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Abstract: In this study, we analyze the effect of a recliner chair with rocking motions on sleep
quality of naps using automated sleep scoring and spindle detection models. The quality of sleep
corresponding to the two rocking motions was measured quantitatively and qualitatively. For the
quantitative evaluation, we conducted a sleep parameter analysis based on the results of the estimated
sleep stages obtained on the brainwave and spindle estimation, and a sleep survey assessment from
the participants was analyzed for the qualitative evaluation. The analysis showed that sleep in the
recliner chair with rocking motions positively increased the duration of the spindles and deep sleep
stage, resulting in improved sleep quality.

Keywords: rocking motion; sleep quality; sleep staging; spindle; real world data; deep neural networks

1. Introduction

Sleep plays a major role in maintaining an individual’s physical health, owing to its
involvement in several physiological processes such as tissue healing and repair [1–3].
Moreover, several studies claimed that sleep could critically affect physical and cognitive
performances, thereby encouraging researchers to investigate how to achieve effective rest
and improved sleep quality in a limited amount of time. Improved sleep quality could
result in having a healthier condition and better quality of life [4–6]. Specifically, good
sleep quality would relieve the risk of acquiring insomnia [7–10], which could critically
impair the immune function [11] and cause neurodegenerative disorders and cardiac
diseases [12]. On the other hand, poor sleep quality is associated to coronary artery
diseases in adults such as myocardial infarction [13–16] and affective states like depression
and anxiety [17,18], which may affect an individual’s work productivity, social functioning,
and safety. These results suggest that the sleep quality is as crucial as sleep quantity in
ensuring life satisfaction [19], which is one of the core indicators of a healthy lifestyle.

The benefits of sleep on angle-adjustable recliner chairs have been reported several
times. It has been reported that sleep in an angle-adjustable chair, such as a recliner,
improved the sleep quality through the sleep at a higher angle of posture or the neck [20–22].
In particular, it has been proven that some sleep disorders could be medically improved
in patients with sleep apnea [22–25] and nocturnal gastroesophageal reflux through sleep
in a recliner [26]. In this paper, we propose an additional way to further improve the
quality of sleep with providing a rocking motion to the recliner. This study introduces a
new swinging mechanism with rocking motions, which improves the quality of a day-time
sleep in a recliner. Therefore, a new swinging recliner chair is proposed to improve the nap
environment with controlling the rocking and reclining functions.
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In order to analyze the quality of sleep in the proposed recliner chair, we estimate five
different sleep stages, Wake, NREM1 (N1), NREM2 (N2), NREM3 (N3), REM, using every
30 s epoch of the brain waves signal based on American Association of Sleep Medicine [27].
With this, various sleep parameters [28], including total sleep time (TST), total N1 sleep
(TN1), total N2 sleep (TN2), total N3 sleep (TN3), total REM sleep (TR), sleep efficiency
(SE), slow-wave sleep ratio (SWS%), and SWS to light sleep ratio (SL%), and quantitative
comparisons of the overall sleep stages are investigated for the qualitative and quantitative
measures of sleep quality based on the functions of the swinging chair. Additionally,
we also investigate the spindle components in the recorded brain waves during the nap,
which is a specific brain wave pattern occurs during sleep because of bursts of neural
oscillatory activity by interplay of the thalamic reticular nucleus (TRN) and other thalamic
nuclei [29–31]. Since it has been reported that spindle plays a major role in the benefits
of memory enhancement and sensory shut down for reducing wake up [32–35], spindle
element could be one of major elements to evaluate quality of sleep [29,36]. This study
analyzes the quantitative growth of the overall spindles based on two types of spindles,
namely the slow and fast spindles [37,38]. There are several conflicting reports regarding
these two types of spindles in terms of their roles in various cognitive tasks. Since there
seems to be only a consensus on the quantitative effects of spindles to sleep quality and
not on their mechanisms and qualitative effects, this study only conducted the quantitative
analysis on the patterns of the slow and fast spindles. A deep learning model is designed to
estimate the sleep phases, which decide the multiple sleep parameters, and the frequency
analysis is utilized to detect the spindle components.

The plan of the paper is as follows. First, we propose a novel experimental method
that produces rocking motions in a recliner chair. Here, the characteristics and factors of the
‘swinging-chair’ and the descriptions of the participant and the experimental environment
are provided. Then, we discuss the automatic sleep staging methods for the sleep quality
evaluation, where the architecture of the deep neural networks used to classify the sleep
stages is addressed.

