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Abstract

Background

The saliva metabolome has been applied to explore disease biomarkers. In this study we

characterized the metabolic profile of primary Sjögren’s syndrome (pSS) patients and

explored metabolomic biomarkers.

Methods

This work presents a liquid chromatography-mass spectrometry-based metabolomic study

of the saliva of 32 patients with pSS and 38 age- and sex-matched healthy adults. Potential

pSS saliva metabolite biomarkers were explored using test group saliva samples (20

patients with pSS vs. 25 healthy adults) and were then verified by a cross-validation group

(12 patients with pSS vs. 13 healthy adults).

Results

Metabolic pathways, including tryptophan metabolism, tyrosine metabolism, carbon fixation,

and aspartate and asparagine metabolism, were found to be significantly regulated and

related to inflammatory injury, neurological cognitive impairment and the immune response.

Phenylalanyl-alanine was discovered to have good predictive ability for pSS, with an area

under the curve (AUC) of 0.87 in the testing group (validation group: AUC = 0.75).

Conclusion

Our study shows that salivary metabolomics is a useful strategy for differential analysis and

biomarker discovery in pSS.
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ONE 17(6): e0269275. https://doi.org/10.1371/

journal.pone.0269275

Editor: Timothy J. Garrett, University of Florida,

UNITED STATES

Received: November 22, 2021

Accepted: May 17, 2022

Published: June 2, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0269275

Copyright: © 2022 Li et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The author(s) received no specific

funding for this work.

https://orcid.org/0000-0003-4950-7323
https://doi.org/10.1371/journal.pone.0269275
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0269275&domain=pdf&date_stamp=2022-06-02
https://doi.org/10.1371/journal.pone.0269275
https://doi.org/10.1371/journal.pone.0269275
https://doi.org/10.1371/journal.pone.0269275
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Background

Sjögren’s syndrome (SS) is a multisystem autoimmune disease characterized by hypofunction

of salivary and lacrimal glands and possible systemic multiorgan manifestations [1]. SS is a

complex and heterogeneous disorder characterized by different clinical subsets [2], such as

thrombocytopenia [3], leukopenia [4], lymphoma [5], interstitial pneumonia [6], renal tubular

acidosis [7], and peripheral nerve involvement [8]. In the era of personalized medicine, new

biomarkers are required to diagnose SS early, to define different disease subsets, to direct

patients’ clinical management and to monitor disease progression [9].

Saliva is a complex fluid containing a variety of metabolites, proteins, mRNAs, DNAs,

enzymes, hormones, antibodies, antimicrobial constituents, growth factors and other mole-

cules that may be associated with disease phenotypes [10, 11]. Compared to blood, saliva is eas-

ily, rapidly and noninvasively collected [12, 13]. Salivary gland dysfunction in primary

Sjögren’s syndrome (pSS) patients inevitably leads to changes in salivary components, and the

pathogenesis of the disease can thus be inferred from changes in saliva. Many previous studies

have focused on saliva proteomic, transcriptomic and genomic biomarkers for pSS [14, 15];

however, a sensitive and specific biomarker in this fluid source has not yet been available.

Metabolites, which are important indicators of physiological or pathological states, can pro-

vide information for the identification of early and differential markers of disease and help in

understanding disease occurrence and progression [16]. Overall, saliva metabolomics has

become a useful strategy for identifying biomarkers for oral squamous cell carcinoma [17, 18],

periodontal diseases [19], oral lichen planus [20], oral leukoplakia [21] and cardiovascular dis-

ease [22]. In addition, a few metabolomics studies have recently reported salivary [23–25] sam-

ple biomarkers for pSS diagnosis. Both Mikkonen JJ and Herrala M used nuclear magnetic

resonance (NMR) spectroscopy to analyze the saliva metabolome, and the levels of choline,

taurine, alanine, glycine, phenylalanine and proline were found to be higher in patients with

pSS than in controls [24, 25]. In another study, the saliva of 12 pSS patients was assessed by gas

chromatography–mass spectrometry (GC–MS), and glycine, tyrosine, uric acid and fucose

were found to be downregulated [23].

Ultra-performance liquid chromatography coupled with high-resolution mass spectrome-

try (UPLC-HRMS) is considered an appropriate technique for metabolomics studies, espe-

cially for large-scale untargeted metabolic profiling [26]. However, the use of the

UPLC-HRMS method for detecting salivary metabolites in pSS patients has not been reported.

