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ABSTRACT

ATAC-seq is a recently developed method to identify
the areas of open chromatin in a cell. These regions
usually correspond to active regulatory elements and
their location profile is unique to a given cell type.
When done at single-cell resolution, ATAC-seq pro-
vides an insight into the cell-to-cell variability that
emerges from otherwise identical DNA sequences by
identifying the variability in the genomic location of
open chromatin sites in each of the cells. This paper
presents Scasat (single-cell ATAC-seq analysis tool),
a complete pipeline to process scATAC-seq data with
simple steps. Scasat treats the data as binary and
applies statistical methods that are especially suit-
able for binary data. The pipeline is developed in a
Jupyter notebook environment that holds the exe-
cutable code along with the necessary description
and results. It is robust, flexible, interactive and easy
to extend. Within Scasat we developed a novel dif-
ferential accessibility analysis method based on in-
formation gain to identify the peaks that are unique
to a cell. The results from Scasat showed that open
chromatin locations corresponding to potential regu-
latory elements can account for cellular heterogene-
ity and can identify regulatory regions that separates
cells from a complex population.

INTRODUCTION

Single-cell epigenomics studies the mechanisms that deter-
mine the state of each individual cell of a multicellular
organism (1). The assay for transposase-accessible chro-
matin (ATAC-seq) can uncover the accessible regions of
a genome by identifying open chromatin regions using a
hyperactive prokaryotic Tn5-transposase (2,3). In order to

be active in transcriptional regulation, regulatory elements
within chromatin have to be accessible to DNA-binding
proteins (4). Thus chromatin accessibility is generally asso-
ciated with active regulatory elements that drive gene ex-
pression and hence ultimately dictates cellular identity. As
the Tn5-transposase only binds to DNA that is relatively
free from nucleosomes and other proteins, it can reveal these
open locations of chromatin (2).

Epigenomics studies based on bulk cell populations have
provided major achievements in making comprehensive
maps of the epigenetic makeup of different cell and tissue
types (5,6). However such approaches perform poorly with
rare cell types and with tissues that are hard to separate yet
consist of a mixed population (1). Also, as seemingly ho-
mogeneous populations of cells show marked variability in
their epigenetic, transcription and phenotypic profiles, an
average profile from a bulk population would mask this het-
erogeneity (7). Single-cell epigenomics has the potential to
alleviate these limitations leading to a more refined analy-
sis of the regulatory mechanisms found in multicellular eu-
karyotes (8).

Recently, the ATAC-seq protocol was modified to apply
with single-cell resolution (3,9). Buenrostro et al. (3) used a
microfluidic approach to isolate cells whereas Cusanovich
et al. (9) avoided physical isolation of cells by using a com-
binatorial indexing strategy. However, neither of the studies
developed a clear bioinformatics pipeline for the processing
of the data and its downstream analysis. chromVar was the
first Bioinformatics tool developed by Schep et al. to anal-
yse scATAC-seq data (10). However, analysis in chromVar
depends on the loss or gain of chromatin accessibility on
a set of genomic features which could be either motif po-
sitions or genomic annotations rather than considering the
full list of chromosomal locations. SCRAT (11) also uses
a number of predefined features like Motif, Encode clus-
ter, Gene and Gene sets to cluster cells into different sub-
populations. This limits its application to chromosomal lo-
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cations that represent an annotated feature. Furthermore,
in scATAC-seq, chromosome accessibility is essentially a bi-
nary phenomenon due to the sparsity of data and unique-
ness of a chromosomal location, and statistical approaches
that are more appropriate for binary data should be used.
Most of these tools do not have a processing pipeline and
are not flexible enough to modify the functionality accord-
ing to user requirements. The Octopus toolkit automates
the mining of publicly available epigenomics and transcrip-
tomics data in a single step (12) but lacks the functionality
to process single-cell data. Linnorm is a robust statistical
analysis method that has the advantage in speed and tech-
nical noise removal, but the method is suitable for single-
cell RNA-seq only where the data is count data compris-
ing of positive integer values and not binary values (13). A
bioinformatics pipeline that has all the processing steps for
scATAC-seq data, works directly on binary data and is flex-
ible enough to easily incorporate user defined functionality
is not yet available.

In this paper we introduce a bioinformatics pipeline
called Scasat that can process sequencing data in a few sim-
ple steps while downstream analysis explicitly takes into
consideration the binary nature of chromatin accessibility.
This binarization approach is useful for identifying patterns
of open chromatin in single cells but data with higher depth
from bulk experiments are required to infer a network of
upstream regulators. By incorporating a number of novel
features, the Scasat pipeline is able to conduct the following
tasks:

• Processing: Adapter trimming, quality control, mapping,
removing blacklisted reads, removing PCR duplicates
and calling peaks.

• Peak accessibility for each cell: We first merge all the
single-cell BAM files to create a reference set of peaks.
An accessibility matrix is then generated using this refer-
ence set with the accessibility information for these peaks
in each of the cells.

