
Journal of Mathematical Biology (2021) 83:34
https://doi.org/10.1007/s00285-021-01657-4 Mathematical Biology

Continuous-time stochastic processes for the spread of
COVID-19 disease simulated via a Monte Carlo approach
and comparison with deterministic models

Fabiana Calleri1 · Giovanni Nastasi1 · Vittorio Romano1

Received: 16 March 2021 / Revised: 15 June 2021 / Accepted: 29 August 2021 /
Published online: 14 September 2021
© The Author(s) 2021

Abstract
Two stochastic models are proposed to describe the evolution of the COVID-19
pandemic. In the first model the population is partitioned into four compartments:
susceptible S, infected I , removed R and dead people D. In order to have a cross vali-
dation, a deterministic version of such a model is also devised which is represented by
a system of ordinary differential equations with delays. In the second stochastic model
two further compartments are added: the class A of asymptomatic individuals and the
class L of isolated infected people. Effects such as social distancing measures are
easily included and the consequences are analyzed. Numerical solutions are obtained
with Monte Carlo simulations. Quantitative predictions are provided which can be
useful for the evaluation of political measures, e.g. the obtained results suggest that
strategies based on herd immunity are too risky. Finally, the models are calibrated on
data referring to the second wave of infection in Italy.
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1 Introduction

The pandemic of COVID-19 has scourged the world since the beginning of 2020.1

The responsible virus is the SARS-CoV-2, identified in China at the end of 2019 (Zhou
et al. 2020). Governments are constantly looking for ways to predict and contain the
spread of such an illness in order to monitor the public health and to prevent economic
and social issues.

Epidemic models constitute a branch of interest in applied mathematics since sev-
eral years. They are adopted not only to study epidemics properly but also to predict
social phenomenon or the behavior of biological systems. The simplest epidemic
model is called SIR model. It looks at a population split out into three compartments:
susceptible, infected and removed. The SIR model was introduced the first time in
1927 (Kermack and McKendrick 1927) and many variations have been proposed to
study diseaseswith complex behaviors and other phenomena (Murray 2002). Epidemic
models can also be formulated by means of the theory of stochastic processes. The
first application of stochastic processes to epidemics was presented in 1955 (Whit-
tle 1955) and more recently several applications have been proposed (Capasso and
Bakstein 2015). In some cases there is an equivalence between the two approaches
(Allen 2010). Concerning the new pandemic, many mathematical models have been
proposed. In Ansumali et al. (2020), Calafiore et al. (2020), Giordano et al. (2020)
some deterministic epidemic models for COVID-19 based on ordinary differential
equations have been proposed. In Zhang et al. (2020) a stochastic dynamic model
has been introduced while in Faranda and Alberti (2020), Rihan et al. (2020) the
authors propose mathematical models based on stochastic differential equations. A
novel model based on an operatorial approach as in quantum mechanics can be found
in Bagarello et al. (2020).

In this paper we would like to introduce some epidemic models based on stochastic
processes, taking into account peculiarities of the COVID-19 disease. We proposed
two models. In the first one we consider that COVID-19 has an incubation period
in which people are apparently healthy and after that they become infected and are
also able to infect other people. Since COVID-19 has a quite high fatality rate, the
removed people have been split in two sub-classes: healed and dead. We suppose that
an individual recovers or dies after a fixed time from infection. In the secondmodel we
would like to include asymptomatic people, i.e. infectious individuals without severe
or identifiable symptoms. They seem to play an important role in the diffusion of the
virus because usually they don’t know to be infectious. Since it is not clear whether
during the incubation an individual is infectious or not, in this model we make the
assumption that it is possible.Moreover, it is not ascertained so farwhether and for how
long people preserve the immunity to the virus. Therefore, we consider the possibility
for a healed individual to lose immunity and to become susceptible again.

The plan of the paper is as follows. In Sects. 2 and 3 the two stochastic models are
introduced; in Sect. 4 we present the Monte Carlo algorithm adopted for simulations;
in Sect. 5 we propose a deterministic model to assess the validity of the one introduced

1 https://www.who.int/emergencies/diseases/novel-coronavirus-2019.
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Fig. 1 Flow chart of the SIRD
model. Above the arrows
between the compartment I and
the compartments R, D we
indicate the times for the
transition while below the
arrows the probabilities of
changing compartment. τ1 is the
delay time for getting infected
and Δt ∼ β−1 is the frequency
of the contacts between the
individuals of S and I

S I

R

D

Δt ∼ β−1

τ1

1 − α
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α
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in 2; in Sect. 6 we show and comment the numerical simulations, in particular we test
the proposed models by considering the second wave of COVID-19 in Italy.

2 A SIRDmodel for COVID-19 disease

Let us consider a fixed (no births and no deaths) population of N individuals split out
into four compartments: susceptible S, infected I , removed R and dead people D.
In principle, it is also possible to include the so-called vital dynamics by introducing
birth and death rates but in the typical time scale of the pandemic spread the effects
can be considered negligible. We suppose that the number of individuals in each class
evolves in time t ∈ [0,+∞[ because of two mechanisms: susceptible individuals
become infected and infected individuals recover or die. We call the introduced model
SIRD.

To describe the infection mechanism, we suppose that the rate of new infectious
cases is proportional to the number of susceptible individuals S(t) times the fraction
of infected people I (t)/N . The proportionality factor is denoted by β > 0 which
represents the average number of contacts of a person per unit time (the day in our
case) that result in an infection of a susceptible individual.