The major objective of our study was to discover potential salivary biomarkers to distinguish

patients with pSS from healthy controls by UPLC-HRMS.

Materials and methods

Ethics statement

The investigation protocol was approved by the Institutional Review Board of the Institute of

Basic Medical Sciences, Chinese Academy of Medical Sciences, Project No:047–2019. Verbal

consent forms indicating agreement to serve as saliva donors for the experiments were

obtained from all study subjects before participation in the study (S1 File).

Sample collection

This trial focused on pSS. A total of 32 pSS and 38 healthy control saliva samples were collected

and randomly divided into two groups: the test group included 20 pSS patients and 25 healthy

human adults, and the validation group included 12 pSS patients and 13 healthy controls. The

participants were recruited from July 2019 to January 2020 from the Department of
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Rheumatology and Clinical Immunology, Peking Union Medical College Hospital. These

groups did not include subjects with any acute condition. All 32 patients with pSS were

recruited according to the 2016 American College of Rheumatology (ACR)/European League

Against Rheumatism (EULAR) classification criteria for pSS [1] by a rheumatologist to con-

firm the diagnosis according to medical history, clinical manifestations and examination and

that pSS was not secondary to other connective tissue diseases (CTDs). The detailed demo-

graphics and disease pathology of the patients are shown in Table 1.

Unstimulated whole saliva samples were collected by having the participants spit for 15 min

into a container between 9:00 and 11:00 a.m. The subjects were requested to refrain from eat-

ing, drinking, smoking or oral hygiene procedures for at least 1.5 hr prior to unstimulated

whole saliva collection and to rinse their mouth with water prior to sample collection. The

samples were transported to the laboratory on ice and centrifuged at 1500 × g for 15 min at

4˚C to remove shed cell debris and residue, and then the supernatants were frozen immedi-

ately and stored at -80˚C until analysis [23].

Sample preparation

For saliva metabolomics, acetonitrile (200 μL) was added to each saliva sample (200 μL), and

the mixture was vortexed for 30 s and centrifuged at 14,000 × g for 10 min. The supernatant

was dried under vacuum and reconstituted with 200 μL of 2% acetonitrile. The quality control

(QC) sample was a pooled saliva sample prepared by mixing aliquots of all samples across the

two groups to be analyzed and was therefore globally representative of the whole sample set.

The QC samples were injected every ten samples throughout the analytical run to provide a set

of data from which method stability and repeatability could be assessed.

UPLC-HRMS analysis

UPLC-HRMS analyses of samples were conducted using a Waters ACQUITY H-class LC sys-

tem coupled with an LTQ-Orbitrap Velos pro mass spectrometer (Thermo Fisher Scientific,

MA. USA). Saliva metabolites were separated with a 17-min gradient using a Waters HSS C18

column (3.0× 100 mm, 1.7 μm) at a flow rate of 0.3 mL/min. Mobile phase A was 0.1% formic

acid in H2O, and mobile phase B was acetonitrile. Saliva metabolites were separated with a gra-

dient as follows: 0–2 min, 2% solvent B; 2–5 min, 2–55% solvent B; 5–15 min, 55–100% solvent

B; 15–20 min, 100% solvent B; 20–20.1 min, 100–2% solvent B; and 20.1–29 min, 2% solvent

B. The column temperature was set at 45˚C. Full MS acquisition was performed from 100 to

1000 m/z at a resolution of 60 K. The automatic gain control (AGC) target was 1× 106, and the

Table 1. Demographics and clinical characteristics of the pSS patients and healthy control subjects.

Test group Validation group

Characteristic pSS patients HCs pSS patients HCs

Number of samples 20 25 12 13

Age (x�± s) 39.7±10.9 40.6±12.8 41.4±12.2 44.1±12.7

Sex (F/M) 17/3 23/2 10/2 12/1

Anti-SSA/Ro- antibody positivity 16/20 9/11

Anti-SSB/La- antibody positivity 3/20 1/11

Immunoglobulin G positivity 12/20 6/12

Labial gland biopsy positivity 14/17 9/10

pSS- primary Sjögren’s syndrome, HCs- healthy controls, SSA- Sjögren’s syndrome-related antigen A, SSB- Sjögren’s syndrome-related antigen B, p< 0.05 for

Wilcoxon test for pSS patients and HCs.

https://doi.org/10.1371/journal.pone.0269275.t001
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PLOS ONE | https://doi.org/10.1371/journal.pone.0269275 June 2, 2022 3 / 15

https://doi.org/10.1371/journal.pone.0269275.t001
https://doi.org/10.1371/journal.pone.0269275


maximum injection time (IT) was 500 ms. UPLC targeted-MS/MS data were acquired at a res-

olution of 15 K with an AGC target of 5× 104, a maximum IT of 250 ms, and an isolation win-

dow of 3 m/z. The collision energy was optimized as 20, 40, 60 or 80 for each target with

higher-energy collisional dissociation (HCD) fragmentation. The injection order of the saliva

samples was randomized to reduce experimental bias.

