
RESEARCH ARTICLE

Automatic cell counting from stimulated

Raman imaging using deep learning

Qianqian Zhang1, Kyung Keun Yun1, Hao Wang1, Sang Won Yoon1, Fake LuID
2,

Daehan WonID
1*

1 Department of System Science and Industrial Engineering, State University of New York at Binghamton,

Binghamton, NY, United States of America, 2 Department of Biomedical Engineering, State University of New

York at Binghamton, Binghamton, NY, United States of America

* dhwon@binghamton.edu

Abstract

In this paper, we propose an automatic cell counting framework for stimulated Raman scat-

tering (SRS) images, which can assist tumor tissue characteristic analysis, cancer diagno-

sis, and surgery planning processes. SRS microscopy has promoted tumor diagnosis and

surgery by mapping lipids and proteins from fresh specimens and conducting a fast disclose

of fundamental diagnostic hallmarks of tumors with a high resolution. However, cell counting

from label-free SRS images has been challenging due to the limited contrast of cells and tis-

sue, along with the heterogeneity of tissue morphology and biochemical compositions. To

this end, a deep learning-based cell counting scheme is proposed by modifying and applying

U-Net, an effective medical image semantic segmentation model that uses a small number

of training samples. The distance transform and watershed segmentation algorithms are

also implemented to yield the cell instance segmentation and cell counting results. By per-

forming cell counting on SRS images of real human brain tumor specimens, promising cell

counting results are obtained with > 98% of area under the curve (AUC) and R = 0.97 in

terms of cell counting correlation between SRS and histological images with hematoxylin

and eosin (H&E) staining. The proposed cell counting scheme illustrates the possibility and

potential of performing cell counting automatically in near real time and encourages the

study of applying deep learning techniques in biomedical and pathological image analyses.

Introduction

Identification and counting the number of cells is one of the major tasks for biomedical image

analyses and medical diagnoses [1]. Cell density estimation, which can be obtained by count-

ing the number of cells within a certain region of the image, is an essential hallmark feature

with a high correlation to medical diagnostic results [2, 3]. An accurate estimation of cell den-

sity can promote the diagnosis and grading of tumors, enable a precise definition of tumor

biopsy target, facilitate therapeutic decision making, and assist surgical planning [4]. In partic-

ular, cell counting is conducted for brain tumors in this research because it is one of the most

dangerous and deadliest cancers due to the aggressive and heterogeneous nature, which leads
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to a relatively low survival rate. The survival rate of malignant brain tumor is 35% [5]. The pri-

mary brain cancer cells are the cancer cells that can conduct uncontrollable cell division within

or around the brain, which impacts brain functions and results in disability. In addition, the

group of abnormal cells can affect the health of other brain cells [6]. Death usually occurs if a

brain tumor is severe or on a critical position within the brain. There are more than 100 types

of brain tumors [7], e.g., Meningioma, Pituitary, Glioma, etc. [8]. Based on the malignancy,

cell distribution characteristics, and spread speed, brain tumors can be graded into four malig-

nancy grades by the World Health Organization (WHO) [7, 9]. A higher grade indicates a

higher malignancy level. If a brain tumor is diagnosed as grade 3 or 4, it is considered a malig-

nant one.

It is important to provide precise therapy treatment for brain tumors. The main treatment

for malignant brain tumors is surgical gross total resection [10], which requires a precise anal-

ysis of tumor regions and margins due to the complex structure of the brain. Among the vari-

ant medical imaging techniques, magnetic resonance imaging (MRI) is used as the standard

process during brain surgeries because there is no radiation involved and clear imaging of soft

tissues can be provided. However, MRI images suffer from the inaccuracy of tumor boundary

detection [11]. Hematoxylin and eosin (H&E)-stained cryosection is often implemented for

intra-operative diagnosis [12]. The limitation of H&E imaging is that obtaining a microscopic

review of frozen tissue is time-consuming (30 minutes) and labor-intensive with a high cost,

which limits its wide application to provide brain tumor diagnostic guidance before or during

the tumor resection process [13].

Recently, label-free neuropathological imaging of brain tumor tissue that uses the stimu-

lated Raman scattering (SRS) microscopy has been demonstrated [3]. SRS neurosurgical

pathology images can be generated in real time by a rapid mapping process of lipids and pro-

teins from a fresh specimen. SRS is a third-order nonlinear optical process. In SRS imaging,

two ultrafast laser beams are used to excite the sample. The frequency difference between the

two laser beams is tuned to a particular Raman shift for imaging. SRS signal is linear to the

Raman signal with much higher intensity by a few orders of magnitude and therefore enables

rapid Raman imaging. SRS images allow pathologists to capture the fundamental diagnostic

hallmarks from fresh brain tumor tissue that cannot be extracted by other medical imaging

modalities. The advantages of SRS for brain tumor diagnosis include i) rapid identification of

white and gray matter, ii) cell body visualization, iii) vascular proliferation identification, iv)

necrosis and viable tumor discrimination, and v) visualization of both tumor cells and the

extracellular matrix components [3].