In relation to the recovery mechanism, we suppose that an infected individual has a
probability α ∈ [0, 1] to die and 1− α to heal. The situation is schematized in Fig. 1.

Moreover, let τ1 be the incubation time which, in this model, is the time after that
an individual who contracted the virus is infected and becomes infectious. Finally, let
τ2 and τ3 be the heal and dead time respectively, counted after the incubation period.
First, we will assume that τ1, τ2, τ3 are constant; in a second step this assumption will
be relaxed to simulated effects as those related to the lockdown.

Let us consider (S, I , R, D) as four random variables which take values in N4
0 and

depend on time t . The epidemic is triggered by a small number of infected individuals
I0, that is at time t = 0 we have

(S, I , R, D) = (N − I0, I0, 0, 0),

123



34 Page 4 of 26 F. Calleri et al.

with I0 � S0.
We split the set (S, I , R, D) into three subsets in each of which there will be defined

a stochastic process. The first set is (S, I ), corresponding to the infection mechanism.
We think of the two random variables as unsynchronized in time. In particular, we set

Ĩ (t) = I (t + τ1)

and we consider the new set
(
S, Ĩ

)
and suppose that at time t the random variables

take values (s, i), that is

(
S(t), Ĩ (t)

)
= (s, i) . (1)

After a small period of time Δt > 0, Δt � min
i=1,...,3

τi the state of system changes in

(
S(t + Δt), Ĩ (t + Δt)

)
= (s + m, i + n) , (2)

being m, n ∈ {−1, 0,+1}.
The transition probability is defined as follows

p(s,i)→(s+m,i+n)(Δt) = P
( (

S(t + Δt), Ĩ (t + Δt)
)

= (s + m, i + n)
∣∣∣
(
S(t), Ĩ (t)

)
= (s, i)

)
.

In this way we define a continuous time Markov chain and the transition probability
can be written as

p(s,i)→(s+m,i+n)(Δt) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

βs
i

N
Δt + o(Δt), (m, n) = (−1,+1)

1 −
(

βs
i

N

)
Δt + o(Δt), (m, n) = (0, 0)

o(Δt), otherwise.

The second set of random variables is (I , R), coupled to the first one. We set

˜̃I (t) = I (t + τ1 + τ2),

˜̃R(t) = R(t + τ1 + τ2)

and consider the couple
( ˜̃I , ˜̃R

)
. Let us suppose that at time t the random variables( ˜̃I , ˜̃R

)
take values (i, r), that is

( ˜̃I (t), ˜̃R(t)
)

= (i, r). (3)
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After a small period of time Δt > 0 the state of the system changes in

( ˜̃I (t + Δt), ˜̃R(t + Δt)
)

= (i + n, r + u), (4)

being n, u ∈ {−1, 0,+1}. Moreover, since a healing at time t + τ1 + τ2 is related to
an infection in the past interval [t + τ1, t + τ1 + Δt], we need to know the values
assumed by the random variable Ĩ at t and t+Δt . In this case the transition probability
is defined as follows

p(i,r)→(i+n,r+u)(Δt) = P
( ( ˜̃I (t + Δt), ˜̃R(t + Δt)

)
= (i + n, r + u)

∣∣∣
( ˜̃I (t), ˜̃R(t)

)
= (i, r) , Ĩ (t) = j, Ĩ (t + Δt) = j + 1

)
.

Therefore, a non-Markovian continuous time stochastic process is defined with the
transition probability

p(i,r)→(i+n,r+u)(Δt) =

⎧⎪⎨
⎪⎩

(1 − α)Δt + o(Δt), (n, u) = (−1,+1)

1 − (1 − α)Δt + o(Δt), (n, u) = (0, 0)

o(Δt), otherwise.

Finally, the third set of random variables is (I , D), which is also coupled to the first
one. Now we set

Î (t) = I (t + τ1 + τ3),

D̂(t) = D(t + τ1 + τ3)

and consider the couple
(
Î , D̂

)
. Let us suppose that at time t the random variables

take values (i, d), that is

(
Î (t), D̂(t)

)
= (i, d). (5)

After a small period of time Δt > 0 the state of the system changes in

(
Î (t + Δt), D̂(t + Δt)

)
= (i + n, d + v), (6)

being n, v ∈ {−1, 0,+1}. Moreover, since a death at time t + τ1 + τ3 is related to an
infection in the past interval [t+τ1, t+τ1+Δt], we need to know the values assumed
by the random variable Ĩ at t and t + Δt . In this case the transition probability is
defined as follows

p(i,d)→(i+n,d+v)(Δt) = P
( (

Î (t + Δt), D̂(t + Δt)
)

= (i + n, d + v)
∣∣∣
(
Î (t), D̂(t)

)
= (i, d) , Ĩ (t) = j, Ĩ (t + Δt) = j + 1

)
.
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Therefore, a non-Markovian continuous time stochastic process is defined with the
transition probability

p(i,d)→(i+n,d+v)(Δt) =

⎧⎪⎨
⎪⎩

αΔt + o(Δt), (n, v) = (−1,+1)

1 − αΔt + o(Δt), (n, v) = (0, 0)

o(Δt), otherwise.

3 A SAI(L)RDmodel for COVID-19

At variance with the SIRD, the second model we are going to introduce also contem-
plates another two compartments: the class A of asymptomatic individuals and the
class L of isolated infected people. We call it SAI(L)RD model. Its detailed features
are summarized below

A1. We suppose that if an effective contact occurs between an infected (symptomatic
or not) and a susceptible individual then the latter becomes infected, with or
without symptoms, and infectious at the same time.