Statistical analysis

Raw data files were processed by Progenesis QI (Version 2.0, Nonlinear Dynamics) software

based on a previously published identification strategy, which included sample alignment,

peak picking, peak grouping, deconvolution, normalization by total compounds, and final

information export [27]. To make features more comparable, further data preprocessing,

including missing value estimation, log2 transformation and Pareto scaling, was carried out

using MetaAnalyst 3.0 (http://www.metaboanalyst.ca). Variables missed in 50% or more of all

samples were removed from further statistical analysis. Nonparametric tests (Wilcoxon rank-

sum test) were employed to evaluate the significance of variables. False discovery rate (FDR)

correction was used to estimate the chance of false positives and correct for the testing of mul-

tiple hypotheses. The adjusted p value (FDR) cutoff was set as 0.05. Pattern recognition analy-

sis (principal component analysis, PCA; orthogonal partial least squares discriminant analysis,

OPLS-DA) was performed using SIMCA 14.0 (Umetrics, Sweden) software. The differential

variables selected met the following three conditions: (i) adjusted p< 0.05; (ii) fold change

between the two groups >2; and (iii) variable importance in OPLS-DA projection (VIP) above

1. Exploratory ROC analysis and external biomarker validation were carried out using the

“Biomarker discovery” module with the MetaboAnalyst 3.0 platform.

Potential biomarkers were further evaluated by receiver operating characteristic (ROC) anal-

ysis. The area under the ROC curve (AUC), an efficient indicator of model performance, was

used as a metric to assess the sensitivity and specificity of the biomarkers. AUC values> 0.9

indicate high reliability of the model, 0.7 to 0.9 indicate moderate reliability, 0.5 to 0.7 indicate

poor reliability, and AUC� 0.5 suggests that the model prediction is not better than chance.

Metabolite annotation and pathway analysis

Metabolic pathways and predicted metabolites in the pathways were analyzed using the

“Mummichog” algorithm based on the MetaboAnalyst 3.0 platform. Mummichog is a pro-

gram written in python for analyzing data from high-throughput, untargeted metabolomics,

bypassing the tedious and challenging metabolite identification. It leverages the organization

of metabolic networks to predict functional pathways directly from feature tables and generate

a list of tentative metabolites annotations through functional activity analysis. Metabolite

annotation was further determined from the exact mass composition, from the goodness of

isotopic fit for the predicted molecular formula and from MS/MS fragmentation comparing

hits with databases (HMDB http://www.hmdb.ca/), thus qualifying for annotation at MSI level

II using Progenesis QI. For endogenous metabolites lacking a chemical formula, an accurate

molecular mass was determined based on the calculated isotopic features and ion adducts.

Detailed methods are listed in the Supplementary Methods.

Results

The workflow of our study is shown in Fig 1. Metabolite variation and pathway regulation

associated with pSS were explored based on an analysis of metabolic profile differences

between pSS and healthy controls. Potential biomarkers for pSS were further explored based

on differential metabolites and validated using 10-fold cross-validation or external validation.
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Characteristics of the participants

All the pSS patients included in the study had either ocular and/or oral symptoms, and all were

positive for one or more autoantibodies. The autoimmune antibody profiles revealed anti-Ro-/

Sjögren’s syndrome A-antibody (anti-Ro/SSA) positivity in 73.5% (25/31) of the participants

and anti-La-/Sjögren’s syndrome B-antibody (anti-La/SSB) positivity in 11.8% (4/31) of the

participants. In total, 27 pSS patients underwent labial gland biopsy, with positive results in 23.

Detailed information is shown in Table 1.

Quality control

To reduce experimental variations from the sampling process, standard sampling procedures,

including sampling time and sampling processing, were performed by professionals. To ensure

the repeatability and consistency of the metabolomics data, a quality control (QC) sample con-

sisting of all samples was injected every ten or twelve sample injections. Principal component

Fig 1. The workflow of our study.

https://doi.org/10.1371/journal.pone.0269275.g001

PLOS ONE Saliva metabolic signature in primary Sjögren’s syndrome
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analysis was performed to evaluate the variation in samples. A good cluster of QC samples

indicated good stability of the analytical platform (S1A Fig).