2. Materials and Methods
2.1. Recliner Chair

A recliner chair, which reliably reproduces identical movements, was designed using a
200 W linear actuator motor that provides robust, steady, and repetitive swinging motions
to analyze the nap quality in the swinging chair. A link fixation mechanism yields a
specific trajectory with a ±5 cm margin of error depending on the experimental condition.
The range of the swinging motion was fixed at 10 cm head-on for all conditions [39], and the
acceleration during the swing was 0.3 m/s2 based on the ISO reference [40]. The swing cycle
of the recliner chair is once per 4 s, that is 0.25 Hz. These operations were controlled by a
microprocessor and managed by continuous logging of the accelerator signals. In addition,
it automatically calibrates each swinging cycle using the position sensitive device (PSD)
sensor to continuously track and minimize the trajectory error and calibrate the error
values caused by the swinging environment or motion artifacts of the participants. For the
comfort of the user, the back of the chair was fixed to 14° (±2°) and the seat of the chair
to 36° (±2°) [41], as shown in Figure 1. There are two types of rocking conditions, namely
‘Condition A’ and ‘Condition H.’ The chair creates a lateral pitch motion on the y-axis in
Condition A, while the chair provides a back-and-forth rectilinear motion on the x-axis in
Condition H. Moreover, ‘Condition B’ is considered as the control in this study, in which the
chair does not move in any axis. Figure 2 shows the illustrations of the chair movements in
all conditions.
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Figure 1. Designed recliner chair.

Figure 2. Rocking motion of the designed recliner chair. (a) Trajectory in the recliner Condition A. It
has y-axis pitch movements; (b) Trajectory in the recliner Condition H. It has y-axis back-and-forth
movements; (c) The control group is Condition B. It has no movement during the experiment.

2.2. Experimental Protocols

Fifteen participants (age mean = 25.375, SD ± 2.99 years old, all male) with no history
of sleep disorders were recruited for the nap experiment. All participants napped on the
recliner chair three times for three hours in all three conditions. They were asked to follow
a strict sleep and diet regimen the day before the experiment. The average body mass
index (BMI) of the participants is 23.01 ± 2.09, and the average Pittsburgh sleep quality
index (PSQI) [42] is 5.625 ± 3.22. Moreover, we controlled the environmental elements such
as sound intensity, room temperature, relative humidity, and luminosity to ensure that
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the sleep environment was controlled. Moreover, during the experiment, the luminosity
was controlled to be lower than 10 lux [43] and the noise level of the room was 30 dB on
average and lesser than 45 dB [44,45]. The room temperature was fixed at 23 °C [46], while
the relative humidity was set at 45% [46] using an air conditioner. Furthermore, sleep
scoring two-channel electroencephalography (EEG) signals [47–49] were recorded from the
participants during their entire nap periods.

Two scalp electrodes on Fp1 and Fp2 shown in Figure 3 were attached as working
electrodes referenced to the left earlobe (A2) and grounded to the right earlobe (A1) to
obtain the EEG signals from the participants. In addition, the physical removal of the
very top layer of the skin (i.e., stratum corneum) and other foreign substances on the
epidermis was carried out before the attachment of the electrodes and their maximum
impedance was limited under 5 kΩ. A bandpass filter [50] in the range between 0.5 and
55 Hz [51,52] was applied to the recorded EEG signals to eliminate unnecessarily ambient
noise such as motion artifacts from the recliner chair, and a notch filter was used to remove
60 Hz power line noise [53]. Moreover, MP36 (BIOPAC Systems Inc, Goleta, CA, USA) and
gUSBamp (Gtec, Albany, New York, USA) were utilized to record EEG signals at 500 and
600 Hz sampling rates, respectively. The amplifiers were operated at a sufficient distance
from the chair to prevent any interference of electromagnetic noise generated from the
actuator of the recliner chair. Each participant conducted the nap experiments of three
conditions in randomized order. In addition, all participants had been instructed to nap
under similar conditions as the experiment before the actual recording to avoid the first
night effect [54]. The nap time was limited from 14:00 to 17:00 considering the circadian
rhythm of the participants, and they were under strict sleep and dietary restrictions as
previously mentioned. All participants were prohibited from consuming caffeine and other
psychiatric drugs and were also provided diet and sleep schedules, as shown in Figure 4.

Figure 3. EEG montage of 10–20 systems [55], where Fp1 and Fp2 were used working electrodes
referenced to A2 and grounded to A1.

Figure 4. Experimental procedure to record EEG signals during the nap on the recliner chair for
measuring nap time EEG.
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Moreover, the participants were subjected in a more controlled condition two hours
before the experiment, that is, being banned from drinking caffeinated drinks [53] and
performing rigorous activities [56] while being watched by the researchers to avoid any
bias. In addition, a PSQI [42] survey was conducted before the experiment for a qualitative
analysis of the sleep quality of the participants, including the amount, depth, and comfort
of sleep over a month, providing a subjective assessment to determine the sleep disorders
of the participants. The PSQI varies from 0 points to a maximum of 21, which is segmented
into 7 levels according to the scoring method. A high PSQI score indicates poor quality
of sleep, and a score of 5 or higher decides a poor sleeper, while less than 5 tells a good
sleeper [42,57]. In this paper, based on the PSQI score, the subjects are divided into ’good
sleeper’ groups and ’bad sleeper’ groups, and then it is investigated which group achieves
significant sleep quality improvement on the proposed recliner. Moreover, the participants
and their environments were continuously monitored using a web camera to observe
any instability during the experiment. After the experiment, a subjective sleep quality
survey [58] was conducted again for another qualitative analysis, including the time of
sleep and numbers of waking time.

