LST can disturb the
balance of matter and energy between the ground and atmospheric materials, resulting in changes
in landscapes, climatic conditions [84,85] and vegetation [35], thereby affecting the local ecological
environment. Furthermore, an increase in LST often reflects a deterioration of the regional ecological
environment [35,86], as suggested by the results of this paper. In most areas of the ADD, the ERI
and LST showed positive correlations (Figure 9a,d); the increases in LST will lead to increases in the
regional landscape ecological risk.

However, in the northern part of the ADD, there were negative correlations in small regions. It is
possible that soil moisture and humidity are sufficiently high in the northern part of the ADD [57]
that the increase in surface temperature is not the main impacting factor in this region, which might
explain the negative correlations. The NDVI is a good indicator of vegetation, which in turn reflects
the state of the ecological environment [68]. The degradation of vegetation indicates the degradation
of ecosystem function. Previous research has revealed pronounced vegetation degradation in the
ADD [44]. In 2000 and 2015, strong negative correlations between NDVI and the ERI were observed in
most areas (Figure 9b,e), indicating that vegetation has an inhibitory effect on landscape ecological risk
of the ADD.

However, unexpectedly, some sporadic areas showed positive correlations, particularly in the
lower delta. This result may be due to the fact that the landscape types in the lower parts of the Amu
Darya are mainly forest land, grasslands and wetlands. The vegetation cover in this area is high and
shows high NDVI values, although fragmentation of forest land, grassland and wetland landscapes
occurs (Figure 5). A high degree of separation leads to increased landscape ecological risk; accordingly,
a region with a positive correlation between the NDVI and ERI formed in the downstream regions
of the ADD. The relationship between the DEM and the ERI exhibited a strong spatial pattern: in
the middle and upper regions of the ADD, the DEM was positively correlated with the ERI, in the
lower region, negative correlations were observed (Figure 9c,f), which is consistent with the results of
previous research [15]. The DEM is one of the driving forces of changes in landscape type [87], and
landscape ecological risks are closely related to landscape dynamics. The results of this study indicate
that when using delta land, elevation should be considered when developing and using the upper and
lower regions of the delta.
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5.3. Effects of Socioeconomic Factors on the ERI

In 2000 and 2015, in the central part of the ADD, POP had significant positive correlations with the
ERI (Figure 10a,d); suggesting that the increases in population size increased the landscape ecological
risk in this area. These areas are mainly densely populated cities and their surrounding areas. Moreover,
we observed a positive correlation between the downstream POP of the ADD and the ERI in 2015,
which is inconsistent with the pattern observed in 2000. This result shows that the impact of human
activities expanded from 2000 to 2015. The increase in POP has resulted in ecological risks for the
sparsely populated areas in the lower part of the ADD. This result may be relevant to policymakers in
the lower reaches of the ADD, where landscape ecological risks are particularly sensitive to population
growth. At the periphery of the delta, POP is inversely related to the ERI, suggesting that population
growth during the study period was not sufficient to influence the ecological risks of these areas.

The ADD is the main food production base of the ASB, and has experienced a series of ecological
and environmental problems due to inappropriate agricultural production activities [39]. As shown
in this paper, the crop yield and the ERI are positively correlated in the major food production areas,
such as the Nukus irrigation district (Figure 10b,e). The higher the yields of grain crops are in this
region, the higher the degree of landscape ecological risk. Higher crop yields mean increases in the
amount of land reclamation and agricultural irrigation and the degree of fragmentation of cultivated
land, resulting in a higher ERI.

In 2000 and 2015, the areas where the road network density was positively correlated with the ERI
were mainly concentrated at the nodes of the city centres and the road network (Figure 10c,f), which is
consistent with the results of previous studies [9,12]. However, negative correlations occurred at the
ADD boundary, which confirms previous studies demonstrating that road networks are negatively
correlated with the ERI in less dense areas [12].