A2. We suppose there exists a probability η ∈ [0, 1] to be asymptomatic and, conse-
quently, 1 − η is the probability to show symptoms once an individual has been
infected. Moreover, we assume that, after a certain time τ1, a symptomatic indi-
vidual is recognized and isolated into a subclass, called L , of lonely individuals
of I .

A3. Lonely individuals are not infectious anymore. Asymptomatic people heal after
a time τ2. Lonely symptomatic individuals can die with probability α in a time
τ4 or heal with probability 1 − α in a time τ3.

A4. Finally, removed individuals become immune to COVID-19 for a short period of
time or forever. Let λ ∈ [0, 1] be the probability that COVID-19 confers a short
immunity of time length τ5, after which recovered individuals come back to the
class of susceptible people and, in principle, can suffer a reinfection.

The situation is represented in Fig. 2. Note that both people belonging to the class A
and I can infect. Moreover, a person who has become infected on account of a contact
with an asymptomatic individual can go to the class A or I .

We consider (S, A, I , L, R, D) as a six dimensional random variable which can
assume values in N

6
0 and depends on time t ≥ 0. Now we split the set of random

variables into several coupled sub-systems.

• The first set is (S, A, I ) corresponding to the infection mechanism. We suppose
that at time t the random variables take values (s, a, i), that is

(
S(t), A(t), I (t)

)
= (s, a, i). (7)

After a small period of time Δt > 0, Δt � min
i=1,...,5

τi , the state of the system

changes in
(
S(t + Δt), A(t + Δt), I (t + Δt)

)
= (s + m, a + k, i + n), (8)
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S

A
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R
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η

Δt ∼ β−1 τ2

Δt ∼ β−1

1 − η
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1 − α

τ3

α

τ4

λ

τ5

Fig. 2 Flow chart of the SAI(L)RD model. Above the arrows we indicate the times for the transition while
below the arrows the probabilities of changing compartment

with m, k, n ∈ {−1, 0, 1}.
The transition probability is given by

p(s,a,i)→(s+m,a+k,i+n)(Δt)

= P
(

(S(t + Δt), A(t + Δt), I (t + Δt)) = (s + m, a + k, i + n)
∣∣∣ (S(t), A(t), I (t)) = (s, a, i)

)
.

In this way we define a time continuousMarkov chain with transition probabilities
which can be written as

p(s,a,i)→(s+m,a+k,i+n)(Δt)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ηβs
i

N
Δt + o(Δt), if (m, k, n) = (−1,+1, 0)

(1 − η)βs
i

N
Δt + o(Δt), if (m, k, n) = (−1, 0,+1)

1 −
(

βs
i

N

)
Δt + o(Δt), if (m, k, n) = (0, 0, 0)

o(Δt), otherwise.
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• In our model, we suppose that all the infected individuals will be isolated after a
time τ1. Let us consider (I , L). We set

Ĩ (t) = I (t + τ1),

L̃(t) = L(t + τ1).

In this case a lone infected individual at time t+Δt+τ1 is related to a symptomatic
infection in the past interval [t, t + Δt]. Regarding the transition probability

p(i,l)→(i+n,l+ j)(Δt) = P
( (

Ĩ (t + Δt), L̃(t + Δt)
)

= (i + n, l + j)
∣∣∣
(
Ĩ (t), L̃(t)

)
= (i, l) , I (t) = f , I (t + Δt) = f + 1

)

for some nonnegative integer f , we have

p(i,l)→(i+n,l+ j)(Δt) =
{
1, if (n, j) = (−1,+1)

0, otherwise.

• Nowwe consider the pair of randomvariables (L, R). To define the healing process
we set ˜̃L(t) = L(t + τ1 + τ3),

˜̃R(t) = R(t + τ1 + τ3)

and suppose that ( ˜̃L(t), ˜̃R(t)
)

= (l, r).

After a small period of time Δt > 0 the state of the system changes in

( ˜̃L(t + Δt), ˜̃R(t + Δt)
)

= (l + j, r + u)

with j, u ∈ {−1, 0, 1}.Moreover, since in this case a healing at time t+Δt+τ1+τ3
is related to an infection with symptoms in the past interval [t, t + Δt], we need
to know the values assumed by the random variable I at t and t + Δt . This is also
equivalent to knowing the values assumed by the random variable L at t + τ1 and
t + Δt + τ1. In this case the transition probability is defined as

p(l,r)→(l+ j,r+u)(Δt) = P
( ( ˜̃L(t + Δt), ˜̃R(t + Δt)

)
= (l + j, r + u)

∣∣∣
( ˜̃L(t), ˜̃R(t)

)
= (l, r) , L(t + τ1) = f , L(t + Δt + τ1) = f + 1

)
,
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for some nonnegative integer f . In this way a time continuous non-Markovian
stochastic process is defined whose transition probability can be written as

p(l,r)→(l+ j,r+u)(Δt) =

⎧⎪⎨
⎪⎩

(1 − α)Δt + o(Δt), if ( j, u) = (−1,+1)

1 − (1 − α)Δt + o(Δt), if ( j, u) = (0, 0)

o(Δt), otherwise.

• With the same arguments, a dead process is described by (L̂, D̂) where

L̂(t) = L(t + τ1 + τ4),

D̂(t) = D(t + τ1 + τ4).