Owing to the rapid mapping of lipids and proteins using SRS microscopy, cells that consist

mainly of protein can be identified [14]. However, the cell contrasts of SRS are weaker than

other histological image modalities, e.g., H&E-stained images. The weak contrast of cells from

SRS images, along with the limitation of high time cost and subjective errors, makes it chal-

lenging to perform manual counting. The development of clinical data collection technologies

and artificial intelligence (AI) leads to an improvement of computer-aided diagnosis (CAD)

systems, which provides complementary analyses of clinical data and enhances the disease

diagnosis process [15, 16]. Taking advantage of AI and machine learning (ML), much research

has integrated various ML approaches into CAD systems [17–19]. The potential of applying AI

and ML on medical image analysis has been illustrated by providing reliable diagnosis results

and enhancing analysis effectiveness. In terms of SRS image analysis, high reliance on the ratio

of lipid/protein ratio may cause the obtained images to suffer from noises generated by strong

protein or lipid signals. For instance, blood vessels and regions of microhemorrhages during

the biopsy procedure would develop noises in the images. Despite the substantial advantages

of SRS images in regard to capturing the distinct characteristics of brain tumors, especially
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gliomas [3], the cell contrasts of SRS are weaker than other medical image modalities. Also, the

heterogeneity of cellular morphology and the wide range of cell sizes essentially aggravate the

challenges of cell counting. Moreover, the lack of cell annotation information leverage the

challenge of performing the pixel-level model training.

In this research, the task of automatic cell counting and density estimation from SRS images

for brain tumors is addressed through a deep learning-based cell counting framework. Specifi-

cally, an effective medical image semantic segmentation model, U-Net [20], is applied and

modified to segment cells from the brain tumor samples by using a small number of annota-

tions. To deal with the large image size of the brain tumor caused by the high resolution, i.e.,

0.37 μm/pixel or 0.18 μm/pixel, we adopted a split-and-combine scheme, which performs cell

segmentation based on cropped small patches and then combines patch segmentation results

accordingly. Based on the cell segmentation results, the distance transform and watershed seg-

mentation algorithms are implemented to achieve the cell instance segmentation, which there-

fore results in cell counting. To evaluate the cell counting results from the SRS images, cells are

also counted using the similar approach from the paired H&E images, with the only exception

that an unsupervised ML method, K-means clustering, is employed to segment cells so that the

cells can be segmented without requiring segmentation labels. The cell segmentation and

counting on real brain tumor SRS samples obtains promising results with > 98% of area under

the curve (AUC) and R = 0.97 in terms of cell counting correlation between SRS and H&E.

The main advantage of the proposed framework is that pixel-level real-time cell segmentation

and automatic cell counting can be achieved using only limited training samples, given the

existence of SRS image noises and the cell morphology heterogeneity. black This research not

only demonstrates the possibility of performing SRS image analysis in a much more detailed

level but also enhances the potential of promoting the SRS technique into the surgical process,

which quickly provides surgical guidance without the requirement of the time-consuming

staining process. The main contributions of this research are summarized as follows:

1. A cell counting framework is proposed for high-resolution brain tumor SRS images by

adopting a split-and-combine scheme.

2. The U-Net model is modified and applied to segment cells efficiently from the brain tumor

samples for SRS images by using a small amount of annotation information.

3. The K-means clustering is employed to segment cells for H&E images so that cells can be

segmented without requiring segmentation labels. In particular, the cells segmented from

H&E images can serve as the reference for the evaluation of cell counting from SRS images.

4. The distance transform and watershed segmentation algorithms are implemented to

achieve the cell instance segmentation and therefore cell counting results.

The rest of this paper is organized as follows: Related cell counting research is reviewed in

Section 2; Section 3 describes the proposed cell counting framework for SRS and H&E images;

Section 4 discusses the experimental results and analysis; Conclusions and future work are

shown in Section 5.