This experiment was approved by the Institutional Review Board of Kwangwoon
University (IRB No. 7001546-20200728-HR(SB)-006-01).

2.3. Sleep Stage Estimation

The sleep quality could be estimated using various sleep parameters based on the
sleep scoring results. In this study, the sleep stages were defined using an automatic
machine learning algorithm with a significantly acceptable performance than that of a
manual polysomnography (PSG) scoring that is commonly used by clinicians [59–61].
The neural network-based sleep scoring algorithm, DeepSleepNet [62], trained using the
Wisconsin Sleep Cohort dataset [63,64], was applied to test the participants’ EEG signals.
In this paper, since the quality of sleep is analyzed through the AASM [27] based five-stage
sleep states, the proposed model classifies the possible Wake, NREM1, NREM2, NREM3,
and REM sleep stages using the input EEG signals.

The model consists of two small and large convolution neural networks (CNN) [65–68],
as shown in Figure 5, which are divided into two branches and then merged through a
concatenation, where a small CNN architecture captures temporal properties and a large
CNN architecture extracts frequency information for the sleep stage estimation [62]. The bi-
dimensional long-short term memory (LSTM) [65,69,70] is utilized in the DeepSleepNet
to exploit the information of both hidden states at time inferences ’t−1’ and ’t+1’ in
the sequence.

As reported by Supratak, A. et al. [62], a two-step training process is required to
estimate the sleep stages using the deep learning model, that is, a pre-training and a fine-
tuning process. Before the pre-training procedure, oversampling and undersampling were
conducted to solve the class-imbalance problem. The pre-training process does not train
the entire model in Figure 5, but only trains the upper two convolution network layers.
In this study, EEG signals of 129 participants from a Fp1 configuration recorded at 100 Hz
from the Wisconsin Sleep Cohort dataset were used to train the model. The training was
performed with 48,860 epochs for each stage, extracted through the undersampling based
on the number of the N1 sleep stage, which has the smallest number of epochs among the
five stages. When training two convolution network layers, an ADAM optimizer [71] with
a batch size of 100 and a learning rate of 10−3 were used.

In the fine-tuning process, randomly shuffled sequential data was utilized rather than
the class-balanced dataset and the entire model depicted in Figure 5 was trained with
applying two pre-trained CNN parameters to the CNN model. The optimizer used in this
step is the ADAM optimizer, and the batch size is set to 10. In order to train the sequence
residual learning part including the LSTM, its learning rate was set to 10−3 , while the
learning rate was set to 10−4 since the pre-trained parameters were applied to the two
convolution network layers. For regularization, two techniques were applied; one is a
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dropout of neurons with 0.5 probability to prevent overfitting as shown in Figure 5, and the
other is an L2 to prevent the occurrence of too large parameters in the model. This L2
weight decay is implemented during the training process of the two convolution network
layers in order to prevent the overfitting due to the ambient noise or movement artifacts.
However, it was not applied in the sequence residual learning because it could limit the
model capabilities of learning the long-term dependency. The values of sleep parameters
were calculated to analyze the quality of sleep based on the results of the five-sleep stage
estimation using the model. Furthermore, a quantitative analysis of the sleep quality was
conducted using the calculated sleep parameters.

Figure 5. Architecture of the DeepSleepNet. It has two different learning parts such as the CNN
and LSTM. The CNN layer proceeds the representation learning and LSTM proceeds the sequence
residual learning. The EEG sampling rate (Fs) is a specification for the first convolutional layer.This
model classifies the five sleep stages, defined by AASM [27] using the 30 s EEG epochs.

2.4. Sleep Spindle Estimation

A sleep spindle is a unique characteristic that marks the beginning of an N2 sleep stage
since it is used to define the transition from N1 to N2 stage. A sleep spindle is typically
observed to have frequency components between 11–16 Hz, which is also known as a
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sigma wave. There has been evidences that certain characteristics of the spindle activity
are linked to various cognitive and motor functions while its exact effects on the body
are only speculated upon [32,72]. Various previous studies have suggested that increased
spindle activities were related to both implicit and explicit memory consolidation [73–77],
while others reported that spindle deficits were related to various neurological diseases,
including autism [78,79] and Alzheimer’s disease [80,81].