In this case a death at time t+Δt+τ1+τ4 is related to an infection with symptoms
in the past interval [t, t + Δt] and thus the gain of one unit to the variable L in
[t + τ1, t + Δt + τ1]. The transition probability

p(l,d)→(l+ j,d+v)(Δt) = P
( (

L̂(t + Δt), D̂(t + Δt)
)

= (l + j, d + v)
∣∣∣
(
L̂(t), D̂(t)

)
= (l, d) , L(t + τ1) = f , L(t + Δt + τ1) = f + 1

)
,

for some nonnegative integer f , is given by

p(l,d)→(l+ j,d+v)(Δt) =

⎧⎪⎨
⎪⎩

αΔt + o(Δt), if ( j, v) = (−1,+1)

1 − αΔt + o(Δt), if ( j, v) = (0, 0)

o(Δt), otherwise.

• A further process we introduce is the healing of an asymptomatic individual. Let
us consider (A, R). We set

Â(t) = A(t + τ2),

R̂(t) = R(t + τ2).

In this case a healing at time t + τ2 + Δt is related to an asymptomatic infection
in the past interval [t, t + Δt]. The transition probability

p(a,r)→(a+k,r+u)(Δt) = P
( (

Â(t + Δt), R̂(t + Δt)
)

= (a + k, r + u)
∣∣∣
(
Â(t), R̂(t)

)
= (a, r) , A(t) = f , A(t + Δt) = f + 1

)
,

for some nonnegative integer f , reads

p(a,r)→(a+k,r+u)(Δt) =
{
1, if (k, u) = (−1,+1)

0, otherwise.
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• The last processwe are going to introduce is the one involving a removed individual
who comes back to the class of susceptible people after a certain time. To define
the process, we set

ˆ̂S(t) = S(t + τ5),

ˆ̂R(t) = R(t + τ5)

Let us suppose that at time t the two-dimensional random variable (
ˆ̂S,

ˆ̂R) takes the
value (s, r). After a small period of time Δt > 0 the state of the system changes
in

(
ˆ̂S(t + Δt), ˆ̂R(t + Δt)) = (s + m, r + u),

with m, u ∈ {−1, 0, 1}. Moreover, since in this case a healed individual can come
back to the class of susceptible people after a certain time τ5, it is needed to know
the values assumed by the random variable R at time t and t +Δt . In this case the
transition probability

p(s,r)→(s+m,r+u)(Δt) = P
( ( ˆ̂S(t + Δt), ˆ̂R(t + Δt)

)
= (s + m, r + u)

∣∣∣
( ˆ̂S(t), ˆ̂R(t)

)
= (s, r) , R(t) = f , R(t + Δt) = f + 1

)
,

for some nonnegative integer f , is given by

p(s,r)→(s+m,r+u)(Δt) =

⎧⎪⎨
⎪⎩

λ + o(Δt), if (m, u) = (+1,−1)

1 − λ + o(Δt), if (m, u) = (0, 0)

o(Δt), otherwise.

The major advantage to adopt a stochastic model is the possibility to easily add
further more sophisticated features. Indeed, the delays are assumed constants but
it is possible to consider in turn the times τi as random variables obeying suitable
probability distributions. However, in average we get the same results.

4 TheMonte Carlo method for the simulations

An efficient simulation of both the SIRD and SAI(L)RD models can be performed by
a Monte Carlo approach. The details are outlined in the next subsections.

4.1 SIRDmodel

Firstly we describe the method adopted for SIRD model. The state of the system is
represented by a time-dependent random vector

X(t) = (X1(t), X2(t), . . . , XN (t)) ∈ DN , (9)
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for t ≥ 0, where D = {−1, 0, 1, 2} and N is the population size. We indicate by
Xi (t) ∈ D for i = 1, . . . , N the trajectory of an individual in time, i.e. the time-
evolution of the states assumedby the i-th person. D is a set of labelswhere 0 represents
a susceptible individual, 1 an infected one, 2 a healed person and−1 a dead individual.

To fix the initial infective people, at time t = 0 a number I0 of individuals are
labeled by 1 randomly, all the others are susceptible thus labeled by 0. We note that
the pure process of the encounters is Markovian, no matter it leads to an infection or
not. Therefore, for each infected individual a contact time t is determined according
to the exponential distribution of scale parameter β, that is

t = − 1

β
log ξ, (10)

ξ being a random number uniformly distributed in [0, 1].
Let us suppose that the smallest contact time is that of the j-th individual, t j,1 (the

second index indicates the first temporal step of the individual j). At this point another
individual i is chosen randomly. If it belongs to the susceptible class then the contact
is effective and after the incubation, i.e. a period of time τ1, the individual i changes
its state in infectious,

Xi (t j,1 + τ1) = 1. (11)

At time t j,1 + τ1, the destiny d ∈ {−1, 2} of the new infectious is established too
accordingly to a Bernoulli distribution with probability α, that is d ∼ B(1, α). If the
destiny is to heal then after a time τ2 the individual state changes from infectious to
recovered; if the destiny is to die then after a time τ3 the state of the i-th individual
changes from infectious to dead:

Xi (t j,1 + τ1 + τ2) = 2 if d = 2,

Xi (t j,1 + τ1 + τ2) = −1 if d = −1.
(12)

After the choice of the individual i , the individual j still continues to infect unless
in the meantime he has recovered or passed away. Another random infection time t j,2
is generated according to (10) and we set

t j = t j,1 + t j,2.

Once again we determine the infected individual having associated the minimum
time and iterate the procedure. The algorithm ends when there are not susceptible
individuals any more.