Literature review

In recent years, the deep learning technique has brought promising performance to various

image analysis tasks, such as classification, detection, segmentation, etc [21]. Most research in

the literature focuses on the design of convolutional neural network (CNN) models for natural

images, mainly due to the availability of large public datasets, e.g., ImageNet [22]. The fast-

growing computational speed and capacity also facilitate the attempts of different CNN model

PLOS ONE Automatic cell counting using deep learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0254586 July 21, 2021 3 / 18

https://doi.org/10.1371/journal.pone.0254586


structures and model training strategies. The idea of CNNs started in 1989 based on the struc-

ture of artificial neural networks (ANNs), backpropagation, and the introduction of convolu-

tional layers [23, 24]. Then, the first CNN model, named LeNet5, was designed in 1998 [25].

The CNN study was suspended due to the limitation of hardware and memory capacity until

another breakthrough in 2012: AlexNet [26]. AlexNet includes the rectified linear unit (ReLU)

activation function, dropout concept, local response normalization (LRN), along with the

application of data augmentation. Since then, the CNN technique has been extended to various

structures with different applications. Some studies focus on increasing the depth of CNNs.

VGG-16 and VGG-19 were proposed with 16 and 19 layers, respectively [27]. To solve the

problem of vanishing and exploding gradients due to the increased depth of CNN models, a

residual mapping process was introduced by ResNet [28], which improved the model effective-

ness. The depth of CNN models can be more than 1,000 layers in 2016 [29]. Some other studies

focus on reducing computation complexity. The development of GoogleNet [30] brought the

idea of inception layers, which dramatically reduced the number of parameters while keeping

the same receptive fields through the combination of various kernel sizes. Based on the concept

of GoogleNet, some other deep learning models were designed, including Inception V2, Incep-

tion V3 [31], Inception V4 [32], and Xception [33]. Densely connected convolutional networks

(DenseNet) were also proposed, which concatenate all layers using the residual mapping from

all preceding layers [34]. The development of various deep learning models essentially boosts

the research of different practical problems, such as image denoising [35], super-resolution

[36], image registration [37], image reconstruction [38], human authentication [39], etc.

In addition, SRS has become an emerging technique for intraoperative histology analysis,

which leads to the attempt to incorporate deep learning into SRS image analysis, especially

tumor diagnosis [40]. Stimulated Raman histology (SRH) was employed to generate virtual

H&E-like images. Then, multilayer perceptron (MLP) and random forest were applied to pre-

dict lesions from tissue patches [41, 42]. Alternatively, tumor classification can be directly

performed based on SRS images. To achieve accurate diagnoses of laryngeal squamous cell car-

cinoma, a 34-layer ResNet model was applied to classify normal and neoplastic larynx tissues

from SRS patches [43]. LeNet5 was applied to recognize prostate cancer patients with bone

metastases using surface-enhanced Raman spectroscopy (SERS) images [44].

Regarding cell counting, it can be categorized as detection-based counting and regression-

based counting [18]. Detection-based cell counting involves the detection or segmentation of

every single cell prior to cell counting, which requires a supervised learning process. In such

an approach, cell annotation information is needed to train the detection or segmentation

model, which converts the counting task to a detection task. The annotation information

could be dot annotation of objects [18, 45, 46], bounding boxes around the objects [47], etc.

Each cell is detected and localized one by one through the object detection model, and a

counter then takes the detected cells and yields the count results [48]. A typical cell detection

work in Arteta et al. (2012) detected cells using a three-step approach: 1) cell-like candidate

region identification that uses maximally stable extremal regions (MSER) detector; 2) candi-

date region evaluation that uses support vector machine (SVM); and 3) non-overlapping

region selection that uses dynamic programming [49]. Other research follows a similar pipe-

line that counts objects based on detection results [50–52].

Currently, more efforts have been made to count cells by regression, which avoids the chal-

lenging task of detection or segmentation of single cells and generates cell density or cell count

directly from input images [18, 48]. The CNN models such as deep residual networks were

applied and modified using the Euclidean loss function by taking the total number of cells as

the annotation information [48]. An ensemble of regression trees that uses dense features to

estimate the object density map by averaging structured, patch-based predictions was
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implemented [53]. Inspired by the success of fully convolutional networks (FCN) for image

semantic segmentation, the FCN algorithm has been borrowed for cell counting. Xie et al.