• Quality Control: Lower quality cells and peaks are re-
moved as well as peaks that may exacerbate batch effects.

• Downstream analysis: Clustering the cells to deconvolute
cell types from a mixed cell population or identify differ-
entially accessible peaks between two groups of cells.

Figure 1 describes the complete Scasat work-flow. In the
following, we provide details of the workflow and demon-
strate its utility by studying a mixture of three oesophageal
tissue derived cell lines.

MATERIALS AND METHODS

Here we describe, Scasat, Single-cell ATAC-seq Analysis
Tools, for processing and analysing single-cell ATAC-seq
data. The Scasat workflow typically consists of four steps:
(i) data processing; (ii) feature extraction; (iii) heterogeneity
analysis of the cells; (iv) differential accessibility analysis of
the peaks between two clusters of cells. To make it conve-
nient for the user, we have introduced two notebooks for
this analysis. The first notebook does the processing of the
data and the second notebook does the downstream statis-

Figure 1. Complete work-flow of the Scasat. The data processing steps
consist of the preprocessing steps of trimming low quality bases, aligning
the reads with the corresponding genome and calling the peaks. The peak
accessibility matrix is then generated by merging all the mapped BAM files
of each single cell and calling peaks in this merged file. The downstream
analysis is composed of the necessary steps to conduct statistical analysis
on the single cell ATAC-seq data. In Scasat the data are converted into a
binary dataset. Dimensionality reduction methods are then applied to this
binarized data. Other statistical analysis is then performed on this reduced
dimension to infer biological information.

tical analysis. Below we discuss the work-flow of both note-
books.

Notebook environment

The complete pipeline was developed using the jupyter
notebook environment (14). The jupyter notebook is a web-
based notebook that can execute code, produce figures and
put all the necessary explanations in the same place. As all
the function definitions of the tool are open to the user, it
can easily be extended to integrate new tools or approaches.
Although the current version of the pipeline enables only
the serial processing of the cells at the processing step, it
can easily be extended for parallel processing. The notebook
makes it easy to document, understand and share the code
with non-technical users (15). Scasat uses many of the most
widely used software tools at the processing step. The pa-
rameters and paths of these tools are set in the python en-
vironment. For the downstream analysis Scasat uses the R
programming language for statistical computing and graph-
ical visualization of the results. The use of R magic cells in
the notebook variables makes the pipeline more robust and
allows both programming languages to be used in the same
workflow.
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Sequence data processing

The processing step starts with first configuring the folders
and setting the paths of the software. The user configures
the inputFolder to the foldername where all the fastq files
are. The outputFolder is configured to store all the processed
files. Experiments using sequencing applications (ATAC-
seq, Chip-seq) generate artificial high signals in some ge-
nomic regions due to inherent properties of some elements.
In this pipeline we removed these regions from our align-
ment files using a list of comprehensive empirical black-
listed regions identified by the ENCODE and modEN-
CODE consortia (16). The location of the reference genome
is set through the parameter ref genome. This folder con-
tains the index file for the bowtie2 aligner. A brief descrip-
tion of the tools that we have used in this processing note-
book are given below

• Trimmomatic v0.36 (17) is used to trim the illumina
adapters as well as to remove the lower quality reads.

• Bowtie v2.2.3 (18) is used to map paired end reads. We
used the parameter –X 2000 to allow fragments of up to
2 kb to align. We set the parameter –dovetail to consider
dovetail fragments as concordant. The user can modify
these parameters depending on experimental design.

• Samtools (19) is used to filter out the bad quality map-
ping. Only reads with a mapping quality >q30 are only
retained. Samtools is also used to sort, index and to gen-
erate the log of mapping quality.

• Bedtools intersect (20) is used to find the overlapping
reads with the blacklisted regions and then remove these
regions from the BAM file.

• Picard’s MarkDuplicate (21) is used to mark and remove
the duplicates from the alignment.

• MACS2 (22) is used with the parameters –nomodel, –
nolambda, –keep-dup all –call-summits to call the peaks
associated with ATAC-seq. During the callpeak we set
the P-value to 0.0001. This is due to the fact that other-
wise MACS2 will not call the peaks having a single read
mapped to it as it would consider those reads to be back-
ground noise.

• Bdg2bw is used to generate the Bigwig files for the UCSC
genome browser visualization.

• QC: A final quality control is performed based on the
library size of the BAM file. We filter out the cells for
which the library size estimated by Picard tool is less than
a user-defined threshold. The default value of the LI-
BRARY SIZE THRESHOLD is set to 10000. We con-
sider any cell having a library size lower than this thresh-
old to not be a valid cell as those reads may come from
debris free material or from dead cells.