In order to record the time evolution of the system, a time grid is fixed and at
each time of such a grid we count the number of individuals in the several classes.
Moreover, to reduce the statistical noise an averaging procedure is applied as follows.
We perform the entire simulation k times. Let Tr , r = 1, 2, . . . , k, be the time at which

123
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the algorithm ends at the r th simulation. We set

mk = T1 + T2 + · · · + Tk
k

, (13)

the average of the final process times. After introducing the error as

εk = |mk+1 − mk |, (14)

as stopping criterion we adopt

εk < tol, k > Nmin . (15)

Here tol is a numerical tolerance and Nmin is a minimum number of iterations which
are required to prevent early stops of the procedure.

4.2 SAI(L)RDmodel

In a similar way the SAI(L)RD model can be simulated. Now we have

X(t) ∈ EN ,

where E = {−1, 0, 1, 2, 3, 4}. The label −1 represents a dead person, 0 a susceptible
individual, 1 an infected one, 2 a healed person, 3 an asymptomatic individual, 4 a
lone infected one.

Even in this case, at time t = 0 we randomly select I0 individuals we label as
infected, i.e. by 1. A contact time t is determined according to (10) for each infected
individual. Let us suppose that the minimum contact time is that of the j-th individual,
t j,1. At this point another individual i is chosen randomly. Now at variance with the
SIRD model, if the latter is susceptible her/his state changes as follows: we determine
the symptomaticity s ∈ {1, 3} by aBernoulli distribution having probability η ∈ [0, 1].
If s = 3 the individual is asymptomatic and, after the time τ2, she/he will heal, and
therefore

Xi (t j,1 + τ2) = 2. (16)

If s = 1 the person is symptomatic infected and, after the time τ1, she/he will be
isolated, that is

Xi (t j,1 + τ1) = 4. (17)

Moreover, the destiny d ∈ {−1, 2} of such an individual is established according to a
Bernoulli distribution with probability α. If the destiny is to heal then after a time τ3
the individual state changes from infectious to recovered; if the destiny is to die then
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after a time τ4 the individual state changes from infectious to dead. That evolution can
be described as follows

Xi (t j,1 + τ1 + τ3) = 2 if d = 2,

Xi (t j,1 + τ1 + τ4) = −1 if d = −1.
(18)

Finally there is also the possibility that a healed individual loses the immunity, coming
back to the susceptible class.We take that into account by generating a random number
according to a Bernoulli distribution of parameter λ ∈ (0, 1). Furthermore, if the
immunity is lost, one has two possibilities:
if the individual suffered from an asymptomatic infection we set

Xi (t j,1 + τ2 + τ5) = 0; (19)

if she/he suffered from a symptomatic infection we set

Xi (t j,1 + τ1 + τ3 + τ5) = 0. (20)

After the choice of the individual i , the individual j still continues to infect unless
in the meantime she/he has recovered without losing the immunity or passed away.
Another random infection time t j,2 is generated according to (10) and we set

t j = t j,1 + t j,2.

Again we determine the infected individual having associated the minimum time and
iterate the procedure. The algorithm ends when all individuals cannot change their
state any longer.

To reduce the statistical noise we have adopted the same technique as the SIRD
model presented above.

5 A deterministic SIRDmodel with delays

In order to check the validity of the SIRD stochastic model proposed above, a deter-
ministic delayed SIRD model is devised as well. Since the disease has an incubation
time τ1, the number of susceptible people decreases by a quantity depending on the
amount of infected at a previous time t − τ1; the amount of recovered and dead peo-
ple after a time τ2 and τ3 respectively is proportional to the amount of people who
have been infected at the previous time t − τ2 and t − τ3 respectively. From those
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considerations, we propose the following model

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = − βS(t)
I (t − τ1)

N
H(t − τ1)

İ (t) =βS(t)
I (t − τ1)

N
H(t − τ1) + (1 − α)Ṡ(t − τ2) + α Ṡ(t − τ3)

Ṙ(t) = − (1 − α)Ṡ(t − τ2)

Ḋ(t) = − α Ṡ(t − τ3)

(21a)

(21b)

(21c)

(21d)

where H(·) represents the Heaviside step function. In that way we include the
effects of an incubation time and healing or death times.

For further analysis it is convenient to work with proportions. After the substitution

S �→ S

N
, I �→ I

N
, R �→ R

N
, D �→ D

N

and some simple algebraic manipulations, the system can be written more explicitly
as ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ṡ(t) = −βS(t)I (t − τ1)H(t − τ1)

İ (t) = βS(t)I (t − τ1)H(t − τ1)

− (1 − α)βS(t − τ2)I (t − τ1 − τ2)H(t − τ1 − τ2)

− αβS(t − τ3)I (t − τ1 − τ3)H(t − τ1 − τ3)

Ṙ(t) = (1 − α)βS(t − τ2)I (t − τ1 − τ2)H(t − τ1 − τ2)

Ḋ(t) = αβS(t − τ3)I (t − τ1 − τ3)H(t − τ1 − τ3)

(22a)

(22b)

(22c)

(22d)

The system must be augmented assigning the functions

S(t) = Φ1(t) t ∈ [−max(τ2, τ3), 0],
I (t) = Φ2(t) t ∈ [−max(τ1 + τ2, τ1 + τ3), 0].