(2018) modified the FCN model such that the cell spatial density map can be predicted from

dot-annotated microscopy images. The number of cells within a certain region was obtained

via the integration over the density map. In this work, cells can be also detected as a side benefit

from FCN [18]. Objects can be also counted following the same framework that is similar to

the work of Xie et al. (2018), where a density map was obtained by formulating a minimization

of a regularized risk quadratic cost function as a cutting-plane optimization problem [54]. In

another research, a FCN-based framework was proposed, which consists of a primary FCN and

a set of auxiliary FCNs that provide extra learning features from intermediate layers for the pri-

mary FCN. In addition, shortcut connections were integrated into the primary FCN, which can

enhance the granularity of the features and density map estimation [1, 55]. Morelli et al. (2021)

follow the similar concept that employs the FCN with short connections between convolution

blocks to segment cells [56]. A residual dilated U-Net was proposed, along with the application

of an ensemble method to count and localize blastomere cells [57]. Alternatively, a robust

nuclei instance segmentation architecture was proposed, which includes multiple U-Net struc-

tures; one model detected and segmented cells and the other model refined segmentation

results [58]. Moreover, in the research conducted by Villa et al. (2018), cells were counted

dynamically using multiple frames by proposing a spatiotemporal model that employs CNN

and long short-term memory (LSTM). Therefore, the cell count variation can be monitored

over time [59]. A summary of related research for cell counting research is provided in Table 1.

Regarding the SRS image analysis, there are some attempts in the literature that integrated

the ML technique, specifically, deep learning, into the analysis. Most research performed the

lesion prediction task for image patches within a specimen [41, 43]. This research extends the

simple image classification to pixel-level analysis by providing the cell segmentation and cell

counting results that can reveal the intrinsic sample characteristics of brain tissues. Motivated

by the superiority of U-Net over FCN on the medical image semantic segmentation task, this

research employs and modifies U-Net to segment cells on SRS images. Also, the proposed cell

counting scheme enables a mix of detection and regression-based counting because cells are

segmented without the requirement of identifying each cell instance, but identified and

counted through the involvement of morphological analysis.

Methodology

In general, SRS images are collected via fresh biopsy samples taken from brain tissue and

processed by Stimulated Raman imaging. Fig 1 shows SRS images from brain tumor samples.

The cell bodies are shown with blue signals embedded in the fatty tissue background of green

Table 1. A summary of the cell counting research.

Category Authors Method

Detection-based Arteta et al. (2012) SVM, dynamic programming, MSER detector

Arteta et al. (2016) Tree-structured discrete graphical model, SVM, dynamic programming

Hosseini et al. (2020) Mask R-CNN

Regression-based Xue et al. (2016) AlexNet, ResNet

Xie et al. (2018) Fully convolutional regression network

Rad et al. (2018) Ensemble residual dilated U-Net

Villa et al. (2018) CNN, LSTM

Xue et al. (2019) CNN, compressed sensing, sparse coding

Xu et al. (2019) U-Net

He et al. (2019, 2021) FCN, shortcut connections

https://doi.org/10.1371/journal.pone.0254586.t001
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signals. Fig 2 shows an overview of the cell counting framework that can provide clinical sup-

port for image-guided brain tumor surgery in the operating room.

The proposed cell counting framework can be regarded as a hierarchical approach: 1) cell

semantic segmentation and 2) morphological operation that recognizes distinct cell instances.

Fig 1. SRS samples. Representative SRS images show cell bodies embedded in the fatty tissue background. Pseudocolor green: lipids;

Pseudocolor blue: proteins.

https://doi.org/10.1371/journal.pone.0254586.g001

Fig 2. Overview of the cell counting framework.

https://doi.org/10.1371/journal.pone.0254586.g002
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In the first step of cell semantic segmentation, there are two machine learning-based options:

deep learning near real-time segmentation with the application U-Net and K-means cluster-

ing, which takes more than 30 minutes to stain samples using H&E. Subsequently, using the

distance transform and watershed segmentation algorithms, cell instances are identified and

therefore counted, which can provide surgical guidance in the operating room.

Cell segmentation using U-Net based on SRS images

The first approach processes the obtained SRS image from the biopsy samples through a

split-and-combine method that performs cell segmentation based on cropped small patches

and then combines patch segmentation results accordingly. Specifically, the SRS image is

split into small patches with the size of 256 × 256 pixels, which essentially enlarges the num-

ber of samples for U-Net training and enables the model training from limited annotation

information. In particular, U-Net is a state-of-art deep learning model proposed by extend-

ing the FCN model as a symmetric u-shaped architecture [20]. Instead of a single upsam-

pling layer in FCN, U-Net utilizes multiple successive upsampling layers. To cope with the

information loss problem due to the increase of successive layers, direct connections are

built to propagate the context information to higher resolution layers. Consequently, U-Net

consists of an encoder and a decoder, where the encoder applies the convolutional process

and the decoder applies the deconvolutional process. The advantage of U-Net is that it can

effectively segment objects from arbitrary size inputs. In addition, U-Net performs well with

very few training images and achieves precise segmentation results, which leads to a wide

application to solve medical image segmentation problems. Due to the relatively fixed color

range of SRS images and limited training samples via manual annotation, we utilized half of

the kernels compared to the original U-Net design. Therefore, there are 16, 32, 64, 128, and

256 kernels for the encoder and decoder in the five levels, which significantly reduce the

model complexity and number of parameters to be optimized. Fig 3 shows the details of the

U-Net implementation.