6. Conclusions

Quantitative evaluations of the relationships between regional ecological risk and driving factors
are of great significance for the prevention of regional ecological risk and landscape pattern optimization.
To adequately explore the considerable influences of biophysical and socioeconomic factors on the
landscape ecology of the ADD, we constructed the ERI of the ADD in Central Asia from 2000 to 2015
and used spatial autocorrelation and a GWR model to analyse the possible ERI changes and driving
forces. The results showed that the distribution of the ERI exhibited a gradually decreasing trend
from the periphery to the middle of the study area in both 2000 and 2015. The high-risk areas were
mainly distributed in the downstream regions of the delta, and the total area of these areas increased
by 86.55% from 2000 to 2015. The changes in the spatial distribution of the ERI revealed that most risk
levels remained stable over the 15 years, although large transitions were observed in the lower reaches
of the ADD, which were mainly caused by area transformations from sub-high ecological risk to high
ecological risk.

The Moran’s I index values for 2000 and 2015 were 0.669318 and 0.718535, respectively, indicating
pronounced spatial aggregation of the ERI. The risk “hot spot” areas were mainly distributed in
the periphery and downstream regions of the delta, whereas the “cold spot” areas were mainly
concentrated in the middle of the ADD.

The GWR model indicated that crop yield and the ERI exhibited significant positive correlations
in the middle of the study area. Except for a few areas in the central region, the NDVI had a significant
and negative impact on the ERI. Road density was positively correlated with the ERI in cities and
roads, and in most areas of the ADD, the LST and DEM had positive impacts on the ERI. In 2000 and
2015, POP was significantly positively correlated with the ERI in the densely populated cities of the
central delta and its surrounding areas. Moreover, the positive impact of population density on the
ERI gradually extended from 2000 to the downstream regions of the ADD in 2015.

The ADD is adjacent to the Aral Sea, and its ecological environment has strong impacts on the
stability and function of regional ecosystems. Land development and infrastructure construction
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should be reduced at the edges and downstream regions of the delta, and policies for the protection
of forest lands and grasslands (such as grazing reduction policies) should be formulated to achieve
ecological restoration. Furthermore, saline-alkali land control measures should be launched to increase
land productivity, and drip irrigation technology should be encouraged through agricultural subsidies
to alleviate the ecological pressure brought to the delta by agricultural production. Furthermore,
ecological protection engineering can be considered to address the negative impacts of environmental
variability on the delta ecosystem.

The variations of landscape ecological risk are also impacted by national and local policies [15,88].
Due to the disintegration of the Soviet Union, the ADD showed changes in socio-economic patterns
around 1991, the subsequent associated policies related to grazing, agricultural subsidies and water
utilization have changed, leading to changes in vegetation cover and landscape types [89], which may
affect the landscape ecological risk of ADD. In our research, we did not analyze changes in social
institutions and local policies as the driving factor. Changes in regional landscape ecological risks
before and after changes in social institutions and local policies should be studied in future research.
Moreover, in order to further reveal the changes in landscape ecological risk and provide information
for ADD landscape planning and ecological protection, the multiple time series spatio-temporal
patterns change in landscape ecological risk based on the previous change-detection method [16] will
be included in future research.
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in Ślęża Landscape Park (Southwestern Poland) in 1883–2013. Sustainability 2018, 10, 4526. [CrossRef]

63. Cai, X.; Wu, Z.; Cheng, J. Using kernel density estimation to assess the spatial pattern of road density and its
impact on landscape fragmentation. Int. J. Geogr. Inf. Sci. 2013, 27, 222–230. [CrossRef]

64. Hu, X.; Zhang, L.; Ye, L.; Lin, Y.; Qiu, R. Locating spatial variation in the association between road network
and forest biomass carbon accumulation. Ecol. Indic. 2017, 73, 214–223. [CrossRef]

65. Haklay, M.; Weber, P. OpenStreet map: User-generated street maps. IEEE Pervasive Comput. 2008, 7, 12–18.
[CrossRef]

66. Uuemaa, E.; Mander, Ü.; Marja, R. Trends in the use of landscape spatial metrics as landscape indicators: A
review. Ecol. Indic. 2013, 28, 100–106. [CrossRef]

67. Amelin, L. Local Indicators of Spatial Association-LISA. Geogr. Anal. 1995, 27, 93–115.
68. Hu, M.; Li, Z.; Yuan, M.; Fan, C.; Xia, B. Spatial differentiation of ecological security and differentiated

management of ecological conservation in the Pearl River Delta, China. Ecol. Indic. 2019, 104, 439–448.
[CrossRef]