As customary we assume that Φ1 and Φ2 are continuous in the considered intervals.
Regarding the other variables it is realistic to take R(0) = D(0) = 0. Specifically we
assume Φ1(t) = S0 ∈]0, 1[ and Φ2(t) = I0 = 1− S0 ∈]0, 1[ with I0 � 1. Therefore
at t = 0 we have

S(0) + I (0) + R(0) + D(0) = 1.

The presence of the delays makes the qualitative analysis of the system rather
cumbersome, so a complete phase portrait is a daunting task. However, some insights
can be deduced anyway.

Along the solution of the system (22)

S(t) + I (t) + R(t) + D(t) = 1
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holds. In fact, summing up the equations (22a)-(22d) one has

Ẏ (t) = 0,

where Y = S + I + R + D. Since Y (0) = 1, it follows that Y (t) = 1 ∀t > 0.
The equilibrium points of the system (22) are the following.

• Endemic solutions:

S = 0, I = I ∗, R = R∗, D = D∗. (23)

with I ∗, R∗, D∗ ∈ [0, 1] satisfying I ∗ + R∗ + D∗ = 1.
• Disease-free solutions:

S = S∗, I = 0, R = R∗, D = D∗. (24)

with S∗, R∗, D∗ ∈ [0, 1] satisfying S∗ + R∗ + D∗ = 1.

If we linearize around the generic endemic critical point, one gets the following
characteristic equation for the eigenvalues

λ
(
λ + β I ∗) = 0

which shows that the endemic stationary states are linearly stable for any I ∗ > 0.
The linearization around the disease-free stationary points leads to a much more

complex characteristic equation

λ
[
λ − βS∗ (

e−τ1λ + (1 − α)e−(τ1+τ2)λ + αe−(τ1+τ3)λ
)]

= 0,

which in general admits infinite solutions in the complex plane due to the functional
nature of the evolution equations. The only viable way to get the eigenvalues is to
resort to a numerical procedure (Feng et al. 2019). Therefore, since the primary goal
is to have a comparison with the stochastic model, we look directly at the numerical
solutions of the system (22). To this aim, we adopt a first order finite differences
scheme.

Let us fix a temporal grid 0 = t0 < t1 < . . . < tM = Tmax of constant time step
Δt . We introduce the numerical approximations

Sk ≈ S(tk), Ik ≈ I (tk), Rk ≈ R(tk), Dk ≈ D(tk),
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for k = 0, 1, . . . , M , and discretize the system (22) as follows

Sk+1 =Sk − ΔtβSk
Ik1
N

H(tk − τ1),

Ik+1 =Ik + Δt

{
βSk

Ik1
N

H(tk − τ1) − (1 − α)βSk2
Ik12
N

H(tk − τ1 − τ2)

−αβSk3
Ik13
N

H(tk − τ1 − τ3)

}
,

Rk+1 =Rk + Δt(1 − α)βSk2
Ik12
N

H(tk − τ1 − τ2),

Dk+1 =Dk + ΔtαβSk3
Ik13
N

H(tk − τ1 − τ3).

where the indexes k1, k2, k12, k3 and k13 are given by

k j = max

{
0,

⌊
tk − τ j

Δt

⌋}
, j = 1, 2, 3,

k1m = max

{
0,

⌊
tk − τ1 − τm

Δt

⌋}
, m = 2, 3,

with �· the floor function.
Note that at each time step the condition

Sk+1 + Ik+1 + Rk+1 + Dk+1 = Sk + Ik + Rk + Dk

is satisfied.

6 Results of the simulations

6.1 SIRDmodel

Concerning the SIRD model introduced in Sect. 2, we perform some numerical sim-
ulations by adopting the algorithm of Sect. 4. A crucial point is to fix the parameters
entering themodel. About themortalityα we consider the infection fatality ratio (IFR),
i.e. the ratio between the number of deaths from disease and the number of infected
individuals, whose value is reported in the range 0.5–1% (World Health Organization
2020a). According to World Health Organization (2020b), the incubation period τ1 is
on average 5–6 days, but it can be as long as 14 days. For the healing and dead time
τ2 and τ3 respectively, we remark that the commonly adopted criteria for discharging
patients from isolation are the following: for symptomatic patients, 10 days after the
symptom onset, plus at least 3 additional days without symptoms; for asymptomatic
individuals, 10 days after positive test (World Health Organization 2020c). In all the
simulations of the present paper we have assumed I0 = 1. The adopted values are
reported in Table 1.
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Table 1 Parameters adopted for
the simulation of the SIRD
model

Parameter Value

α 0.006

τ1 6 d

τ2 12 d

τ3 13 d

The τ ’s are expressed in days (d)
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Fig. 3 Behavior of SIRD model with a population of 1000 individuals and β of 1.2 (top-left), 1 (top-right),
0.8 (bottom-left) and 0.6 (bottom-right). In the inset the values for large times are magnified

More controversial is to fix the contact frequency β. It should be around β � 1
d−1 according to some estimations Peng et al. (2020) but it varies with time and as
consequence of measures of social restriction by the authorities. For such a reason we
have performed the simulations of the stochastic SIRD model for several values of
this parameter: β = 1.2, 1, 0.8, 0.6 d−1. The results are shown in Fig. 3 in the case
of a population of 1000 individuals. The same cases have been also simulated when
N = 10, 000. The qualitative behavior is essentially the same, in particular the value
of the maximum percentage of infected, but with a temporal dilation (Fig. 4).