Different operations are represented via different colors. The input SRS samples are first

convoluted through two successive 3 × 3 convolution operations with the ReLU activation

function, which can improve the model computational efficiency and reduce the possibility

of vanishing or exploding gradients. The next four layers follow a similar operation, with the

exception that a 2 × 2 max pooling process is conducted to squeeze the information from the

previous feature maps [60]. In the decoder, the feature maps are enlarged via a 2 × 2 decon-

volution operation with the ReLU activation function, which are further concatenated with

the feature maps from the encoder with the same sizes via direct connections. In such a way,

the low-level feature information from the encoder can be propagated to the high-level fea-

ture maps in the decoder. Similarly, two successive 3 × 3 convolution operations with the

ReLU activation function are attached to refine the cell characteristic extraction. Finally,

the segmentation image is achieved through a 1 × 1 convolution process with one kernel by

yielding a one-channel image. The Sigmoid activation function is employed, which yields the

probability of each pixel to be predicted as a cell pixel. If the probability of a pixel as a cell is

greater than 0.5, this pixel will be classified as a cell pixel. Otherwise, this pixel will be classi-

fied as a non-cell pixel. It is noted that because only blue and green channels are involved in

the SRS images due to the nature of the SRS image generation process, the input images of

the U-Net are two channels instead of the conventional RGB (red, green, and blue) color

channels.

To optimize the U-Net model, the parameters are optimized by minimizing the cross-

entropy between the prediction pixel labels and the annotated pixel labels. Backpropagation is
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used to calculate the gradient by defining 16 as the batch size. In each iteration, the parameters

of feature maps are updated toward the optimal point via Adam, a first-order gradient-based

optimization technique for stochastic objective functions with adaptive learning rate and gra-

dient momentum estimation [61]. The default hyperparameters, step size α = 0.001, exponen-

tial decay rates for the first and second moment estimates β1 = 0.9 and β2 = 0.999, and a small

number that prevents division by zero � = 10−8, are used for the Adam algorithm. In addition,

we implement the early stopping technique in the U-Net model training process to eliminate

the case of overfitting. Specifically, 20% of the training samples are randomly selected as the

validation dataset. During the segmentation model training, the loss function of the validation

dataset is monitored whenever the whole training dataset has been utilized to update the

parameters once, which is defined as one epoch. black If the validation loss has not been

reduced for 25 epochs, the training process will stop. Then, the parameters with the least vali-

dation loss will be utilized as the final segmentation model.

Fig 3. The architecture of the modified U-Net model.

https://doi.org/10.1371/journal.pone.0254586.g003
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Cell segmentation using K-means clustering based on H&E images

The second method involves the H&E staining process, which requires at least 30 minutes,

which thereby limits the practicability of applying such an approach to support the diagnosis

and treatment processes in the operating room. However, the paired H&E brain sample

images can serve as a reference to evaluate the cell counting results using the SRS images.

Therefore, the H&E images are also analyzed via a clustering method, which aims to group the

pixels from the H&E image into groups by means of recognizing statistically similar clusters.

K-means clustering has been applied to the medical image segmentation problem as an unsu-

pervised learning algorithm with the advantages of efficient calculation and ease of under-

standing [62]. Applying K-means clustering, the color values of pixels are used as the inputs.

The objective is to minimize the sum of the squared similarity between all pixels to their corre-

sponding cluster centroids [63, 64]. The objective function of clustering samples X = {x1, . . .,

xn} with K clusters is

JðCÞ ¼
XK

k¼1

X

xi2ck

jjxi � mkjj
2

ð1Þ

where xi − μk is the similarity between xi and μk, and μk is the centroid of cluster k. Here, the

Euclidean distance is implemented as the similarity measure.

Cell counting via morphological analysis

Based on the cell segmentation results from both SRS and H&E images, cells are counted by

identifying distinct regions. Given a cell segmentation image, a morphological opening opera-

tion is first performed to eliminate small dots, which are usually noises from the segmentation

results. Subsequently, all the connected regions are identified and labeled as the initial cell

instances by applying the OpenCV toolbox. black However, overlapping cells exist. In this

case, multiple cells can be recognized as one region. Therefore, a post-morphological analysis

that uses distance transform and watershed segmentation algorithms is further employed for

each identified region, where connected cells can be split, which enhances the cell counting

results [65]. Fig 4 presents two samples of connected cells, which are further split using the dis-

tance-based watershed segmentation method.