Downstream analysis

Single-cell ATAC-seq is essentially binary in nature. A spe-
cific location in a chromosome for a specific cell can either
be open or closed. In contrast to bulk data where more reads
aligning to a specific location of a chromosome would indi-
cate more cells in the population having open chromatin at
that location, in single cells it could only be due to the mul-
tiple insertions in that region or possibly other alleles at that
locus. As described by Buenrostro et al. (3) such reads are

rare for single-cell ATAC-seq which is overwhelmly domi-
nated by single reads for a specific location of a chromo-
some for each individual cell. Binarising the data might have
a minor impact only on the small proportion of chromoso-
mal locations with multiple reads. As it does not remove
any peak, this should not make an impact on detecting sub
populations.

We merge the single-cells to get the list of reference peaks.
Scasat then binarizes this peak information for each indi-
vidual cell for downstream analysis. One of the strengths of
Scasat is that the statistical approaches used in the analysis
pipeline take into consideration the binary nature of chro-
matin accessibility in single cells. For batch correction we
did not use conventional methods like Combat (23) or re-
moveBatcheffect from Limma (24) as the tools convert the
batch corrected data into real values. Instead we devised
our own batch correction method that keeps the data bi-
nary while correcting for batch effects.

Peak accessibility matrix

The analysis workflow of Scasat starts by merging all the
single-cell BAM files and creating a single aggregated BAM
file. Peaks are called using MACS2 on this aggregated BAM
file and sorted based on q-value. Peaks in this list are the
ones that are open in at least one single-cell. Using this list
of peaks we generate the peak accessibility matrix. The rows
of this matrix represent all the peaks from the reference set
and the columns represent each single cell. The pipeline cal-
culates the accessibility of the peaks for each individual cell
where it has at least one overlapping read and encodes it
as a binary value. Creating this pre selected list of ensem-
ble peaks is necessary for having an aggregated peak list
that shows the overall behaviour of the dataset. While call-
ing peaks in the aggregated BAM file might get rid of some
peaks with much lower statistical significance (open only in
very few cells), again this can be circumvented by sampling
more cells.

For each individual cell, peaks that overlap with this list
of accessible regions are given the value of 1 in the table.
For all the other peaks it is 0. A graphical explanation of
this process is given in Supplementary Figure S1

Bulk versus aggregate

If a bulk measurement is available for the same cell-type
or sample, then the pipeline can calculate Number of peaks
versus precision for the aggregated single-cell data against its
population-based bulk data. This demonstrates how closely
the single-cell data recapitulates its bulk counterpart. We
define peakA’s list as all the peaks in the population based
on bulk data and peakB’s list as the peaks in aggregated
single-cells sorted on q-values. peakA is considered to be the
gold standard for this calculation. We start with the top 100
peaks in the sorted peak list of peakB. All the peaks within
this 100 list that overlap with the peaks in peakA are con-
sidered True Positive and the ones that do not overlap are
False Positives. We then calculate the precision as

Precision = 100 × TP
TP + FP

(1)
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where TP = True Positive, FP = False Positive, TN = True
Negative. We then repeat the process by increasing peakB by
50 peaks each time while keeping peakA fixed. This gives us
a Recall versus Precision plot show in Supplementary Fig-
ure S2.

Filtering Peaks

Peaks appearing in a small number of cells are less informa-
tive and are not always appropriate for downstream anal-
ysis. Similarly, some cells passing through library size fil-
tering, might still have a very low number of peaks. In our
downstream analysis we filter out these cells and peaks. If a
cell has open peaks below a user defined threshold (default:
50 peaks) in the peak accessibility matrix we would remove
that cell from subsequent analysis. Also peaks not observed
across a user defined number of valid cells (default: 10 cells)
are not considered for further downstream analysis. Choice
of this threshold depends on the experimental design, the
nature of the cells and other biological as well as technical
factors. Users need to carefully define these thresholds for
filtering based on their experimental design.

Calculate Jaccard distance

Once the accessibility matrix is generated, we are inter-
ested in a dissimilarity measure that quantifies the degree
to which two cells vary in their peak accessibility. In our
pipeline we use the Jaccard distance (25) as a dissimilarity
measure. The Jaccard distance is the ratio between the num-
ber of peaks that are unique to a cell against all the peaks
that are open in two cells.

Dimensionality reduction

Our peak accessibility matrix represents a very high-
dimensional dataset of open chromatin regions for
each single-cell. Dimensionality reduction for this high-
dimensional dataset is essential for easy visualization and
other downstream analysis. In our pipeline, we applied
multidimensional scaling (MDS) and t-distributed stochas-
tic neighbour embedding (t-SNE). MDS provides a visual
representation of similarity (or dissimilarity) between two
objects. It takes as input the distances between any pair of
objects and then minimizes a loss function called strain (26)
so that the between object distances are preserved as much
as possible. t-SNE is a non-linear dimensionality reduction
technique that maps multidimensional data to two or
more dimensions for easy visualization. t-SNE converts
the similarity between the data points to joint probabilities
and tries to minimize the Kullback–Leibler divergence be-
tween the joint probabilities of high dimensional data and
low-dimensional embedding of this data (27). To reduce
the noise and computational time it is recommended to use
a lower dimensional representation of the data as input to
t-SNE, e.g. from MDS. It is worth noting that the number
of dimensions that are taken as input for t-SNE have an
effect on the way the clusters are visualized on the t-SNE
plot. Depending on the complexity of the samples users
can choose between 10 and 50 dimensions as t-SNE input.