Typical features of all the simulations are the reduction of susceptible people and a
non monotone behaviour of the number of infected ones. The latter first increases and
then tends to zero. The peak of the infected people is considered [see Fine et al. (2011)]
as the value which represents the state when the herd immunity is reached without any
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Fig. 4 Behavior of SIRDmodel with a population of 10000 individuals and β of 1.2 (top-left), 1 (top-right),
0.8 (bottom-left) and 0.6 (bottom-right). In the inset the values for large times are magnified

actions by the authorities in charge for the health issues, also according to othermodels,
e.g. see Ansumali et al. (2020). From a quantitative point of view our results indicate
that the herd immunity is reached when about 70–80% of the population is infected
which is a quite pessimistic foresight. Therefore, political strategies based on a pure
herd immunity appear too risky because they could lead to a 0.6% of dead people due
to the COVID-19 (see the inset in Fig. 3).

To avoid the drawbacks mentioned above, worldwide governments are assuming
restrictions on free movement of people, the so-called lockdown, to contain the spread
of the pandemic. In order to simulate the effect of a lockdown in our stochastic SIRD
model, we suppose that the parameter β changes in β ′ whether the fraction of infected
individuals reaches 10%of the total population size. Remember that 1/β is the average
contact time. So, if social distancing measures are adopted, they can be modeled as a
reduction of β, that is by extending the average contact time among the individuals.
In Fig. 5 we show the curve of infected individuals for several values of β ′. It is
evident that the peak of infected people lowers even if we have longer tails. This is
quite realistic because the disease still remains but the number of recovered people
increases in a slower way. Of course, if the aim is to alleviate the burden of hospitalized
patients, the presence of a longer time to get the disappearance of the disease is aminor
matter. Apparently with the lockdown it seems that the herd immunity is reached with
a lower percentage of infected people than the case without lockdown.
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Fig. 5 Behavior of the SIRD
model with a population of 1000
individuals and several values of
β ′: number of infected
individuals versus days. Note
that the peak lowers by
decreasing β ′
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Fig. 6 Comparison between the
stochastic (continuous lines) and
deterministic (dashed lines)
SIRD model in the case of
N = 1000 and β = 1. Similar
results are obtained with other
values of β
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To assess the validity of the model, in Fig. 6 we show a comparison between numer-
ical results obtained by the stochastic SIRD model of Sect. 2 and the deterministic
one presented in Sect. 5. There is a good agreement by obtaining a cross validation
of both models. It is noteworthy that the numerical solution tends to the disease-free
stationary critical points S∗ = I ∗ = 0, R∗, D∗ ∈ [0, 1] with R∗ + D∗ = 1.

6.2 SAI(L)RDmodel

As further improvements, here we also include the presence of asymptomatic and
infected isolated individuals by presenting the results of the simulations obtained with
the SAI(L)RD model. Regarding the parameters for the asymptomatic infections, η

and τ2, the literature reports that the proportion of people who become infected and
remain asymptomatic throughout infection seems to be in the range 40–45% and they
can transmit the virus for a period of about 14 days (Oran and Topol 2020). Concerning
the parameter τ1, we assume that symptomatic individuals can transmit the virus and
they are isolated after an average period of 5–6 days because the illness is detected by
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Table 2 Parameters adopted for
the simulation of the SAI(L)RD
model

Parameter Value

α 0.006

η 0.4

λ 0.1

τ1 6 d

τ2 14 d

τ3 12 d

τ4 13 d

τ5 90 d

Fig. 7 Behavior of SAI(L)RD
model with a population of 1000
individuals and β set as 1
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tests. During the isolation they can heal or die with the same arguments of the SIRD
model.

Since it is not known how long antibody responses will be maintained or whether
theywill provide protection from reinfection (Seowet al. 2020),we suppose that healed
individuals may get a temporary or permanent immunity. We set the probability λ to
have temporary immunity equal to 0.1 and the duration 90 days. The list of the adopted
values is reported in Table 2. In the plots L is included in I .

In Fig. 7 we show the numerical solutions of the SAI(L)RD model in the case of
N = 1000 and β = 1 d−1. The main distinctive feature with respect to the results
obtained by the SIRDmodel is that after about 100 days we observe a new availability
of susceptible individuals due to the loss of immunity. This along with a second wave
of infection which, however, has a lower peak. Asymptotically we get again a disease-
free situation with about 6% of dead people. We remark that by isolating the infected
people the herd immunity is guaranteed by a peak of infected of about 30% to which
about 20% of asymptomatic individuals must be added with a total of about 50% of
people with disease. Again the strategy based on reaching the herd immunity can be
deemed as to avoid because too costly in terms of hazard for the life of the population.

The above findings strongly support the need of the restrictive measures from a
quantitative point of view. In order to analyze the effect of a lockdown we have also
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Fig. 8 Behavior of SAI(L)RD
model with a population of 1000
individuals in the case of a
lockdown
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Fig. 9 Behavior based on the
SAI(L)RD model with a
population of 1000 individuals
in the case of a probability of
reinfection λ = 0.8
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adopted the SAI(L)RDmodel.We start by taking β = 1 d−1 and then we set β = 1/10
d−1 when the fraction of infected individuals reaches 0.1. After 60 days we switch to
β = 1/3 d−1 considering some restrictions still valid after the lockdown. The obtained
numerical solutions are shown in Fig. 8.

The values of the maximum for both infected and asymptomatic individuals are
lower. Moreover, we observe that a second wave of infection is present which is less
intense than the case of constant β. However, the asymptotic number of the dead
people with the lockdown is only slightly improved. The main effect of the lockdown
is to alleviate the congestion in the intensive care because the infections are spread
over a longer time. Finally, we would like to remark that if the probability of immunity
loss λ is very high then periodic waves of persistent infection will show up for some
years, as indicated in Fig. 9. Note that the asymptotic number of the dead people is
about 1.7%.