For each identified cell region, a distance map is generated via distance transform, which

computes the minimum Euclidean distance from every pixel of the cell region to a background

pixel, as shown in Fig 4(b). Following a rescale process that converts all non-zero distances

between 0 and 1, a filter with the threshold defined as 0.5 yields the identified cell instance

regions. The remaining unknown region is assigned to the identified cell regions using the

watershed segmentation algorithm. Watershed was initially defined as the ridgeline that

divides different areas drained by different river systems. Inspired by watersheds in geography,

the watershed segmentation algorithm in mathematical morphology is designed by consider-

ing the image as a topographic landscape with ridges and valleys [65]. The objective of water-

shed segmentation is to trace all pixels toward a local minimum along the steepest descent

direction. In this research, the unknown region pixels are assigned by using the negative of the

obtained distance map as the evaluation criteria. As shown in Fig 4(e), the pixels are grouped

according to the paths to their local minimum, which is also known as a catchment basin. In

this way, each catchment basin refers to a cell instance.

A noise reduction process that defines thresholds of connected regions further eliminates

noises. In particular, the regions with a size of less than 0.37 μm are excluded. Also, strong pro-

tein or lipid signals, such as blood vessels and microhemorrhages, can generate noises by
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showing cell-like color representations in SRS images. Usually, those blood vessels and micro-

hemorrhages have large body sizes, which can be removed via a filter operation. If a region in a

SRS image has the size of more than black100 μm or the area is more than black500 μm2, this

region is excluded in both SRS and H&E images. To cope with the overlapped cells that cannot

be split using the watershed segmentation algorithm, the identified cells with the body size

larger than the upper inner fence of the cell sizes are counted as multiple cells by dividing the

average cell size. black In this case, the maximum cell obtained is 375 μm2.

Experimental results

In the experiment, brain tumor image samples are obtained from Lu et al. (2016) [3]. In partic-

ular, the brain tissues were collected from the Brigham and Women’s Hospital and Dana-

Farber Cancer Institute. A flash-freezing process was conducted at -80˚C, followed by a sec-

tioning process to 12-μm thicknesses. The brain tumor samples are imaged by SRS and then

stained using the H&E technique. A non-neoplastic benign brain tumor specimen with epi-

lepsy and a malignant anaplastic oligodendroglioma specimen are utilized to conduct the cell

counting task. Specifically, the resolution for the two specimens are 0.37 μm/pixel and 0.18

μm/pixel, respectively.

Fig 5 shows the cell counting framework in the experiments. The SRS image is split into

three regions: one training region and two testing regions. It is noted that there are mismatches

between the obtained H&E and SRS images for the same specimen regarding the cell shape,

size, and position. Cell shiftiness and vanishing are also observed during the image collection

process, which leads to a lack of ground truth cell distribution information. Therefore, the cells

within the training region and the first testing region are annotated manually, which can be

used to train the U-Net model and evaluate the cell segmentation results. To facilitate the

U-Net training and testing, the training and testing regions are split into 256 × 256-pixel patch

samples. The numbers of patch samples obtained from each region for the two specimens are

presented in Table 2.

The cells in the two testing regions are segmented via the trained U-Net model. Then, the

segmentation results are combined according to their original positions in the specimen. Hav-

ing the manual segmentation mask in the first testing region, the cell segmentation and cell

counting results are evaluated in the first test. Due to the lack of cell annotation in the second

Fig 4. A demonstration of the distance-based watershed cell segmentation. A: Initial cell segmentation. B: Distance

transform. C: Identified cell instance regions; D: Unknown region to be assigned. E: Final cell segmentation results.

https://doi.org/10.1371/journal.pone.0254586.g004
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testing region, the corresponding region in the H&E image is segmented through K-means

clustering. To promote the H&E image segmentation efficiency, the H&E image is split into

500 × 500-pixel patch samples, prior to the clustering for each patch sample. The cluster that

has the minimum distance to cells in terms of pixel color, which is represented by dark blue in

the H&E image, is identified as cells. By defining six clusters, the cells in the H&E can be well

segmented. Also, the cell counting results from SRS and H&E images are obtained using mor-

phological analysis and further compared.

Pixel-wise evaluation on the first testing region

Utilizing the manual segmentation mask in the first testing region, the model evaluation

adopts pixel-wise comparison by segmentation accuracy, specificity, sensitivity, and AUC. In

addition, another performance metric, Dice coefficient (DICE) [66], a spatial overlap index is

applied in the model evaluation, which is defined as follows:

DICE ¼
2TP

2TPþ FPþ FN
ð2Þ

where TP, TN, FP, and FN are the number of true positive, true negative, false positive and

false negative, respectively. Moreover, the performance of cell counting is evaluated through

percentage error (PE) as follows:

PE ¼
jNp � Ntj

Nt

ð3Þ

where Np is the predicted number of cells and Nt is the true number of cells in the same image.

