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Inflammasomes are multiprotein complexes that can sense danger signals and activate
caspase-1 to mediate pro-inflammatory cytokines release and pyroptotic cell death. There
are two main canonical and non-canonical signaling pathways that trigger inflammasome
activation. Inflammasomes are expressed and assembled in parenchymal
and nonparenchymal cells in response to liver injury in the liver. Additionally, the
hepatocytes, biliary epithelial cells (cholangiocytes), hepatic stellate cells (HSCs),
hepatic macrophages, and liver sinusoidal endothelial cells (LSECs) contribute to liver
fibrosis via different mechanisms. However, the underlying mechanism of the
inflammasome and pyroptosis in these liver cells in liver fibrosis remains elusive. This
review summarizes the activation and function of inflammasome complexes and then
discusses the association between inflammasomes, pyroptosis, and liver fibrosis. Unlike
other similar reviewers, we will focus on the effect of inflammasome activation and
pyroptosis in the various liver cells during the development of liver fibrosis. We will also
highlight the latest progress of pharmacological intervention in inflammasome-mediated
liver fibrosis.
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1 INTRODUCTION

Inflammasomes are signaling platforms in response to infectious diseases or chronic sterile
inflammation. These multimeric complexes respond to molecular patterns from pathogens and
cellular damage by releasing pro-inflammatory cytokines and inducing pyroptotic cell death (1). In
general, inflammasome complexes are composed of a pattern-recognition receptor, an effector
caspase-1, and an adaptor connecting these two components. There are two groups of
inflammasomes in terms of receptors: the NLR family containing NLRP1, 2, 3, 6, NLRC4 and
NLRP12; pyrin and HIN domain-containing (PYHIN) family including absent in melanoma 2
(AIM2) and pyrin (2). The inflammasomes could either aggravate inflammation via interleukin
(IL)-1b and IL-18 or induce pyroptosis via gasdermin D (GSDMD). Although the inflammasome
and its related pyroptosis have been well studied in infectious diseases, the role and mechanism of
inflammasome and pyroptosis in liver fibrosis remain unclear.

Liver fibrosis is characterized by excessive extracellular matrix (ECM) deposition in response to
chronic liver injury, including virus infection, non-alcoholic steatohepatitis (NASH), alcoholic liver
disease (ALD), and autoimmune diseases (3, 4). Generally, activated HSCs are primary myofibroblasts
thatproduce and secrete ECM. Inaddition,hepatocytes,Kupffer cells (KCs), LSECs, cholangiocytes, and
recruited cell types (e.g., bonemarrow-derivedmacrophages) also contribute to liver fibrosis (5, 6). The
mechanisms of liver fibrosis are complicated and involve different cells, signaling pathways, and cross-
org May 2022 | Volume 13 | Article 8964731
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talk between individual cells. Recent studies have shown that
inflammasomes and inflammasome-related pyroptosis are
involved in liver fibrogenesis from various pathologies (7). The
detailed mechanism of the inflammasome and pyroptosis in liver
fibrosis is not well-defined. Collaboration of multiple liver cells
maintains hepatic homeostasis in health and contributes to
disturbed hepatic homeostasis in liver fibrosis (8). This review
summarizes the progress of inflammasome and inflammasome-
related pyroptosis in liver fibrosis. The roles and mechanisms of
inflammasomes andpyroptosis in various liver cells and their cross-
talks will also be described. Eventually, the potential therapeutic
targets and future directions will also be implied based on the
current progress.
2 INFLAMMASOME BIOLOGY
AND ACTIVATION

There are five main kinds of inflammasome sensor complexes in
terms of receptors, NLRP1, NLRP3, NLRC4, AIM2, and pyrin
Frontiers in Immunology | www.frontiersin.org 2
(Figure 1). The inflammasome receptor oligomerizes and
recruits the adaptor ASC and effector caspase-1 to assemble
inflammasome complexes after sensing pathogens or host-
derived injuries. After activation, the cleaved caspase-1
mediates the maturation and secretion of IL-1b and IL-18 and
pyroptotic cell death (9). In this section, we will compare the
structures of different inflammasomes and discuss the
mechanism of inflammasome activation.