Clustering

In this pipeline, we used the k-medoids algorithm to clus-
ter the cells into different groups. The k-medoids algorithm
breaks the dataset into different partitions and attempts to
minimize the distance between points assigned in a cluster
and a point designated as the center of that cluster. In our
pipeline we used Jaccard distance as the dissimilarity matrix
for this algorithm.

Differential accessibility (DA) analysis

One of the key features of interest in single-cell ATAC-
seq analysis is to perform a statistical analysis to discover
whether quantitative changes in accessibility of chromatin
locations between two groups of cells are statistically signif-
icant. The pipeline implements two methods, Fisher exact
test and Information gain, to conduct the differential ac-
cessibility analysis between any two groups of cells.

Information gain. Based on the expected reduction in en-
tropy (homogeneity measure), information gain measures
the attribute that provides the best prediction of the tar-
get attribute where entropy is reduced. In differential ac-
cessibility analysis, information gain lists the peaks that best
splits the cells into different groups. Defining entropy as∑c

i=1 −pi log2 pi , the Information gain is calculated as

Gain(P, PG1 , PG2 ) = Entropy(P) −
∑

vε{G1,G2}

|Pv |
|P| Entropy(Pv)

Here, P is the collection of all data, PG1 represents the cells
in G1 and PG2 represents cells in G2. We calculate the infor-
mation gain of each of the peaks given the cells are divided
into two groups. The peaks are then sorted based on the in-
formation gain and the user can choose the cutoff value for
selecting the DA peaks.

Fisher exact test. The Fisher exact test looks at a
2 × 2 contingency table that shows how different
groups/conditions have produced different outcomes. Its
null hypothesis states that the outcome is not affected by
groups or conditions. We run this test on a peak-by-peak ba-
sis by organizing the open and closed (1’s and 0’s) for each
peak in a 2 × 2 contingency table. The p-values are then
corrected using Bonferroni correction for multiple compar-
isons (28). Differentially accessible peaks with statistical sig-
nificance are then selected based on a user-defined cutoff
value (default: q-value <0.01).

Experimental design

To demonstrate Scasat we generated scATAC-seq data from
a mixture of three different cell types and the objective
was to identify these three cell types from this mixture. We
applied Scasat to characterize biologically relevant chro-
matin variability associated with each cell-type. To create
the mixed cell population we took two classic oesophageal
adenocarcinoma (OAC) cell lines, OE19, OE33 and one
non-neoplastic HET1A cell line. We mixed the three cell
types in equal proportions to create a heterogeneous pop-
ulation (see Figure 2). Two samples from this mixture were
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Figure 2. Experimental design for disentangling different cell types from
a complex mixture. Three cell types HET1A, OE19 and OE33 are mixed
in equal proportions. Samples are then taken from this mixture into two
independent batches (Batch-1 and Batch-2) by running them in two C1 in-
tegrated fluidic circuits (IFC). The captured cells are then sequenced using
a NextSeq.

taken to make two technical replicates. ATAC-seq was then
performed on those two replicates by loading on two sepa-
rate C1 fluidigm chips using a 96-well plate integrated flu-
idic circuit (IFC) and sequenced on an Illumina NextSeq
( Figure ). As ATAC-seq reports on the accessible regions of
the chromatin which are considered to be active (29), these
three cell lines are expected to have different accessibility at
regulatory regions. The analysis attempted to disentangle
these cells based on the presence of these active sites.

We benchmarked Scasat with single cell ATAC-seq from
Buenrostro et al. (accession number: GSE65360) (3) . There
are in total 1632 samples with 1920 runs. For samples that
have multiple runs we kept the runs with more sequencing
data. We then filtered out the mouse data and only took the
human cells. These cells were then pre-processed with our
Scasat pipeline and filtered based on Library size. After this
filtering, we have 743 cells for downstream analysis.

We also benchmarked Scasat with single cell ATAC-seq
from Cusanovich et al. (30). We randomly sampled 3000
cells from this single cell atlas and applied Scasat to visu-
alize the cells in a t-SNE plot.