Tables 3 and 4 summarize the mean and standard deviation (SD) of the pixel-wise segmenta-

tion evaluation for the two specimens. Here, the modified U-Net, which is implemented in the

Table 2. Number of patch samples in each region.

Specimen 1 Specimen 2

Train region 270 240

Test-1 region 120 100

Test-2 region 3536 1122

https://doi.org/10.1371/journal.pone.0254586.t002

Fig 5. Cell counting framework. Cell counting framework. Train mask: manually generated cell annotation mask

image for the training region; SRS train: the SRS image of the training region; Test-1 mask: manually generated cell

annotation mask image for the first testing region; SRS test-1 and SRS test-2: the SRS images of the first and second

testing regions; H&E test-2: the H&E image of the second testing region.

https://doi.org/10.1371/journal.pone.0254586.g005
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framework, is referred as M-UNet. The traditional U-Net without early stopping is U-Net The

ROC curves on the first testing region for the two specimens using M-UNet are also shown in

S1 Fig. To confirm the necessity of the U-Net structure, the simplified U-Net that removes one

encoder block and one decoder block is performed as 7layer-UNet. Two blocks of both encod-

ers and decoders are also excluded as 5layer-UNet in the experiment. Also, FCN, which is

widely used in the literature, is performed with the same model architecture without the con-

catenation process.

At the pixel-level cell segmentation, it is observed that reliable segmentation results can be

obtained via different models, especially high segmentation accuracy and AUC. In contrast,

the traditional image processing software, such as ImageJ [67], is not able to extract the cell

instances from SRS images. The segmentation accuracy, specificity, AUC, DICE from different

models are similar. However, the extreme imbalance between the cell and non-cell pixels

reveals that sensitivity, which depicts the capacity of identifying the cell pixels, is more impor-

tant than other performance metrics. For Specimen1, the M-UNet achieves higher sensitivity

than other models. The M-UNet model also outperforms other methods regarding PE, which

means more than 97.5% of cells can be identified and counted successfully. For specimen 2,

M-UNet and U-Net outperform other models regarding the sensitivity, which illustrates the

necessity of the U-Net structure. Also, the M-UNet achieves lower PE than the conventional

U-Net. Overall, the comparison of different cell segmentation models shows that the imple-

mented M-UNet is the optimal option in the cell counting pipeline.

Cell counting evaluation on the second testing region

In the test on the second testing region, the cell counting results are further evaluated by com-

paring them to the H&E images. As cell shiftiness and vanishing are observed between the

Table 3. Cell segmentation results on the first testing region for specimen 1.

Performance M-UNet U-Net 7layer-UNet 5layer-UNet FCN

Metrics Mean SD Mean SD Mean SD Mean SD Mean SD

Accuracy(%) 97.69 0.23 97.62 0.11 97.82 0.10 97.84 0.05 97.83 0.11

Sensitivity(%) 85.57 1.79 81.43 1.73 82.41 3.24 82.50 1.95 83.40 2.14

Specificity(%) 98.48 0.33 98.69 0.13 98.84 0.25 98.86 0.13 98.79 0.23

AUC(%) 98.96 0.16 98.59 0.22 98.94 0.11 98.92 0.10 99.02 0.14

DICE(%) 81.99 1.36 80.96 0.92 82.43 0.81 82.61 0.55 82.74 0.54

Epochs 60.40 5.18 300.00 0.00 60.20 4.76 77.80 16.12 65.20 6.61

PE(%) 2.49 1.36 2.51 2.08 3.45 4.73 3.26 1.62 4.07 2.64

https://doi.org/10.1371/journal.pone.0254586.t003

Table 4. Cell segmentation results on the first testing region for specimen 2.