Distinction of pSS patients from healthy controls by saliva metabolomics

Based on UPLC-HRMS analysis, 2887 variables were quantified and analyzed from pSS and

control saliva samples after QC filtering.

First, PCA was performed to explore the tendency of metabolic profiling variations between

the healthy controls and pSS subjects (Fig 2A) and suggested apparent discrimination. Next,

the OPLS-DA model achieved better separation for differential metabolite selection

(R2X = 0.413, R2Y = 0.932, Q2 = 0.46, CV-ANOVA, p = 0.00070, Fig 2B). Permutation tests

(100 times) were performed to confirm the stability and robustness of the supervised models

presented in this study (intercept of Q2 = - 0.261, S1B Fig).

Overall, 676 features with a P value< 0.05 (351 upregulated and 325 downregulated fea-

tures) were submitted for pathway enrichment analysis using the Mummichog algorithm. The

results showed significant enrichment (p< 0.05) of several pathways, including tryptophan

metabolism, tyrosine metabolism, carbon fixation, and aspartate and asparagine metabolism,

etc. Metabolites involved in tryptophan metabolism and aspartate and asparagine metabolism

were upregulated. Metabolites involved in carbon fixation were downregulated (Fig 3).

Further annotation of the top discriminatory features (p< 0.05; FC>2; VIP>1) deter-

mined by MS/MS evaluation identified 38 significantly differentially abundant metabolites (S1

Table; relative intensity plotted as a heatmap in Fig 4).

Notably, the number of metabolites derived from amino acids was upregulated, and many

of them were dipeptides. These metabolites include phenylalanyl-alanine, tryptophyl-isoleu-

cine, tyrosyl-phenylalanine, asparaginyl-valine, aspartyl-isoleucine and tyrosyl-hydroxypro-

line. Additional differential metabolites related to purine metabolites, included

8-hydroxyadenine and oxypurinol. All the metabolites were present at higher levels in pSS.

To evaluate the diagnostic accuracy of these differential metabolites for pSS, a predictive

model for patient classification was constructed using each identified metabolite. All 38 metab-

olites had a potentially useful diagnostic value, with an AUC above 0.7, and 30 metabolites had

a good diagnostic value, with an AUC above 0.8. Among the saliva metabolites, aspartyl-isoleu-

cine had the highest area under the ROC curve for the diagnosis of pSS (0.88, p<0.001), and

Fig 2. Comparison between pSS subjects and healthy controls. (a) Score plot of the PCA-X model between pSS subjects (blue) and healthy controls (green). (b) Score

plot of the OPLS-DA model between pSS subjects (blue) and healthy controls (green).

https://doi.org/10.1371/journal.pone.0269275.g002
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both the sensitivity and specificity reached 80%. Phenylalanyl-alanine for the classification of

pSS patients and controls had an AUC of 0.87 for the test group, a sensitivity of 80%, and a

specificity of 84%. To limit overfitting, the training set was subjected to 10-fold cross-valida-

tion to evaluate the stability and generalization of the metabolite. Further external validation

using an independent sample set was carried out and achieved good performance with an

AUC of 0.75, sensitivity of 75% and specificity of 85% (S2 Table and Fig 5).

Discussion

Saliva is produced primarily by the major salivary glands, and the impaired secretion of the sal-

ivary glands can be described by the metabolites of saliva, which is an excellent diagnostic

Fig 3. Pathway enrichment analysis of differential metabolites of pSS and healthy controls.

https://doi.org/10.1371/journal.pone.0269275.g003
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medium for clinical diagnostics [28]. In the present study, we conducted a comprehensive

characterization of the saliva metabolome of 32 pSS patients and 38 healthy subjects. Our

results suggest that the saliva metabolome can be used to differentiate pSS patients from

healthy controls.

Whole saliva is a complex fluid containing a variety of substances, and changes in the levels

of these substances are related to the pathogenesis of various diseases. However, the function

of the salivary glands in patients with pSS is severely weakened, resulting in the volume of

saliva being too small. Patients’ whole saliva up to 2 ml was collected for analysis over time to

obtain a pre-normalization of saliva.