The medical community considers the spindle identification by human experts as the
gold standard in estimating the sleep spindle. However, there are several limitations with
this method, including its unreliability in both intra-rater and inter-rater data [82,83] and
its high cost. Therefore, there has been various attempts to create an automated sleep scorer
that could reliably identify sleep stages and spindles [84–86].

Specifically, Lacourse et al. [60] proposed the A7 algorithm, which inspired the
algorithm used in this study. The A7 algorithm tries to calculate the sleep spindle duration,
oscillation frequency, amplitude of a spindle, and other properties.

On the other hand, the YASA algorithm [61,87] is more economical than the A7 al-
gorithm because it uses only three parameters instead of four but performs in similar
manner [88]. The first parameter is the relative power of the sigma band frequency compo-
nents compared to the broader band components ( 0 to 30 Hz) that was extracted using the
short-term Fourier transform (STFT) [89]. An increase of this parameter indicates that the
power increase is dominant in the sigma band. Meanwhile, the second parameter is the
correlation between the sigma band and the broad band components that was calculated
using the Pearson correlation coefficient [90] and FIR filter [91]. Finally, the last parameter
is the temporally changing root mean squared (RMS) value. The YASA algorithm can distin-
guish the sleep spindle components by monitoring the three parameters. Raphael et al. [87]
reported 86.6% ± 6.2 accuracy and 78.5 ± 9.4 F1-score to detect the spindles, which is similar
to the results of human experts [60,61,87]. Figure 6 shows an example of the detected
spindle event using this algorithm in a 30 s epoch of the EEG signal.

Figure 6. EEG spindle detected by YASA spindle detection algorithm. The red lines represent the
detected spindle.

2.5. Sleep Parameters

Various sleep parameters, including TIB (time in bed), which total time in bed while
experiments, TST (total sleep time) and TSP (total sleep period), are calculated for the
quantitative analysis of sleep quality. Specifically, TST is the sum of the total sleep length
except wake among all sleep stages, while TSP is the amount of the actual time spent in the
sleep cycles estimated by the duration between the beginning of the first N1 sleep stage
and the wake. Other sleep parameters, including the parameters about deep sleep periods
such as N3 and about the light sleep and wake periods such as N1, N2, and REM stages,
were also investigated to achieve more accurate analysis. Additionally this study uses the
sum of the N1 sleep stages (TN1), the sum of the N2 sleep stages (TN2), the sum of the
N3 sleep stages (TN3), the sum of REM sleep stages (TR), and N1, N2, N3 and REM ratios
to TST (N1%, N2%, SWS%, REM%), to analyze the sleep quality based on the absolute
amount and the relative amount of sleep stages. Along with this quantitative analysis of
the sleep quality, parameters related to the latency of the sleep stages, were also analyzed,
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where the sleep latencies to the light (N1 and N2), deep (N3) and REM sleep stages are
investigated. For further analysis of the sleep quality, SL% (SWS ratio to the light sleep),
SOL (Sleep on set latency) and SE (Sleep efficiency), are also calculated. SL% shows the
amount of the N3 sleep compared with the light sleep (N1 and N2), SOL indicates the
latency to fall asleep. SE represents the total sleep time like TST, but is normalized by the
TIB value. These parameters are derived using the formula in Figure 7.
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2.6. Self-Reported Sleep Quality Analysis

The self-reported sleep quality was investigated as a subjective and qualitative evaluation
of the nap. All participants answered the questionnaire proposed by ÅKerstedt et al. [58]
regarding the evaluation of their own sleep after naps, resulting in comprehensive results on
the sleep quality by comparing the self-reported feedback with the EEG measurement. In this
study, the qualitative sleep quality of the participants based on the self-reported evaluation
time, awake time, and sleep latency parameters.

3. Results
3.1. Sleep Stage Automation Evaluation

The model used in the experiment needs to be re-evaluated using the EEG from
Fp1-M1 and Fp2-M1 configurations since the simulations in the DeepSleepNet study [62]
have been conducted on the EEG signals from Fpz-Pz and Cz-Oz channel configurations.
In addition, the Wisconsin Sleep Cohort dataset [63,64] recorded with the Fp1-M1 and
Fp2-M1 channel configurations was employed to train the DeepSleepNet model with
the recliner channel configurations. The performance of DeepSleepNet trained using the

Figure 7. Sleep parameter index and its simplified formula.

2.6. Self-Reported Sleep Quality Analysis

The self-reported sleep quality was investigated as a subjective and qualitative evaluation
of the nap. All participants answered the questionnaire proposed by ÅKerstedt et al. [58]
regarding the evaluation of their own sleep after naps, resulting in comprehensive results on
the sleep quality by comparing the self-reported feedback with the EEG measurement. In this
study, the qualitative sleep quality of the participants based on the self-reported evaluation
time, awake time, and sleep latency parameters.