Performance M-UNet U-Net 7layer-UNet 5layer-UNet FCN

Metrics Mean SD Mean SD Mean SD Mean SD Mean SD

Accuracy(%) 99.11 0.10 99.15 0.05 98.88 0.05 98.55 0.04 99.12 0.05

Sensitivity(%) 87.64 1.34 87.78 1.22 86.12 2.39 74.14 2.65 86.47 2.83

Specificity(%) 99.54 0.13 99.57 0.05 99.36 0.14 99.45 0.11 99.58 0.09

AUC(%) 99.62 0.09 99.66 0.09 99.58 0.07 99.21 0.08 99.55 0.13

DICE(%) 87.56 1.21 88.11 0.75 84.66 0.33 78.47 0.65 87.47 0.84

Epochs 78.40 13.24 300.00 0.00 95.00 24.05 144.40 12.76 115.40 14.36

PE(%) 3.35 2.41 4.16 2.52 8.90 2.68 4.86 4.15 4.39 3.63

https://doi.org/10.1371/journal.pone.0254586.t004
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paired SRS and H&E images, it is not practical to perform the pixel-wise evaluation. To reduce

the impact of cell shiftiness across patches, the testing images are split into multiple grids,

named as fields of view (FOV), where each FOV consists of 8 × 8 patch samples with the size

of 256 × 256 pixels for each patch. Therefore, the size of each FOV is 2048 × 2048. A sample of

FOV from SRS and H&E images at the same position is shown in Fig 6.

The cell instances are identified and represented by different colors, which are obtained by

counting the number of connected regions from semantic segmentation and distance-based

watershed segmentation. Assuming the number of cells estimated from H&E images is the

true cell density, the PE for the two specimens are 6.60% and 15.48%, respectively. Due to the

internal difference between SRS and H&E images, such as cell shiftiness, the number of cells in

the SRS images can be different but has a high correlation to the H&E images. The number of

cells per FOV from both SRS and H&E images are plotted in Fig 7(a), which represents a high

correlation (R = 0.97) between the two image modalities. Fig 7(b) is the Bland-Altman plot of

the cell counting results, which shows the difference of the detected cells between SRS and

H&E images for each FOV. It is observed that on average 12.08 cells in H&E FOVs are not

detected in the paired SRS FOVs. Considering 95% confidence interval (CI) of limits of agree-

ment (LoA), the cell counting results of 83 FOVs are within the LoA out of 88 FOVs. The five

FOVs that observed fewer cells from SRS images all come from the first specimen in which

there exists cell vanishing in SRS.

To further visualize the cell density, the second testing regions are split into 512 × 512-pixel

patches and the corresponding heatmaps are generated, as shown in Fig 8. Here, the number

of cells for each patch is mapped, which thereby provides support for physicians and patholo-

gists to easily understand the cell distribution within a specimen, conduct cancer diagnosis,

and suggest surgery planning. It is observed that the heatmaps from SRS images maintain a

similar distribution from H&E images, except for several patches caused by the internal cell

distribution changes.

Fig 6. Cell segmentation and identification results in a FOV. A: SRS FOV. B: SRS Cell identification. C: H&E FOV;

D: H&E Cell identification.

https://doi.org/10.1371/journal.pone.0254586.g006

Fig 7. Plot of cell count from SRS and H&E images per FOV. A: Correlation plot. B: Bland-Altman plot.

https://doi.org/10.1371/journal.pone.0254586.g007
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Conclusion

This study aims to promote the implementation of AI to biomedical analysis for SRS images.

Estimating tumor cell density is one of the key pathological hallmarks in the process of cancer

diagnosis, and our work shows that this can be addressed by means of proposing an automatic

deep learning-based cell counting scheme. To the best of our knowledge, this is the first time

that deep learning-based cell counting is performed on SRS images. Using a two-step hierar-

chical process, cells are first segmented using the U-Net model that requires a small amount of

training data. Based on the cell segmentation results, the distance transform and watershed

segmentation algorithms are implemented to generate the cell instance identification and

therefore cell counting results. According to the manual annotation on two brain tumor speci-

mens, promising cell segmentation results are obtained with > 98% AUC. Also, comparing

the cell counting results from the proposed deep learning model on SRS images to K-means

clustering on H&E images, a linear correlation R = 0.97 is achieved. By providing cell density

maps through reliable cell counting results, the possibility and practicality of conducting auto-

matic cell counting are illustrated.

The main limitation of this research is that the employment of U-Net requires manually

generated cell annotation, which is prone to subjective errors from weak cell contrast. The

future research direction can be focused on unsupervised models, such as adversarial learning.

The overlapped cells that cannot be split using the watershed segmentation algorithm also pre-

clude accurate cell counting, which can be addressed by the use of more morphological tech-

niques in the future. Furthermore, the cell morphology study based on the cell semantic

segmentation can be an interesting research direction.

Supporting information

S1 Fig. ROC curves for cell segmentation using M-UNet. ROC curves on the first testing

region for the two specimens.

(TIF)

Fig 8. Cell density heatmaps of the second testing region for the two specimens. The first and third columns are SRS and H&E

images; The second and fourth columns are the corresponding cell density heatmaps for SRS and H&E images.

https://doi.org/10.1371/journal.pone.0254586.g008
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