Reliable identification of features distinguishing biological groups in salivary metabolite fin-

gerprints requires the control of total metabolite abundance. Normalizations to one index val-

ues (for example, creatinine for urine metabolomics), osmolality, and total compound (useful

MS signals) were the commonly used normalization techniques for overcoming sample vari-

ability in fluids metabolomics. Previous researches have compared the effect of different nor-

malization method on urine metabolomics study. It showed that the best performance was

normalization to the total compound. The approach does not only correct for different urinary

output, but it also accounts for injection variability (REF: Evaluation of dilution and normali-

zation strategies to correct for urinary output in HPLC-HRTOFMS metabolomics.). In present

study, we normalized the data using the method of “Normalize to useful MS signals” to reduce

sample variation. However, it cannot completely solve the problem of pre-normalization. It is

Fig 4. Relative intensity of differential metabolites in pSS subjects and healthy controls.

https://doi.org/10.1371/journal.pone.0269275.g004
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necessary to perform targeted and absolute quantitative analysis to solve this problem, which

is our future project.

According to the LC-HRMS spectra of human saliva, we identified a total of 38 metabolites

that could be used to significantly differentiate patients with pSS from healthy controls. Our

results indicated that the most affected pathways included several amino acid metabolism

pathways. Elevated levels of amino acid dipeptides and their products are pathogenic factors

for neurological disorders, oxidative stress, and cardiovascular disease. Some amino acids reg-

ulate key metabolic pathways that are necessary for maintenance, growth, reproduction,

immunity and inflammation [29].

One of the most important results of our study is that the number of metabolites, many of

which were dipeptides, derived from tyrosine and phenylalanine metabolic pathways was

upregulated in saliva samples. Consistent with our results, phenylalanine concentrations were

significantly higher in salivary samples of pSS patients in previous studies, which were ana-

lyzed by H-NMR pectroscopy [25]. Phenylalanine hydroxylation to tyrosine, which can syn-

thesize important neurotransmitters and hormones, is carried out by phenylalanine

hydroxylase [30]. In recent studies, proteomic analysis revealed that tyrosine-protein

Fig 5. Potential biomarker using phenylalanyl-alanine for pSS prediction from healthy controls. (a) Relative intensity of metabolites in pSS

patients and controls (test group). (b) ROC curve established using logistic regression (test group). (c) Relative intensity of metabolites in pSS

patients and controls (validation group). (d) ROC curve in pSS patients and controls (validation group).

https://doi.org/10.1371/journal.pone.0269275.g005
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phosphatase nonreceptor type 6 (PTPN6) was dysregulated in saliva and salivary glands in pSS

murine models [31]. Receptor tyrosine kinase signaling appears to be disrupted in SS patients,

potentially promoting the development of autoantibodies, lymphocytic infiltration, and overt

disease [32]. This suggests that tyrosine and phenylalanine play a role in inflammatory injury

in this disease.

Moreover, tryptophan metabolism was another significantly upregulated metabolic path-

way in our study. Consistent with our results, the products involved in tryptophan metabolism

are also changed in the blood and urine samples of pSS patients [33]. An imbalance in the syn-

thesis of tryptophan metabolites has been associated with pathophysiologic mechanisms

occurring in neurologic and psychiatric disorders [34, 35], in chronic immune activation [36]

and in the immune escape of cancer [37, 38]. Previous results suggested that tryptophan

metabolism regulated the immune response in pSS [39].

The results of differential metabolite identification suggested that disorded metabolism of

aspartic is also involved in pSS. Aspartic acid is an excitatory amino acid and has strong excit-

atory effects on neurons. Elevated levels of aspartic acid and phenylalanine in the brain have

been linked to behavioral and cognitive problems [40]. Distal sensory and sensorimotor neu-

ropathies are the most common manifestations of peripheral nerve disease in pSS [41]. From

our results, we speculate that elevated aspartic acid may be related to nervous system condi-

tions in pSS.

Notably, the level of proline was elevated in saliva from pSS patients in our study, which is

consistent with a previous study [24, 25, 33, 42]. Proline metabolism has complex roles in a

variety of biological processes, including cell signaling, stress protection, and energy produc-

tion [43]. Proline metabolic abnormalities affect the citric acid cycle and reduce cell metabo-

lism in an inflammatory state, resulting in cartilage and bone damage [44]. Epstein-Barr virus

nuclear antigen (EBNA)-1, a proline-rich sequence, was elevated significantly in patients with

systemic lupus erythematosus (SLE) and pSS [45]. Research suggests that inhibiting proline

metabolism and transport may be a useful therapeutic strategy against some pathogens.