69. Yavitt, J.B.; Burtis, J.C.; Smemo, K.A.; Welsch, M. Plot-scale spatial variability of methane, respiration, and
net nitrogen mineralization in muck-soil wetlands across a land use gradient. Geoderma 2018, 315, 11–19.
[CrossRef]

70. Tu, J.; Xia, Z.G. Examining spatially varying relationships between land use and water quality using
geographically weighted regression I: Model design and evaluation. Sci. Total. Environ. 2008, 407, 358–378.
[CrossRef]

71. Fotheringham, A.S.; Charlton, M.E.; Brunsdon, C. Spatial Variations in School Performance: A Local Analysis
Using Geographically Weighted Regression. Geogr. Environ. Model. 2001, 5, 43–66. [CrossRef]

72. Ogneva-Himmelberger, Y.; Pearsall, H.; Rakshit, R. Concrete evidence & geographically weighted regression:
A regional analysis of wealth and the land cover in Massachusetts. Appl. Geogr. 2009, 29, 478–487. [CrossRef]

73. Liu, C.; Wu, X.; Wang, L. Analysis on land ecological security change and affect factors using RS and GWR in
the Danjiangkou Reservoir area, China. Appl. Geogr. 2019, 105, 1–14. [CrossRef]

74. Shi, W.; Wang, B.; Tian, Y. Accuracy Analysis of Digital Elevation Model Relating to Spatial Resolution and
Terrain Slope by Bilinear Interpolation. Math. Geosci. 2014, 46, 445–481. [CrossRef]

75. Chao, L.; Zhang, K.; Li, Z.; Zhu, Y.; Wang, J.; Yu, Z. Geographically weighted regression based methods for
merging satellite and gauge precipitation. J. Hydrol. 2018, 558, 275–289. [CrossRef]

http://dx.doi.org/10.1016/j.rse.2013.08.022
http://dx.doi.org/10.3390/rs11091014
http://dx.doi.org/10.1016/j.ecolind.2018.07.060
http://dx.doi.org/10.1016/j.pce.2013.05.002
http://dx.doi.org/10.1007/s11769-014-0654-9
http://dx.doi.org/10.1016/j.gloenvcha.2018.12.001
http://dx.doi.org/10.3390/su10020423
http://dx.doi.org/10.1007/s10113-017-1186-5
http://dx.doi.org/10.3390/su10124526
http://dx.doi.org/10.1080/13658816.2012.663918
http://dx.doi.org/10.1016/j.ecolind.2016.09.042
http://dx.doi.org/10.1109/MPRV.2008.80
http://dx.doi.org/10.1016/j.ecolind.2012.07.018
http://dx.doi.org/10.1016/j.ecolind.2019.04.081
http://dx.doi.org/10.1016/j.geoderma.2017.11.038
http://dx.doi.org/10.1016/j.scitotenv.2008.09.031
http://dx.doi.org/10.1080/13615930120032617
http://dx.doi.org/10.1016/j.apgeog.2009.03.001
http://dx.doi.org/10.1016/j.apgeog.2019.02.009
http://dx.doi.org/10.1007/s11004-013-9508-8
http://dx.doi.org/10.1016/j.jhydrol.2018.01.042


Int. J. Environ. Res. Public Health 2020, 17, 79 21 of 21

76. Tsvetsinskaya, E.A.; Vainberg, B.I.; Glushko, E.V. An integrated assessment of landscape evolution, long-term
climate variability, and land use in the Amudarya Prisarykamysh delta. J. Arid Environ. 2002, 51, 363–381.
[CrossRef]

77. Arto, I.; García-Muros, X.; Cazcarro, I.; González-Eguino, M.; Markandya, A.; Hazra, S. The socioeconomic
future of deltas in a changing environment. Sci. Total. Environ. 2019, 648, 1284–1296. [CrossRef]

78. Chen, M.; Liu, J. Historical trends of wetland areas in the agriculture and pasture interlaced zone: A case
study of the Huangqihai Lake Basin in northern China. Ecol. Model. 2015, 318, 168–176. [CrossRef]

79. Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term
desertification process and assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104,
195–208. [CrossRef]

80. Zonn, I.S.; Kostianoy, A.G. The Turkmen Lake Altyn Asyr and Water Resources in Turkmenistan; Springer: Berlin,
Germany, 2013.