3. Results
3.1. Sleep Stage Automation Evaluation

The model used in the experiment needs to be re-evaluated using the EEG from
Fp1-M1 and Fp2-M1 configurations since the simulations in the DeepSleepNet study [62]
have been conducted on the EEG signals from Fpz-Pz and Cz-Oz channel configurations.
In addition, the Wisconsin Sleep Cohort dataset [63,64] recorded with the Fp1-M1 and
Fp2-M1 channel configurations was employed to train the DeepSleepNet model with
the recliner channel configurations. The performance of DeepSleepNet trained using the
Wisconsin Sleep Cohort dataset is shown in Table 1. Results show that the average accuracy
of the 240 participants was 81.16%, which is a similar level of the accuracy estimated
by medical experts [59]. However, N1 stage is poorly detected compared with the other
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stages that have been consistently addressed in the previous reports [62], and the N1 and
N2 sleep stages are usually considered as one stage, ’Light sleep’ [27] in four-sleep stage
taxonomy [92–97]. We also applied the four stage scheme with combining the N1 and N2
stage as one ’Light sleep’ to analyze the sleep quality in multiple approaches.

Table 1. Evaluation of DeepSleepNet using the Wisconsin Sleep Cohort dataset.

Wake (%) N1 (%) N2 (%) N3 (%) REM (%)

Accuracy 94.87 (±4.93) 92.24 (±4.43) 88.20 (±5.59) 95.31 (±3.30) 93.42 (±3.43)

Precision 85.00 (±12.37) 46.25 (±14.98) 80.64 (±13.96) 93.00 (±6.34) 85.10 (±16.50)

Recall 89.15 (±14.08) 48.20 (±18.08) 89.70 (±5.86) 76.35 (±14.51) 81.70 (±12.58)

F1 score 85.60 (±10.54) 44.00 (±12.90) 84.45 (±9.43) 83.05 (±9.44) 81.40 (±12.26)

The trained deep neural network model predicts the sleep stages of the participants
sleeping in the recliner with the designed rocking motions to evaluate their sleep qualities.
Figure 8 displays the estimated sleep stages of one of the participants for a 3 h sleep. Each
sleep stage is decided in every 30 s epoch.
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Figure 8. Estimaed hypnogram of one of the participants based on the sleep staging model. The esti-
mation model architected by DeepSleepNet and trained by Wisconsin Sleep Cohort dataset. In (a), 0
is Wake, 1 is REM, 2 is N1, 3 is N2 and 4 is N3 sleep stage, respectively.

3.2. Sleep Parameter Analysis

The estimated sleep stage lengths of all 15 participants corresponding to the different
recliner conditions, as shown in Figure 9 and Table 2, were predicted using DeepSleepNet
trained by the Wisconsin Sleep Cohort dataset. Since the number of participants were
not big enough to determine whether the data was fit for parametric tests, although the
data mostly assumed a normal distribution, we utilized the Friedman’s two-way analysis,
a non-parametric statistical test that detects differences between conditions with repeated
measures. For post-hoc analysis, the Wilcoxon Sign test was administered.
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Figure 9. Estimated each sleep stage lengths of 15 participants during proposed nap experiments in
the recliner chair.

The duration of N3 (deep sleep stage), which is measured in minutes, in Conditions
A and H (p < 0.05 for Condition A and p < 0.01 for Condition H tested using Friedman
two-way test) are significantly higher than in Condition B, which is the control of the study.

The parameters are separated into four categories, such as ’sleep stage (min)’, ’sleep
stage (%)’, ’sleep latencies’, and ’sleep indexes’. The sleep stage (min) is the length of each
sleep stage, sleep stage (%) is the percentage of each sleep stage length relative to the total
sleep length, sleep latencies is the time length entering a particular sleep stage, and sleep
indexes are the sleep parameters suggested by the American Association of Sleep Medicine
(AASM) [27].

The rocking motions in condition H significantly shorten the length of light sleep
stages shown in Figure 9 based on TN1, TN2, N1%, and N2%, which indicate light sleep.
Meanwhile, the deep sleep-related parameters, including TN3 and SWS%, indicate the
increase of the deep sleep stage of participants in Conditions A and H compared to Condi-
tion B. However, the length of the REM sleep stage has decreased significantly in Condition
A, indicating a possible deterioration of sleep quality of the participants. For further in-
vestigation of these seemingly contradicting results, we discuss an in-depth analysis of
participants’ sleep spindles, which play a bigger role in several other cognitive functions
such as visual attention, selective attention, and impulse control based on various findings.

In addition, ‘sleep latencies (min)’, which is a major parameter in evaluating sleep
quality [28], shows significantly shorter periods to get to the NREM3 stage compared to
that of Condition B. However, the TST value, which is the indicator of the total amount of
sleep, shows that the amount of sleep at rocking motion has decreased relatively, which is
evident in Condition H. It was statistically significant that the overall amount of time and
number of events about the N3 stage was increased compared to the control group.
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Table 2. Sleep parameters in each experimental condition for the whole nap time of sleep analysis; Time in Bed is calculated
from light-off; TSP, TST, and sleep latencies are calculated from the first N1 period (>1 min).