We noticed that many dipeptides were upregulated. The lysosomal pathway, ubiquitination

pathway and caspase pathway are major pathways of protein degradation. Lysosome-associ-

ated membrane protein 3(LAMP3) is classically associated with the lysosome, a main organelle

central to autophagy. A previous study reported that in SS cases, the expression of LAMP3 was

increased, which was related to apoptosis [46]. For the caspase pathway previous studies found

that saliva levels of caspase-1 were significantly higher in SS patients, which can induce the

production of apoptosis [47]. According to above studies, several important protein degrada-

tion pathways in SS were upregulated. Therefore, it was possible that protein degradation was

increased in SS, which led to more dipeptides.

In addition to disturbances in amino acid metabolism, our study found abnormalities in

purine metabolism. The related metabolites were oxypurinol and 8-hydroxyadenine. Distur-

bances in purine metabolism can cause gout, which manifests as arthritis due to the crystals

produced in hyperuricemia [48]. A previous study found that the mRNA and protein levels of

purinergic receptor P2X ligand-gated ion channel 7 (P2X7R) in pSS peripheral blood mono-

nuclear cells were significantly higher than those in normal individuals [49] P2X7R partici-

pates in the pathogenesis of pSS. Activation of P2X7 is known to lead to processing and

secretion of the proinflammatory cytokines IL-1β and IL-18 from monocytes/macrophages via

activation of the NALP3 inflammasome, which is thought to play a role in a spectrum of

inflammatory diseases [50]. Upregulation of purine metabolism indicates an inflammatory

response in pSS patients.

This caught our attention because carbon fixation was abnormal in our study. This pathway

is a cyclic reaction that consumes ATP and NADPH continuously and immobilizes CO2 to
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form glucose. However, there are no reports of abnormal carbon cycles in pSS patients.

Human cohorts and animal models provide compelling data suggesting the role of the one-

carbon cycle in modulating the risk of diabetes, adiposity [51] and fatty liver [52]. Studies have

reported that pSS patients exhibit markedly higher prevalence rates of metabolic disorders,

such as diabetes and dyslipidemia [53]. Therefore, carbon fixation imbalance may be associ-

ated with abnormal lipid metabolism in pSS.

Conclusion

In conclusion, our study demonstrates that saliva metabolites can be utilized for biomarker

discovery in pSS. In our pilot study of pSS saliva metabolic profiling, we were able to distin-

guish the pSS group from the control group, and panels of metabolites were discovered to have

potential value for pSS diagnosis. The potential biomarkers indicated that pSS metabolic dis-

turbance might be associated with inflammatory injury, neurological cognitive impairment,

immune response and abnormal lipid metabolism. Overall, our data will benefit the applica-

tion of the saliva metabolome to disease biomarker discovery, potentially leading to new strate-

gies for assessing the disease.

This work was a pilot study for pSS metabolic biomarker analysis. Further studies should

expand the number of pSS patient samples and validate the potential metabolite biomarkers

using targedted method, which is our future work. Additionally, further studies should expand

the number of pSS patient samples and refine the metabolite profiles of pSS saliva, observe the

changes in these biomarkers before and after treatment, and identify biomarkers associated

with treatment efficacy, which will hopefully provide an important basis for clinical efficacy

evaluation and prognosis prediction in pSS.

Supporting information

S1 Fig. (a) Tight clustering of QC samples indicated good stability of the analysis. (b) Platform

100 times permutation tests for the OPLS-DA model.

(TIF)

S1 Table. The metabolites related with pSS/control. Fold change> 1 indicates a relatively

higher concentration of the marker present in pSS patients, whereas < 1 indicates a relatively

lower concentration of the marker compared with healthy control subjects.

(DOCX)

S2 Table. Receiver operating characteristic (ROC) analysis of potential pSS biomarkers.

Note: The sensitives and specificities were calculated at their best cutoff points.

(DOCX)

S1 File. PLOS One clinical studies checklist.

(PDF)

Acknowledgments

The authors thank all participants in this study. Study concept and design: Qian Li and Xin

You. Patient recruitment: Xin You, Zhen Li, Yue Mu, Chunlan Guo. Data acquisition: Yue

Mu, Zhen Li. Data analysis and interpretation: Xiaoyan Liu, Wei Sun. Manuscript writing:

Zhen Li, Xiaoyan Liu. Approval of the final version: Wei Sun, Qian Li. All authors reviewed

the manuscript before submission.

PLOS ONE Saliva metabolic signature in primary Sjögren’s syndrome
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