81. Gleason, G. Markets and Politics in Central Asia; Routledge: Abingdon, UK, 2003.
82. Hostert, P.; Kuemmerle, T.; Prishchepov, A.; Sieber, A.; Lambin, E.F.; Radeloff, V.C. Rapid land use change

after socio-economic disturbances: The collapse of the Soviet Union versus Chernobyl. Environ. Res. Lett.
2011, 6, 045201. [CrossRef]

83. Bekchanov, M.; Lamers, J.P.A. Economic costs of reduced irrigation water availability in Uzbekistan (Central
Asia). Reg. Environ. Chang. 2016, 16, 2369–2387. [CrossRef]

84. Duan, S.-B.; Li, Z.-L.; Leng, P. A framework for the retrieval of all-weather land surface temperature at a high
spatial resolution from polar-orbiting thermal infrared and passive microwave data. Remote Sens. Environ.
2017, 195, 107–117. [CrossRef]

85. Li, Z.-L.; Tang, B.-H.; Wu, H.; Ren, H.; Yan, G.; Wan, Z.; Trigo, I.F.; Sobrino, J.A. Satellite-derived land surface
temperature: Current status and perspectives. Remote Sens. Environ. 2013, 131, 14–37. [CrossRef]

86. Abera, T.A.; Heiskanen, J.; Pellikka, P.; Maeda, E.E. Rainfall–vegetation interaction regulates temperature
anomalies during extreme dry events in the Horn of Africa. Glob. Planet. Chang. 2018, 167, 35–45. [CrossRef]

87. Wilson, J.W.; Sexton, J.O.; Todd Jobe, R.; Haddad, N.M. The relative contribution of terrain, land cover, and
vegetation structure indices to species distribution models. Biol. Conserv. 2013, 164, 170–176. [CrossRef]

88. Tong, X.; Wang, K.; Brandt, M.; Yue, Y.; Liao, C.; Fensholt, R. Assessing Future Vegetation Trends and
Restoration Prospects in the Karst Regions of Southwest China. Remote Sens. 2016, 8, 357. [CrossRef]

89. Zhou, Y.; Zhang, L.; Xiao, J.; Williams, C.A.; Vitkovskaya, I.; Bao, A. Spatiotemporal transition of institutional
and socioeconomic impacts on vegetation productivity in Central Asia over last three decades. Sci. Total.
Environ. 2019, 658, 922–935. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1006/jare.2001.0951
http://dx.doi.org/10.1016/j.scitotenv.2018.08.139
http://dx.doi.org/10.1016/j.ecolmodel.2014.12.012
http://dx.doi.org/10.1016/j.ecolind.2019.04.067
http://dx.doi.org/10.1088/1748-9326/6/4/045201
http://dx.doi.org/10.1007/s10113-016-0961-z
http://dx.doi.org/10.1016/j.rse.2017.04.008
http://dx.doi.org/10.1016/j.rse.2012.12.008
http://dx.doi.org/10.1016/j.gloplacha.2018.05.002
http://dx.doi.org/10.1016/j.biocon.2013.04.021
http://dx.doi.org/10.3390/rs8050357
http://dx.doi.org/10.1016/j.scitotenv.2018.12.155
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Data Description and Processing 
	Land Use/Land Cover (LULC) 
	Biogeographic Variables 
	Socioeconomic Variables 


	Methods 
	Construction of the Ecological Risk Index (ERI) 
	Landscape Disturbance Index (LDI) 
	Landscape Fragility Index (LFI) 
	Ecological Risk Index (ERI) 

	Spatial Autocorrelation Analyses 
	Geographically Weighted Regression (GWR) Model 

	Results 
	Landscapes Change 
	Changes in Landscape Metrics 
	Changes in Ecological Risk Index (ERI) 
	Spatial Autocorrelation of ERI 
	Geographically Weighted Regression (GWR) Model 
	Biogeographic Factors 
	Socioeconomic Factors 


	Discussion 
	Temporal and Spatial Patterns of the ERI 
	Effects of Biogeographic Factors on the ERI 
	Effects of Socioeconomic Factors on the ERI 

	Conclusions 
	References