B Condition A Condition H Condition

TIB [min] 180 180 180

TSP [min] 171.4 (±11.74) 172.67 (±7.63) 177.47 (±4.55)

TST F [min] 143.1 (±42.40) 140.53(±25.2) 118.7 (±42.50)

Sleep Length [min]

TN1 (N1) F 1.3(±0.99) 1.77(±2.82) 0.33(±0.48) ∗

TN2 (N2) F 78.3(±36.42) 73.8(±29.92) 67.2(±31.57)

TN3 (N3) F 21.8(±20.07) 41.73(21.51) ∗ 36.33(±15.20) ∗

TN1+TN2 (Light) 79.60(±36.37) 75.56(±29.95) 67.53(±37.76)

TR (REM) F 41.70(±43.14) 23.23(±34.66) 14.83(±29.91) ∗

Sleep Ratio [%]

N1% (N1) F 0.89(±0.69) 1.19(±1.71) 0.24(±0.40) ∗∗

N2% (N2)F 55.17(±25.02) 53.26(±20.26) 56.40(±15.19)

SWS% (N3) F 18.46(±20.52) 30.58(±15.85) ∗ 34.08(±15.19) ∗∗

N1%+N2% (Light) 56.05(±25.08) 54.45(±20.02) 56.64(±15.28)

REM% (REM) F 25.48(±24.57) 14.97 (±20.44) 9.27(±16.30) ∗

Sleep Latencies [min]

To Light (N1+N2) 21.70(±41.72) 21.00(±9.79) 35.60(±15.46)

To Deep (N3) 44.43(±23.85) 21.03(±10.10) ∗ 30.23(±30.58)

To REM 16.56(±31.43) 25.53(±43.35) 27.00(±47.52)

Sleep Indices

SL% [%] 57.54(±92.86) 72.30(±69.66) 69.15(±48.79)

SOL F [min] 36.90(±42.40) 39.47(±25.2) 61.30(±42.50)

Sleep Efficiency (SE) F[%] 79.50(±23.55) 78.08(±14.15) 65.94(±23.61)

F Recommended to be a reported parameter for polysomnography by the AASM Manual for the Scoring of Sleep and Associated Event,
version 2.4., 2017. * Asterisks represent the statistical tested with Friedman two-way test between B and A / H conditions significance * p <
0.05, and ** p <0.01.

3.3. Sleep Spindle Analysis

Sleep spindles in EEG signals were investigated as another index in assessing the
sleep quality without the sleep scoring information. The spindle can be analyzed based
on the total amount of time, the number of spindle events, and its density and duration.
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The results of the spindle analysis corresponding to each rocking motion condition are
shown in Table 3.

Table 3. Sleep spindle analysis of EEG signals corresponding to each experimental condition during the three-hour nap

B Condition A Condition H Condition

Number of Spindle Event 77.43 (±50.76) 113.99 (±66.30) ∗∗ 75.33 (±56.83)

Spindle Time (s) 68.32 (±45.00) 96.22 (±56.00) ∗∗ 64.14 (±52.00)

Density (/30 s) 0.2673 (±0.0240) 0.1879 (±0.0159) ∗∗ 0.1782 (±0.0207)

Duration (s) 0.83 (±0.28) 0.83 (±0.29) 0.83 (±0.30)

Fast Spindles

Amplitude (µv) 56.29 (±35.50) 60.78 (±41.69) 65.18 (±59.76)

Frequency (Hz) 12.79 (±0.54) 12.79 (±0.60) 12.76 (±0.57)

Slow Spindles

Amplitude (µv) 24.24 (±14.50) 29.41 (±25.60) 34.47 (±31.18)

Frequency (Hz) 8.79 (±0.17) 8.61 (±0.21) 8.81 (±0.23)

* Asterisks represent the statistical tested with Friedman two-way test between B and A / H conditions significance ** p <0.01.

Looking at the average spindle frequencies in each condition, the quantity of sleep
spindles significantly increases in Condition A. Moreover, even considering the total
spindle time and its density, that is, the average recurrence of spindles in a 30 s period,
Condition A shows more promising results. However, the sleep spindles have overall not
improved for participants in Condition H.

3.4. Qualitative Sleep Analysis

The results of the qualitative sleep analysis of the participants based on the self-
reported survey are shown in Table 4. Results show that there were no significant difference
among the rocking condition experiments based on the self-reported responses. Most of
the participants reported similar sleep and awake time in all three conditions and felt
longer periods of sleep than the actual ones measured qualitatively using their EEG signals.
The discrepancy between the quantitative and qualitative assessments of the sleep quality
has been reported in several previous studies [98,99].

