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ABSTRACT Here, we report the 7.7-Mbp genome sequence of Rhodococcus sp. strain 9,
which was isolated from Australian groundwater contaminated with phenols and trichloro-
ethylene. This strain has previously been shown to efficiently degrade p-nitrophenol and
high-molecular-weight polycyclic aromatic hydrocarbons (PAHs).

Rhodococcus is a Gram-positive genus classified in the phylum Actinomycetota (1). Species
within this genus have an extraordinary catabolic versatility, allowing them to degrade

several recalcitrant pollutants (1). Here, we present the genomic data of Rhodococcus sp. strain
9, which was isolated from Australian groundwater contaminated with phenols and trichloro-
ethylene (2). Strain 9 has been shown to degrade and utilize p-nitrophenol (2) and low- and
high-molecular-weight polycyclic aromatic hydrocarbons (PAHs), including phenanthrene,
pyrene, and benzo[a]pyrene, as sources of carbon and energy (3, 4).

Strain 9 was grown in Luria-Bertani broth at 25°C with shaking (120 rpm) for 40 h. Total
genomic DNA was extracted using the DNeasy UltraClean microbial kit (Qiagen), following
the manufacturer’s instructions. The same extracted DNA was used for Illumina and Nanopore
library preparation and sequencing at the Microbial Genome Sequencing Center (Pittsburgh,
USA). Illumina sequencing libraries were prepared using the Illumina DNA prep kit and
Integrated DNA Technologies 10-bp unique dual indexes; the libraries were sequenced
on an Illumina NextSeq 2000 platform (2 � 151 bp), demultiplexed, and adaptor trimmed
using bcl2fastq v2.20.0422. Oxford Nanopore sequencing libraries were prepared using Oxford
Nanopore’s “Genomic DNA by Ligation” protocol and sequenced on a Nanopore R9 flow cell
(R9.4.1) with no size selection, followed by signal processing, base calling, and adapter trimming
using Guppy v4.2.2 (GPU mode). The Illumina reads were processed using fastp v0.22.0 (5) to
remove adapter and barcode sequences, correct mismatched bases in overlaps, and filter
low-quality reads. Nanopore long reads of ,1 kb were removed using Filtlong v0.2.0 (https://
github.com/rrwick/Filtlong). De novo hybrid assembly was performed with 166,391 filtered
reads (N50, 11,298 bp) using Trycycler v0.3.3 (6). Briefly, 12 assemblies were generated using
Flye v2.9-b1768 (7), Raven v1.2 (8), and Minipolish v0.1.2 (9), which predicted 3 contigs. The
Trycycler v0.3.3 cluster function was used to group similar contigs from different assemblies
into clusters (6). The Trycycler v0.3.3 reconcile function was used to reconcile each contig in
each cluster, including rotating, trimming, and circularization, which resulted in two circular
contigs and one linear contig (6). The Trycycler v0.3.3 functions msa, partition, and consensus
were used to generate a consensus assembly, which was polished using Medaka v1.0.3,
Bowtie2 v2.4.5 (10), and Pilon v1.24 (11). The linear contig was reassembled using Unicycler
(Galaxy v0.4.8.0) (12) to recover the ends, which resulted in 691,102 bp. A BLASTn search of
NCBI was performed (28 July 2022), using as the query 1 kbp of the right and left ends of
the linear contig, which matched (query coverage, .95%; identity, .87%) the Rhodococcus
jostii RHA1 linear plasmids pRHL2 (GenBank accession no. CP000433.1) and pRHL3
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(CP000434.1). Collectively, this assembly predicted a circular 7,770,219-bp chromosome, a
potentially linear 691,102-bp plasmid, and a circular 139,990-bp plasmid. Default parame-
ters were used for all computational tools unless specified otherwise. Functional annota-
tion of the genome was carried out using NCBI’s Prokaryotic Genome Annotation Pipeline
(PGAP) v6.2 (13). Genome annotation predicted 8,095 genes in strain 9, of which 8,031 are
coding DNA sequences and 64 genes encode RNA, including 12 rRNAs, 49 tRNAs, 2 non-
coding RNAs (ncRNAs), and 1 transfer-messenger RNA (tmRNA).

The genome of strain 9 was compared with other Rhodococcus species. FastANI v1.3 (14)
was used to compute the average nucleotide identity (ANI) against 99 Rhodococcus
genomes in the RefSeq database (downloaded on 7 April 2022) which had “complete
genome assembly” status. The organism with the highest ANI (98.0843%) to strain 9 was
Rhodococcus opacus 1CP (BioProject accession no. PRJNA253567).

Data availability. The draft genome sequence is available at NCBI GenBank under
the accession no. CP095403.1, and the raw sequencing reads are available at the NCBI
Sequence Read Archive (SRA) under the BioProject accession no. PRJNA813342. The version
described in this article is the first version.
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