2.1 Inflammasome Assembly
and Structure
2.1.1 NLRP1 Inflammasome
NLRP1 was the first inflammasome to be identified; however,
little research has focused on NLRP1 inflammasome due to the
complexity and differences in structures between humans and
mice. Human NLRP1 inflammasome has two domains in NOD-
like receptor (NLR): an N−terminal pyrin domain (PYD) and a
C−terminal caspase activation and recruitment domain (10). In
contrast, the mouse genome encodes Nlrp1a, Nlrp1b, and
Nlrp1c, which activate caspase-1 without the help of an ASC
FIGURE 1 | Domain structure and inflammasome assembly. The inflammasome complex contains a sensor, adapter, and effector protein. There are two kinds of
sensors: the NOD-like receptor (NLR) family and the PYHIN (pyrin and HIN200 (hematopoietic interferon-inducible nuclear antigens with 200 amino-acid repeats)
domain-containing protein) family. The NLR family includes NLRP1, NLRP3, NLRC4 sensors. They contain a nucleotide-binding domain (NBD), carboxy-terminal
leucine-rich repeat (LRR), either a pyrin domain (PYD) or a caspase activation and recruitment domain (CARD). Additionally, NLRP1 has a function-to-find domain
(FIIND) at the C terminal. The PYHIN family AIM2 receptor has a PYD and HIN200 domain, whereas pyrin contains a PYD, two B boxes, and a coil-coil domain.
Human pyrin has an additional B30.2 domain. Adaptor has a PYD to combine with the sensor and a CARD with the effector. The effector is composed of a CARD
and pro-caspase-1, which will be cleaved when inflammasome assembly.
May 2022 | Volume 13 | Article 896473
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adaptor due to the lack of a PYD domain in the receptor (11). But
a function-to-find domain (FIIND) at the C−terminal is required
in both humans and mice to participate in the activation of the
NLRP1 inflammasome (Figure 1) (12).

Regarding inflammasome activation, Bacillus anthracis lethal
toxin (LT) was involved in the NLRP1 inflammasome activation
and subsequent caspase-1−dependent cytokine release and
pyroptosis (13). Moreover, extracellular ATP was also
demonstrated to trigger the NLRP1 inflammasome by
activating the P2X7 receptor and potassium efflux (14, 15). As
the NLRP1 inflammasome is less well-studied, the role of the
NLRP1 inflammasome in chronic liver disease and liver fibrosis
remains unclear.

2.1.2 NLRP3 Inflammasome
The NLRP3 inflammasome contains the NOD-like receptor
NLRP3, the adaptor ASC, and the effector pro-caspase-1
(Figure 1). The NLRP3 inflammasome is the most widely
studied and the best-characterized inflammasome in infectious
and chronic inflammatory diseases (16).

The stimuli involved in NLRP3 activation include pathogen-
associated molecular patterns (PAMPs) ligands (17), such as
bacterial, fungal, and viral components, pore-forming toxins,
nucleic acids; and damage-associated molecular patterns
(DAMPs) such as extracellular ATP (18), uric acid crystals
(19), and amyloid (20). Activation by these PAMPs and
DAMPs indicates that the NLRP3 inflammasome is a common
sensor of cellular stress or injury. Activation of the NLRP3
inflammasome requires two steps. First, extracellular stimuli
prime cells, e.g., LPS binds to TLR4 to activate NF-kB and
subsequent transcription and translation of IL−1b. Then
secondary stimuli such as ATP induce inflammasome complex
assembly and IL-1b cleavage and secretion. An increasing
number of studies have confirmed the critical roles of NLRP3
inflammasome activation in pro-inflammatory cytokines release
and pyroptosis initiation. The NLRP3 inflammasome-mediated
cellular communication among different liver cell types in acute
and chronic liver diseases from diverse liver injuries was also
well-defined (21, 22), indicating the pivotal role of NLRP3
inflammasome in the development of liver diseases.