PSQI scores tell that assess participants’ quality of sleep over one-month period,
containing questions about their usual sleep habits, with scores ranging from 0 to 21. Using
the PSQI scores, participants are differentiated into two groups: one with poor sleep habits
and another with good sleep habits. As suggested by Buysse et al. [57], we were set a
threshold, 5, to separate ‘Good Sleepers’ having scores points under 5 and ‘Bad Sleepers’
over 5. Based on this criterion, the sleep parameters of the ‘good’ and ‘bad’ sleepers in
three different experimental conditions were looked into, which are summarized in Table 5.
SWS%, TN3, and SL% are the indicators of deep sleep and, the ‘Bad Sleeper’ group shows
a significant increase of these parameters than the ‘Good Sleepers’ group. Particularly,
regarding the parameters most closely related to the sleep quality, SWS% and TN3, the ‘Bad
Sleeper’ group has a significant increase. The self-reported sleep quality in Table 6 has no
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significant difference between the ‘Good Sleeper’ and the ‘Bad Sleeper’ groups. However,
when comparing the sleep times between the groups, the ‘Bad Sleeper’ group has more
improved results by the rocking motions than the ‘Good Sleeper’ group.

Table 4. Self-reported sleep quality after the nap of the participants in three experimental conditions.

B Condition A Condition H Condition

Time in Bed (min) 180 180 180

Self-reported Survey Results

Sleep Latency (min) 13.13 (±10.29) 12.53 (±7.92) 9.60 (±5.78)

Wake Time (min) 30.67 (±19.22) 28.93 (±15.31) 31.87 (±16.91)

Sleep Time (min) 149.33 (±19.22) 151.07 (±15.31) 148.13 (±16.91)

SE (Sleep Efficiency) 0.83 (±0.11) 0.84 (±0.06) 0.82 (±0.09)

Table 5. Comparison of the quantitative sleep parameters between two groups separated by PSQI levels ‘Good Sleeper’
and ‘Bad Sleeper’.

B Condition A Condition H Condition

Good Sleeper SL% 0.82 (±1.15) 0.60 (±0.49) 0.73 (±0.51)

(PSQI < 5) SWS% F 0.25 (±0.24) 0.28 (±0.12) 0.35 (±0.15) ∗

9 subject TN3 (min) F 27.72 (±23.56) 39.06 (±14.20) 37.22 (±18.08)

Bad Sleeper SL% 0.21 (±0.17) 0.91 (±0.95) 0.61 (±0.50)

(PSQI ≥ 5) SWS% F 0.09 (±0.06) 0.34 (±0.22) ∗ 0.32 (±0.14) ∗

6 subject TN3 (min) F 12.92 (±9.04) 45.75 (±30.67) ∗ 35.00 (±11.00) ∗

F Recommended to be a reported parameter for polysomnography by the AASM Manual for the Scoring of Sleep and Associated Event,
version 2.4., 2017. * Asterisks represent the statistical tested with Friedman two-way test between B and A / H conditions significance * p
<0.05.

Table 6. Comparison of the reported self-reported sleep quality between two sleep type groups ‘Good Sleeper’.

B Condition A Condition H Condition

Good Sleeper
(PSQI < 5)

Latency
(min)

15.56 (±12.10) 15.33 (±9.14) 9.22 (±4.09)

9 subject Sleep time
(min)

154.44(±18.37) 148.22 (±17.09) 147.22 (±16.41)

Bad Sleeper
(PSQI ≥ 5)

Latency
(min)

9.50 (±5.96) 8.33 (±2.58) 10.17 (±8.13)

6 subject Sleep time
(min)

141.67 (±19.41) 155.33 (±12.36) 149.50 (±19.11)

4. Discussion

As we can see in Table 2, there were significant increase of the amount of deep sleep
(N3) in condition A and H. In addition, the significant decrease of N1 stage is confirmed
in condition H. The decrease of light sleep and the increase of deep sleep could infer
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the improvement of sleep quality [28]. The decrease of sleep latency to deep stage in
condition A (see Table 2), indicates that the rocking motions could help extend the period
of the deep sleep stage by reducing the time to reach the deep sleep phase. These results
demonstrated that the rocking motions of the recliner could enhance the length of the
deep sleep stage. The results are consistent with the previous reports by Omlin et al. [39]
and Perrault et al. [100], demonstrating that the rocking motion increased the proportion
of deep sleep stages among all-night sleep stages. Thus, this result proved that the deep
latency caused by the rocking motion was significantly decreased during the three hours
of the short nap on the recliner. Several previous studies reported that increasing the
length of deep sleep stages, which is one of the key indicators of the improvement of sleep
quality denoted by TN3, is effective in regenerating the body [101–103] and strengthening
immunity [104–106]. In addition, the investigation of the sleep parameters is considered as
an additional quantitative sleep quality analysis corresponding to the three different recliner
conditions shown in Table 2. Furthermore, we conducted the analysis the sleep quality
using the 11 sleep parameters listed in Figure 7 for a more accurate quantitative analysis.
The results of the quantitative analysis based on the sleep parameters in determining sleep
quality using the automated sleep scoring algorithm are shown in Table 2.