Sample preparation

We plated 1 × 106 of each cell type onto 10 cm plates and
incubated for 24 h at 37◦C. Cells were detached using 0.1%
trypsin. After detaching cells, each individual cell type was
placed into a separate tube, centrifuged and re suspended in
1 ml of 1× phosphate-buffered saline (PBS). Each cell type
suspension was quantified using a haemocytometer and this
gives us a concentration in cells per ml. We then put the
same number of each cell type into the same tube (to get
the mixed population), which was then centrifuged again
and re-suspended in 100 �l of 1× PBS. This was then sub-
mitted to the Genomic Technologies Core Facility. The C1
platform (Fluidigm) was used to capture single cells and
generate sequencing libraries using the scATAC-seq proto-
col available from the Fluidigm ScriptHub. Medium (10-17
micron) C1 for OpenApp Integrated Fluidic Circuits (IFCs)
were used to capture and process the samples. The amplified
DNA products were harvested, and then additional PCR
performed to dual-index the harvested libraries using cus-
tomized Nextera PCR primer barcodes (IDT Technologies)
according to the ScriptHub protocol. The PCR products

were then pooled to a total volume of 96 �l, followed by two
cycles of AMPure XP bead purification (Beckman Coul-
ter, Inc.) according to the SMART-seq v4 protocol 032416
(Clontech Laboratories, Inc.) using C1 Dilution Reagent
(Fluidigm) for the final elution. The pools were then quan-
tified and validated using qPCR-based KAPA library quan-
tification kit for Illumina (KAPA Biosystems) and TapeS-
tation 4200 (Agilent Technologies). The library preps are
done as part of cell capture on C1 plates, so for both the
batches they are prepared separately. Library pools (1.8 pM
final concentration) were then sequenced (75:75 bp, paired-
end) on the NextSeq500 platform using the Mid Output
v2 150 cycle kit (Illumina, Inc.) to generate .fastq sequence
files. The C1-runs were done with different batches of cells
and across different days, so they are biological replicates.
Both batches were made with the same proportion of cells.
Both the batches are then sequenced on the same Nextseq
run. We were surprised by the batch effect but it also shows
the power of our pipeline to overcome these big effects and
successfully separate the cell types.

RESULTS AND DISCUSSION

First we processed the sequencing data to generate a peak
accessibility for each single cell where a binary score is given
to each potential peak in the population. The two batches
were processed separately making it easier to keep track
of the processing steps and to troubleshoot any problem
that might arise due to batch effects. The parameters for
the tools are explained in the tool description section. We
trim the adapter sequences using Trimmomatic and used
Bowtie2 to map reads to the genome. After removing the
Blacklisted regions, we used Picard’s Markduplicate, to re-
move the duplicates. We then removed the chrY (as the three
cells lines are a mixture of male and female) and chrM. The
peak calling was done in two stages. In the first stage macs2
was used to call peaks in each individual cell by setting the
P-value parameter to 0.0001 to ensure that peaks associated
with low mapping reads are also called. We then filtered the
cells that fail to cross the LIBRARY SIZE THRESHOLD
set to 10 000. After this QC, Batch-1 has 84 and Batch-2 had
89 cells for downstream analysis. In the second stage of peak
calling, we aggregated all the BAM (both batches) files by
calling getAggregatedPeak() module and used macs2 to call
peaks on this aggregated BAM file with q-value of 0.2. This
gave us a reference set of peaks. We then used the merge-
Peaks() module to merge the overlapping peaks in this ref-
erence set and sort them based on the q-value giving us a
total of 236 580 peaks as reference set. Finally we used the
peakAccessibility() module to calculate the accessibility of
these reference peaks for each single-cell and generated the
peak accessibility matrix.

Peak selection

Next we identified and removed peaks from these ma-
trices which likely represent background noise. We
used the clean.count.peaks(min.cell.peaks.obs=10,
min.peaks.cell=50) with the default parameters to re-
move the lower quality cells and peaks.
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Figure 3. MDS plot with (A) and without (B) additional filtering to remove peaks where very few cells from a specific batch have open peaks. In (A) cells
can be separated using only the batch information which is removed in (B) with additional filtering. (C) shows the three clusters identified by k-medoids
clustering algorithm. (D) MDS plot derived from the mixed cell dataset using cells from clusters 1–3 (C) and cells from experiments conducted with pure
populations of HET1A and OE19. B1 and B2 in OE19 refers to two batches of OE19 single cells. The clusters from the mixed population group with their
inferred cell-types.

In Scasat, the threshold for filtering the cells and peaks
depends on the experimental design ie. cell types, sequenc-
ing depth or batches if there are any. For this reason the
users can tune these filtering parameters to an appropriate
value suitable for their experiment. In general, with smaller
number of cells (within 200 cells) we set the threshold on
min.peaks.cell to 50 peaks, that is a cell has to have at least
50 opening peaks to call it a valid cell and min.cell.peaks.obs
to 10 meaning a peak has to be observed in at least 10 cells
to be a valid peak. When the number of cells is higher, it
is suggested to set min.peaks.cell to 0.1% of total accessible
peaks and for valid peaks they should be present in at least
2% of the cells (min.cell.peaks.obs).

These peaks are filtered out because we believe they do
not contain much information for reliable statistical infer-
ence. One caveat of this approach could be that peaks as-
sociated with more abundant cell types are potentially kept
and we might fail to detect rare sub-populations. However,
we think that in the majority of cases, even if some of these
peaks represent real biological signals and represent a rare
sub-population, removing them would still not be a prob-

lem as the open chromatin locations operate on a complex
network of interactions and other more informative peaks
would be able to pick up these rare cell-types if they ex-
ist. A pragmatic approach to completely circumvent this
problem of missing rare sub-population would be to sam-
ple a larger number of cells. The recent evolution of single
cell ATAC-seq protocols to high throughput commercially
available platforms makes this a feasible solution. As these
peak selection thresholds are now adjustable, the user can
alter them based on their experimental design and number
of cells.