2.1.3 NLRC4 Inflammasome
The NLRC4 inflammasome is activated in response to Flagellin
infection (23), Salmonella infection (24), and bacterial type 3
secretion systems (T3SSs) (25). These stimulators bind to
NLRC4 indirectly. During infection, neuronal apoptosis
inhibitory proteins (NAIPs) interact with the ligand and
NLRC4 receptor, activating the assembly of the NLRC4
inflammasome (Figure 1) (26). A few studies showed that
bacterial flagellin induced NLRC4 inflammasome activation in
hepatocytes and KCs (27, 28). Moreover, the NLRC4-driven IL-1
release was also involved in liver fibrosis (27, 28). Though these
studies show an important role of NLRC4 inflammasome in
bacterial infection in liver cells, more studies are needed to
explore the potential mechanisms of NLRC4 inflammasome
activation and its role in liver fibrosis.
Frontiers in Immunology | www.frontiersin.org 3
2.1.4 AIM2 Inflammasome
TheAIM2 inflammasome is a cytosolic receptor that senses double-
stranded DNA (dsDNA). It contains an N-terminal PYD domain
and a C-terminal hematopoietic interferon-inducible nuclear
protein with a 200-amino acid repeat (HIN200) domain
(Figure 1) (29). When dsDNA binds to the AIM2 receptor, ASC
and pro-caspase-1 are recruited for inflammasome complex
formation and activation (30, 31). Previous studies have found
that the AIM2 inflammasome induction in hepatocytes and
macrophages participates in chronic liver diseases via the
pyroptosis pathway (32–35). However, the mechanism of AIM2
inflammasome regulation is not well-studied.

2.1.5 Pyrin Inflammasome
Pyrin, encoded by the MEFV gene, contains a PYD, two B−boxes, a
coiled-coil domain, and a SPRY/PRY domain (Figure 1). Pyrin was
recently recognized as an inflammasome-forming and pyroptosis-
initiating protein. Pyrin inflammasome was reported to stimulate
pyroptosis, but there is no evidence showing its direct effect on the
progression of liver fibrosis (36, 37).

2.2 Functions of Effector Components
in Inflammasomes
Inflammasome assembly activates caspase-1, which cleaves the
pro-IL-1b and pro-IL-18 into active IL-1b and IL-18.
Meanwhile, GSDMD is cleaved by caspase-1 to N-terminal
fragments (GSDMD-NT), which are inserted into the cell lipid
membrane to assemble arc‐ and slit‐like oligomers and grow into
large and stable ring‐like oligomers to form transmembrane
pores. This process leads to cell membrane rupture and
resultant pyroptosis (38). We next explored the functions of
these effector components in inflammasomes.

2.2.1 IL Maturation and Secretion
Activation of inflammasome complexes cleaves pro-caspase-1
and triggers IL-1b and IL-18 maturation and secretion. IL−1b
and IL−18 are crucial cytokines involved in immune responses
and trigger the inflammatory cascade (39). However, there have
been many debates about how IL-1 is secreted out of cells. Recent
studies have shown that Gsdmd knockout macrophages mature
IL−1b normally but fail to secrete it due to lack of pyroptosis,
suggesting that IL-1b is secreted through cell membrane rupture
and lysis (40). However, whether IL-1 is released via pyroptosis
in other cell types remains unknown; further studies are needed.

2.2.2 Pyroptosis
Pyroptosis is a distinct type of programmed cell death
characterized by the formation of cell membrane pores, the
release of intracellular contents, nuclear condensation, and cell
lysis (41). Compared with pyroptosis, apoptosis and necroptosis
are caspase-3/7 and receptor-interacting serine-threonine
kinase-1/3 (RIPK-1/3) mediated programmed cell death,
respectively (42). Pyroptosis depends on inflammatory caspase-
1 to cleave gasdermins to form membrane pores. Of all
gasdermins, GSDMD has been demonstrated to play a central
role in pyroptotic cell death. Active caspases cleave GSDMD to
May 2022 | Volume 13 | Article 896473
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GSDMD-NT, which causes membrane pores and induces
pyroptosis via both canonical and non-canonical signaling
pathways (41, 43). However, the mechanism by which
GSDMD executes cell death is poorly explored.