As last remark, if the size of the population is greater a dilation of the time is
observed but the main features remain the same as the case of 1000 people.
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Fig. 10 Raw data of COVID-19
spreading in Italy from February
24, 2020 until May 20, 2021.
The dashed lines delimit the
period time of the second
infection wave whose data have
been used for the calibration of
the models
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6.3 Modeling the second wave of the spread of COVID-19 in Italy

To assess the validity of the proposedmodels, we will calibrate them on real data avail-
able in the literature. In particular we consider the daily collected values of infected,
recovered and dead people in Italy during the second epidemic wave reported in
Guidotti and Ardia (2020). The reason of the choice is that such data are provided
with a stable number of tests per day and they are homogeneously collected in all the
country.We consider the data in the temporal range: July 22, 2020–February 14, 2021.
The raw data are shown in Fig. 10. The infected people at day zero of infection are
about 1.23 × 104.

In order to have a more precise fitting between our models and data, in the
investigated period of time we recognize three phases of diffusion. The first one is
characterized by a low diffusion period starting from the end of July and lasting a
couple of months. Subsequently, a higher diffusion is observed. On October 14, 2020
and, withmore stringent actions, onNovember 6, 2020 the Italian government adopted
contrast measures to contain the COVID-19 diffusion.2 Finally, at the beginning of
2021 suchmeasures have been reduced due to a weakening of the spread. For such rea-
sons we consider the parameter β in the SIRD and SAI(L)RD models as a piece-wise
constant function of time, as follows

β =

⎧⎪⎨
⎪⎩

β0, if t ≤ t0,

β1, if t < t0 ≤ t1,

β2, if t > t1,

(25)

where β0, β1, β2 and t0, t1 are parameters to be estimated.
Upon these considerations, we would like to find the parameters needed in the

proposed models by a non-linear optimization procedure based on the Nelder–Mead

2 https://www.salute.gov.it/.
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Fig. 11 Comparison between
SIRD model with parameters of
Table 3 (continuous lines) and
real Italian data (dashed lines)
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Table 3 Fitting parameters for
the SIRD model

Parameter Value

α 0.0405

τ1 7.62 d

τ2 28.9 d

τ3 30.0 d

β0 0.0493 d−1

β1 0.1164 d−1

β2 0.0422 d−1

t0 73 d

t1 100 d

method. The target is the minimization of the functional

J = ∥∥I − Id
∥∥
L2([T1,T2]) + ∥∥R − Rd

∥∥
L2([T1,T2]) + ∥∥D − Dd

∥∥
L2([T1,T2]) , (26)

being I , R and D the numerical values obtained with the model and Id, Rd and Dd the
same quantities given by data. T1 and T2 represent the first and the last day respectively
of the considered time period of infection.

Regarding the SIRD model, the results are shown in Fig. 11 and the fitting parame-
ters are reported in Table 3. The parameter t0 corresponds to October 3, 2020 while the
parameter t1 to October 30, 2020. It is a reasonable time period for the high spreading
before strong restrictions were adopted. There is a qualitative and quantitative good
agreement between the simulation results and the data.

Analogously, the optimization procedure described above is applied to the
SAI(L)RD model. In particular, we adopt the model (25) and the quantities I and
Id in the functional (26) have to be intended in this case as the total amount of symp-
tomatic and asymptomatic infected individuals. The simulation results are shown in
Fig. 12 and the fitting parameters are reported in Table 4. The good agreement with
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Fig. 12 Comparison between
SAI(L)RD model with
parameters of Table 4
(continuous lines) and real
Italian data (dashed lines)
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Table 4 Fitting parameters for
the SAI(L)RD model

Parameter Value

α 0.0517

τ1 7.66 d

τ2 31.0 d

τ3 31.1 d

τ4 30.1 d

β0 0.0768 d−1

β1 0.3446 d−1

β2 0.1026 d−1

t0 73 d

t1 102 d

real data is searched for the total amount of infected people A + I ; the single curves
A and I represent the projection due to the model. The optimization is not performed
on parameters η, λ and τ5 that are the same of Table 2 instead.

Again the model gives results which are in a qualitative and quantitative good
agreement with the data.

Note that the parameters obtained with the calibration on the specific problem of
this subsection are quite different with respect to those in Tables 1 and 2 , in particular
the time delays τ2 and τ3 in the SIRD model and τ2, τ3 and τ4 for the SAI(L)RD
model. This can be ascribed to the fact that in the previous subsections the values
of the parameters have been inferred from the worldwide literature. Here a specific
situation has been analyzed; moreover, different criteria of defining the healing have
been adopted in different countries.
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7 Conclusions

Two stochastic models for simulating the evolution of the pandemic SARS-CoV-2
have been proposed. By using a Monte Carlo method, realistic situations have been
investigated, obtaining insights about the possibility to get the herd immunity and the
effects of measures as social distancing.

The models and the numerical approach have been tested by considering a deter-
ministic version. The good agreement between the stochastic and deterministic results
provides a cross validation.

The models are quite flexible and allow us an easy inclusion of the effects of a
lockdown. As a specific test-case, we have successfully reproduced the second wave
of the spread of COVID-19 in Italy during the period July 22, 2020–February 14,
2021.

The evolution we have considered does not take into account a campaign of vacci-
nation but this can be included with a moderate additional effort.
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