We applied MDS on these filtered peaks to reduce the di-
mensionality of the data and plotted them in a 2D plot (Fig-
ure 3A). In Figure 3A, we saw that the cells are separated
based on their batches indicating a clear batch effect. We
cannot apply conventional batch correction methods as that
gives normalized data that violates our assumption of bi-
nary data. Therefore, in order to remove the batch effect we
applied an additional filtering. Careful analysis of the data
found that the peaks in Batch-1 had higher number of zeros
associated with aggregated peaks, indicating that less infor-
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mation is attained from Batch-1 cells compared to Batch-2
(Supplementary Figure S2). We therefore applied an addi-
tional filtering. In this filtering, we removed the peaks that
are open only in one batch meaning that for those peaks
no information is coming from the other batch. If a peak
is open in less than three cells in a single batch then we re-
moved this peak. This further reduced the number of peaks
to 37,071 peaks. After this filtering we again applied MDS
and plotted it in a 2D plot. Now we can see that the cells are
no longer separated based on their batches (Figure 3B). We
next applied k-medoid clustering on the remaining peaks
and find three nicely separated clusters (Figure 3C). We then
combined this data with three single cell datasets where the
cell-types are known, one HET1A and two OE19 cells from
two batches, batch B1 and B2. Additional filtering is applied
in this combined dataset to remove the peaks that are only
open in less than three cells in any specific single cell-type.
We then applied MDS with this combined data and results
are shown in Figure 3D.

Clustering analysis of the cell populations

To attempt to partition the cell mixture into individual cell
types, we clustered the peak accessibility data. We used the
Partitioning Around Medoids (PAM) algorithm, the most
common realisation of k-medoid clustering to cluster the
cells. For this algorithm we chose K = 3 as we expected the
cell-mixture to have three types of cells. While calculating
the partitions we passed the Jaccard distance to the func-
tion. The assignment of the clusters for each of the cells are
superimposed onto our MDS plot which is shown in Figure
3C. Cluster 1 has 41 cells, Cluster 2 has 80 cells and Cluster
3 has 52 cells.

Identifying cell types

In Figure 3D, we see that the cluster-2 cells group with OE19
cells and Cluster-3 groups with HET1A cells. Cluster-1 re-
mains in the middle without grouping with any cell-types.
From this we infer that Cluster-1 is composed of OE33 cells,
Cluster-2 contains OE19 cell and Cluster-3 is likely com-
posed of HET1A cells.

To further validate our inference of the different clusters,
we compared them with the bulk data of HET1A, OE19 and
OE33 and also with two single-cell datasets from the same
cell types.

For this comparison, we merged the mapped reads for
each cell in each of the clusters to create three aggre-
gated BAM files, one for each of Cluster-1, Cluster-2 and
Cluster-3 identified in Figure 3C. For the other two single-
cell datasets from a different experiment we did the same.
We now extend the column of peak accessibility matrix
by calculating the peak accessibility for the three aggre-
gated single cell data (OE19 B1, B2 and HET1A) and
the bulk datasets (HET1A, OE33, OE19) using the same
37,071 peaks which are left after removing the low quality
peaks and peaks only associated with a specific batch. Fi-
nally, we calculated the Pearson correlation coefficient for
each of these datasets against each other which is shown
in a correlation plot (Figure 4) where the cell-types are
clustered based on hierarchical clustering. The correla-
tion plot assigns each of the single cell clusters to their
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Figure 4. Correlation plot showing Pearson correlation for the three clus-
ters of cells identified with k-medoid clustering algorithm, against the bulk
and two other single-cell data for which the cell types were known a pri-
ori. These known single-cell data are for HET1A and OE19 done in two
batches (B1 and B2). Single cells from these known cell types are also ag-
gregated. The bulk datasets have the label bulk at the end of the sample
name. Here red indicates negative correlation and blue indicates positive
correlation (scale bar on the right).

respective cell type based on high correlation coefficient
with the known cell types. In the correlation plot (Fig-
ure 4), Cluster-2 groups with OE19 cells. It has a corre-
lation coefficient of 0.48 and 0.49 with the OE19 single-
cells (OE19.B1 and OE19.B2) and 0.44 with the OE19 Bulk
dataset (OE19.Bulk), identifying Cluster-2 as OE19 cell-
type. Cluster-3 groups with HET1A cells, where it has a cor-
relation of 0.52 with the HET1A single cell and 0.48 with
HET1A Bulk dataset (HET1A.Bulk), identifying Cluster-
3 as HET1A cell-type. Finally we infer Cluster-1 to be of
OE33 cell-type as it has correlation coefficient of 0.4 with
OE33 Bulk data. If the bulk data is not available or any
other input cell types are not known, GO based analysis of
genes associated with open chromatin peaks, e.g. GREAT
(31) can be used to aid the assignment of cells to a particular
cell type.