A separate sleep analysis was conducted from the participants who were relatively
exposed to the risk of sleep disorders with low sleep quality based on PSQI scores in
Table 6. As a result, more significant improvement of N3 sleep stage (deep sleep) could be
confirmed in the participant group with low sleep quality, and Table 6 also demonstrated
that the improvement in an increase of N3 sleep stage in the ’Bad Sleeper’ group was
bigger than that in the ’Good Sleeper’ group. Thus, it confirmed that sleep in the recliner
with a rocking motion such as Condition H was more effective in improving the quality of
sleep for the people who have poor sleep habits. Therefore, the rocking motions proposed
in this paper could help the people with high PSQI scores to induce high quality of their
sleep. In addition, for those with a relatively high risk of sleep disorders, it would have a
positive impact on the improvement of the sleep quality with the proposed rocking motion.
Previous studies reported that those with high PSQI scores (‘Bad Sleeper’) are more likely
to develop depressive symptoms and might be more susceptible to dementia and other
cognitive impairments [107–110]. Therefore, we suggest that more sleep in the rocking
motion might prevent these diseases.

In this study, sleep experiments and its analysis with sleep stage and spindles were
conducted only using the two-channel brain waves, which is different from the conven-
tional polysomnography (PSG) method that uses multimodal sensors such as multichannel
EEG, electromyogram (EMG), electrocardiogram (ECG), and respiration to score the sleep
stages. Despite that, there were multiple studies that produced significant and robust sleep
scoring results [111]. Moreover, several studies have demonstrated that a generalized sleep
scoring model based on a single or multi-channel brainwave produced similar sleep stages
as those by sleep experts [60,61,87].

The substantial long-term memory conversion and task memory enhancement dur-
ing the spindle event have been reported previously [76,112]. Omlin et al. [39] and
Perrault et al. [100] demonstrated that the rocking motion induced the enhancement of
spindles. In Table 3, the sleep spindle analysis using the EEG signals also confirms that the
rocking motion of Condition A induces more spindle occurrences and increases its amount
during the nap. Since this increase of the spindle is known to reinforce positive sleep
effects, such as long-term memory conversion for learning and memory [32,33], motor
ability [113,114] and sensory shut down for reducing wake up [34,35], it could be suggested
that the sleep in Condition H would significantly improved the mental ability. Especially,
considering the previous studies reporting that the spindle could have a positive effect on
implicit and explicit memory consolidation [73–77], it is expected that the recliner chair
with the suggested rocking motions could improve the performance of the brain. However,
the memory test of the participant after the nap was not included since the enhanced
spindles by the rocking motion during the nap were not expected when designing the
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experiment initially. In addition, Table 3 shows the amplitude and frequency of the two
different types of spindles, fast and slow spindle [38], where each of the two different
types of spindles was consistently estimated from the reliable EEG signals based on the
corresponding standard range of two spindles [33,37,38]. In the following studies, the effect
of the rocking motions on the memory enhancement will be mainly investigated. Further-
more, multi-channel EEG signals will be recorded to apply the multivariate algorithms in
order to extract the spindle component accurately, which could be blind source separation
algorithms [115–117].

In Table 4, we conducted an analysis of qualitative sleep quality based on a survey
from the participants. Unlike the quantitative sleep analysis, the results demonstrated
that there was no clear difference among the subjects. The difference between these
qualitative and quantitative sleep analysis results in evaluating the sleep quality has been
reported several times in the other studies [118–122]. Considering the environment of
this experiment might be unfamiliar to the participants even though the first night sleep
effect [54] was considered and that the sleep duration of the participants was limited during
the experiment, the subjective feedback from the participants in a qualitative level might
have been affected.

5. Conclusions

In this study, we investigated the influence of rocking motions on sleep quality during
a nap. The sleep parameter analysis has proved that rocking motions improve the sleep
quality by increasing the amount of N3 (Deep Sleep) sleep stage, and especially in the
proposed Condition A the rocking motion provides a significantly positive effect on the
spindle enhancement. These could be indicators of an efficient sleep experience even
during the short period of nap. In addition, in an analysis based on the PSQI scores, it was
confirmed that the Rocking motion improves the sleep quality more effectively for the ’Bad
Sleeper’ group, who would be exposed to the risk of sleep disorders. Furthermore, these
rocking motion paradigms could be extended to night-time sleep, which encompasses six
hours of sleep, that keeps the body in good conditions.
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