2.3 Canonical and Non-Canonical Signaling
Pathways of Inflammasome Activation
As previously reviewed, inflammasomes are initiated and
assembled via a canonical or non-canonical signaling pathway
(2). There are two steps to process inflammasome activation in
the canonical signaling pathway (Figure 2) (44). In the first step,
PAMPs, such as LPS, bind to TLRs and elicit the downstream
MyD88–NF-kB signaling pathway to produce pro-IL-1b and
pro-IL-18. In the second step, endogenous danger signals
activate inflammasome assembly and caspase-1. A combination
of PRR, ASC, and pro-caspase-1 helps activate caspase-1, which
cleaves GSDMD into GSDMD-NT as well as cleaves pro-IL-1b
and pro-IL-18 into mature IL-1b and IL-18. There are three main
mechanisms involved in the second step. Firstly, extracellular
ATP binds to the P2X7 receptor and opens a pore on the cell
membrane through pannexin 1 protein, causing potassium efflux
and NLRP3 activation (18). Secondly, uric acid crystals and
amyloid endocytosed by phagosome lysosomes contribute to
Frontiers in Immunology | www.frontiersin.org 4
lysosome rupture and release of cathepsin B, which helps
inflammasome assembly (19). Thirdly, thioredoxin-interacting
protein (TXNIP) detached from thioredoxin and mitochondrial
DNA (mtDNA) accumulation in a ROS-dependent manner
activates inflammasomes (45).

Apart from the canonical signaling pathway, inflammasomes
are also activated by the non-canonical signaling pathway
(Figure 2). In this process, intracellular LPS or toxin initiates
caspase-11, promoting inflammasome assembly and caspase-1
activation. Then both active caspase-11 and caspase-1 cleave
GSDMD into GSDMD-NT, leading to cascaded reactions similar
to the canonical signaling pathway (46). Inflammasome
activation is a complex process that involves multiple proteins.
It remains unclear whether the cross-talk of the canonical
signaling pathway and the non-canonical signaling pathway
also revokes inflammasome activation.
3 INFLAMMASOME AND PYROPTOSIS IN
LIVER FIBROSIS

Liver fibrosis is a dynamic process characterized by an imbalance
in ECM deposition and degradation due to chronic liver injury of
May 2022 | Volume 13 | Article 896473
FIGURE 2 | Canonical and non-canonical signaling pathways to activate inflammasomes. Canonical signaling pathway to activate inflammasomes is mediated by
two signaling steps. The priming step involves PAMPs or DAMPs binding to TLRs to initiate NF- kB signaling pathway, which promotes pro-IL-1b and pro-IL-18
production. Then endogenous danger signals activate inflammasome assembly and caspase-1 in the second step. Active caspase-1 cleaves GSDMD into GSDMD-
NT; cut pro-IL-1b and pro-IL-18 into mature IL-1b and IL-18. The GSDMD breaks a pore on the cell membrane to help IL-1b and IL-18 secretion. There are three
main mechanisms involved in inflammasome activation. Extracellular ATP binds to the P2X7 receptor and causes potassium efflux and NLRP3 activation. Uric acid
and amyloid are endocytosed in a lysosome-dependent manner, promoting lysosome rupture and cathepsin B release and resultant inflammasome assembly. TXNIP
and mtDNA accumulation in a ROS-dependent manner activates inflammasomes. However, in the non-canonical signaling pathway, intracellular LPS or toxin initiates
caspase-11, promoting inflammasomes assembly and caspase-1 activation. Then both active caspase-11 and caspase-1 cleave GSDMD into GSDMD-NT, leading
to cascaded reactions similar to the canonical signaling pathway.
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various etiologies (5). During this process, quiescent HSCs
transdifferentiate into fibrogenic activated phenotype,
representing the dominant collagen-producing myofibroblasts
in different chronic injury models (5, 7, 47). Stimulators of
chronic liver injuries, such as fatty acid, alcohol, toxin, and
virus infection, affect hepatocytes, hepatic macrophages,
LSECs, and cholangiocytes. Damaged liver cells interact with
HSCs by releasing pro-inflammatory and pro-fibrotic factors,
promoting HSC activation and resultant liver fibrosis (48–50). It
is worth noting that inflammasome activation and pyroptosis
play a central role in the inflammatory cascade (51). Previous
studies have demonstrated that inflammasome components are
widely expressed in these liver cell types in response to liver
injury (52–54). Moreover, inflammasomes could induce liver
fibrosis both directly and indirectly. Inflammasome activation in
HSCs directly leads to HSCs activation, which is responsible for
ECM formation and liver fibrosis. Indirectly, pro-inflammatory
cytokine release or pyroptotic cell death in hepatocytes and other
nonparenchymal cells induces HSC activation and eventually
leads to liver fibrosis (Figure 3) (55).