UCSC genome browser visualization

To further validate the deconvolution of our mixed popula-
tion into known cell types we visualize the ATAC-seq data
of the clusters in the UCSC genome browser. We created a
genome browser session of the aggregated single cells in the
clusters and compared this to the data from bulk ATAC-
seq experiments performed on known cell populations. The
activation of GATA6 can sustain oncogenic lineage survival
in esophageal adenocarcinoma (32). This is consistent with
the regulatory elements for this gene to be more open in
our Cluster-2 cells and the OAC-derived OE19 cell line bulk
data. In Figure 5(A) we see that GATA6 are more open in
Cluster-2 and OE19 bulk data. This further indicates that
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Scale
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(A) GATA6 (B) PPFIA3 (C) CAV1 (D) MAS1

Figure 5. Confirmation of our assignments through visualizing peaks across different genome location from UCSC genome browser track. The clusters in
three different colors (red, blue, green single cell clusters) correspond to the inferred aggregated single-cell peak pattern. The bottom three tracks in black
show the peaks for the bulk data of OE33, OE19 and HET1A respectively. Peaks around the gene body of (A) GATA6, (B) PPFIA3, (C) CAV1, (D) MAS1
are shown in the figure. For these genes, peaks are more open in (A) and (B) OE19 cells, (C) OE33 and (D) HET1A cells.

Cluster-2 is comprised of OE19 cells. Another gene that is
expressed in OE19 cells is PPFIA3 (33). The peaks associ-
ated with PPFIA3 gene in Figure 5(B) are open in Cluster-2
and have a very similar opening pattern to OE19 cells. PP-
FIA3, is a gene encoding a receptor that has been reported
to show moderate cytoplasmic activity in colorectal cancers
(34) which can develop into oesophageal metastasis (35).
We also ran our differential accessible analysis on Cluster-
1 vs Cluster-2 peaks and found that the regulatory region
of CAV1 is differentially accessible between Cluster-1 and
Cluster-2. CAV1 is a tumour suppressor gene candidate (36)
and has higher chromatin opening in OE33 cells. We see
the same behaviour of CAV1 for both Cluster 1 and OE33
bulk data in our genome browser (Figure 5C). This con-
firms Cluster 1 as OE33 cells. Britton et al. (37) reported an
intragenic open chromatin location at the MAS1 locus for
HET1A (37) which we also observe in Figure 5D for both
our Cluster-3 and HET1A cells, confirming the identify of
Cluster-3 cells as HET1A cells.

GO based functionality

To confirm these cluster assignments further, we looked at
the disease ontology associated with the cells in the clus-
ters. We ran our differential accessibility analysis with the
module getDiffAccessInformationGain which uses the en-
tropy and information gain to identify the differentially
accessible peaks between Cluster-2 vs Cluster-3. We used
the peaks that we identified during differential accessibility
analysis of Cluster-2 and Cluster-3 and took the peaks that
are differentially accessible with positive log2 fold change
(more open) in Cluster-2 compared to Cluster-3 and iden-
tified the Disease ontologies associated with these peaks
through GREAT. GREAT first associates the peaks with
potential target genes by finding the nearest gene to TSS
and then identifies the disease ontologies associated with
these open chromatin locations. The same process was re-
peated for Cluster-3 where we identified the disease ontolo-
gies associated with open chromatin locations of Cluster-
3. We then took the 15 topmost disease-related terms asso-
ciated with Cluster-2 and determined the statistical signifi-
cance for these terms in the open peaks found in Cluster-3.
In addition we considered esophageal carcinoma as two cell
lines are related with this. The −log10(Binomial p-value) for
these diseases are shown in Figure 6. Esophageal carcinoma
is picked up as one of the diseases associated with Cluster-

2 with higher confidence compared to Cluster-3 cells. Sev-
eral other significant disease associations are seen with ade-
nocarcinomas and with general cancer. In all of these dis-
ease ontologies Cluster-2 shows high statistical significance
compared to Cluster-3. This further confirms our accurate
identification Cluster-2 as a cancer derived subtype whereas
Cluster-3 lacks these features as would be expected for the
non-tumorigenic HET1A cells.

Benchmarking with other datasets

Next we asked whether our method could be successfully
applied to other scATC-seq datasets generated by differ-
ent different groups using a variety of different method-
ologies. Scasat successfully separated different cell-types in
the Buenrostro dataset as shown in the t-SNE plot in Sup-
plementary Figure S4A and B. To cluster the cells in this
dataset we applied Dynamic Cut Tree which applies a novel
dynamic branch cutting method to detect clusters in a den-
drogram (38). A major advantage of this method is that we
do not need to select the number of clusters beforehand.
The clustering identifies a slightly higher number of clus-
ters than the number of known cell types from Buenrostro
et al. (3). These clusters can then be merged manually based
on expert knowledge while looking at the binding motifs
associated with the clusters. We also applied Scasat to char-
acterize the K562 cell type but first identified the differen-
tially accessible peaks that are more open in K562 cells com-
pared to all other cells and then associating disease ontol-
ogy terms with these peaks. We know that K562 cells are a
human myelogenous leukemia cell lines and this is the dis-
ease ontology picked up from the first 2 disease ontology in
the GREAT analysis (Supplementary Figure S5) confirm-
ing our pipeline’s effectiveness in characterizing the cells
correctly. Next we analysed the scATAC-seq data generated
from 13 adult mouse tissues (30) . Supplementary Figure
S6 shows the visualization of 3000 randomly selected cells
in a t-SNE plotcoloured according to tissue of origin. At
first we generated a t-SNE plot taking 10 MDS dimensions
as input. Although cells from major tissue types were nicely
separated in this plot, some closely related cells like testis
and small intestine stayed together. However, when we in-
creased the number of MDS dimensions to 40 as input to
t-SNE, this nicely separated all the different tissue types in-
cluding the testes and small intestine. The t-SNE plot has
a blob in the middle with a mixture of different cell types
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Figure 6. Disease ontology from the differentially accessible peaks in Cluster-2 compared to Cluster-3. We identified all the peaks that are differentially
accessible in Cluster-2 with a log2FoldChange of more than two. We then identified the disease ontologies that are associated with these peaks. Similarly
we identified the peaks that are differentially accessible in Cluster-2 compared to Cluster-3 with positive log2FoldChange (more open in Cluster-2) and
identified the disease ontologies associated with these peaks. We then took the 15 topmost disease terms associated Cluster-2 based on p-values along
with esophageal carcinoma as two cell lines are related with esophageal carcinoma. The Binomial p-values for these peaks in both clusters are plotted
in the –log10 scale here. All the diseases that have very high confidence in Cluster-2 are related with cancer. For these same disease, there is much lower
statistical significance in Cluster-3. For esophageal carcinoma, the statistical significance is higher in Cluster-2 compared with Cluster-3 further supporting
the conclusion that Cluster-2 is mostly composed of OE19 cells and Cluster-3 is mostly composed of HET1A cells.

which is also observed in the t-SNE plot of Cusanovich et.
al. Like Cusanovich et. al. we also observe four different
clusters of brain tissues which are again mixed with cells
from whole brain and cerebellum. However one shortcom-
ing with our approach is that we tested our method on a
much smaller number of cells compared to Cusanovich et.
al. This causes the method to have less predictive power for
clear cell separation, for example in the case of cells from
lung tissues we do not see a very clear cluster of cells.

Together, these results illustrate the utility of our method-
ology for analyzing a wide range of datasets generated using
different platforms and experimental protocols.

CONCLUSION

As single-cell ATAC-seq experiments are gaining momen-
tum, we report Scasat, a pipeline to process and analyse
single-cell ATAC-seq. Scasat offers two major utilities, the
initial processing of scATAC-seq data and its downstream
analysis. Scasat is implemented in jupyter notebooks mak-
ing it simple, robust, scalable and easy to extend. The tool
also incorporates novel analytical capabilities of addressing
the open chromatin information as binary data, and cor-
recting for the batch effects while keeping the binary nature
of the data. This gives Scasat an advantage over other tools
in analyzing single cell ATAC-seq data. Also, we addressed
the differential accessibility problem from a totally different
perspective where we used entropy and information gain to
calculate the differentially accessible peaks between two sets
of cells. We applied Scasat to a mixture of cells to decon-
volute those cells into different groups. Initial results from
our analysis showed that batch effects confounded the bio-
logical signal which hindered the classification of cells into
different cell types. Therefore Scasat was further developed

to overcome this batch effect problem. Final results showed
that an unsupervised clustering of the cells based on acces-
sible chromatin regions could group cells into their corre-
sponding cell type. This suggests that regulatory elements
can define cell identity quite precisely. Similar approaches
could be applied to separate malignant cells from normal
cell in a cancerous tissue and then investigate the malig-
nant cells in detail. Scasat was also successfully applied to
publicly available datasets showing its overall utility for pro-
cessing and analyzing single-cell ATAC-seq datasets gener-
ated using different protocols and platforms. The success-
ful implementation of this tool helps us to further under-
stand the epigenetic mechanisms at the single-cell level and
opens opportunities for easier and better analysis of single-
cell ATAC-seq data.

SOFTWARE AND DATA AVAILABILITY

Jupyter notebooks with the complete pipeline applied to
the dataset published with this paper along with another
published dataset are publicly available on Github (https:
//github.com/ManchesterBioinference/Scasat). The fastq
files are submitted at ArrayExpress (accession number E-
MTAB-6116). The UCSC genome browser track can be ac-
cessed through https://goo.gl/BxJ95G

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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