3.1 Inflammasomes and Pyroptosis
in Hepatocytes
Although inflammasomes are predominately expressed in
immune cells, hepatocytes, which are the most abundant cell
type in the liver and predisposed to liver injury, also express
inflammasomes (52). Recently, increasing studies have
demonstrated important roles of hepatocellular inflammasomes
Frontiers in Immunology | www.frontiersin.org 5
activation, the subsequent pyroptotic death, and inflammasome-
implicated cross-talk with HSCs in chronic liver injury from
various liver pathologies.

3.1.1 Hepatocellular NLRP3 Inflammasome in NAFLD
and NASH-Related Liver Fibrosis
Hepatocellular NLRP3 inflammasome activation and caspase-1-
mediated pyroptosis play a crucial role in the progression of non-
alcoholic fatty liver disease (NAFLD). Lipid exposure resulted in
hepatocellular NLRP3 inflammasome activation and cleavage of
mature IL-1b and IL-18 by caspase-1 in high fructose-induced
NAFLD mouse model. The inflammatory response aggravated
hepatocellular lipid accumulation as well as impaired insulin
sensitivity in JAK/STAT3-dependent (56) and PI3K/AKT-
dependent manner (57), respectively. The evidence indicates
that NLRP3 inflammasome mediates lipid and glucose
metabol i sm in hepatocytes . Mechanica l ly , NLRP3
inflammasome and cytokine production are induced by
mitochondrial reactive oxygen species (ROS) in fatty
hepatocytes (58, 59). Furthermore, the binding of IL-1b and
IL-18 to HSC-derived IL-1 receptor, as well as DAMPs released
from pyroptotic hepatocytes transdifferentiated HSCs into
activated phenotype for fibrotic scar formation (57). Liver
inflammation and ECM deposition are relieved in hepatocyte-
specific caspase-11-deficient mice with high sucrose and high fat
diet, where the production of IL-1b and GSDMD was blocked,
further proving the role of inflammasomes in liver fibrosis (60).
In summary, these studies have demonstrated that hepatocellular
FIGURE 3 | The inflammasomes in liver fibrosis. Activated HSCs are the primary source of extracellular matrix deposition in response to chronic liver injury. There
are direct and indirect ways involved in inflammasome to stimulate HSCs. Activation of inflammasomes in hepatocytes and macrophages due to chronic liver injury
leads to IL-1b and IL-18 release and pyroptotic cell death. Secreted IL-1b and IL-18 bind to IL-1 receptors on HSCs and induce HSCs activation and resultant ECM
formation. In addition, DAMPs from pyroptotic cells promote HSCs activation and liver fibrosis. Meanwhile, PAMPs or DAMPs may directly target HSCs to induce
inflammasome-dependent IL-1 release and pyroptosis, eliciting HSCs activation in an autocrine or paracrine manner.
May 2022 | Volume 13 | Article 896473
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NLRP3 inflammasome and pyroptosis contribute to the
development of NAFLD and liver fibrosis via the cross-talk
between hepatocytes and HSCs.

3.1.2 Hepatocellular NLRP3 Inflammasome
in Liver Fibrosis
Hepatocyte pyroptosis and the release of inflammasome particles
caused by DAMPs and PAMPs were internalized by HSCs and
further induced HSC activation and liver fibrosis (55, 61). It
seems that the NLRP3 inflammasome in hepatocytes may play a
pivotal role in developing liver fibrosis. Ethanol was shown to
trigger hepatocyte NLRP3 inflammasome-dependent IL-1b
production and pyroptosis by TXNIP overexpression (62) and
the caspase-4/11–GSDMD non-canonical signaling pathway in
ALD (63). Elevated inflammation accompanied apoptotic and
necroptotic cell death in the Nlrp3-knockout acute BDL model.
In contrast, decreased liver injury and bridge fibrosis in the
Nlrp3-knockout chronic BDL model showed diverse roles of
NLRP3 in acute and chronic cholestatic liver injury (64).
Mechanically, endoplasmic reticulum (ER) stress is the central
process involved in NLRP3 inflammasome activation in
hepatocytes. The IRE1a–sXBP1–ER stress signaling pathway
mediated hepatocellular NLRP3 inflammasome activation (65).
In comparison, this NLRP3 inflammasome activation was
relieved in XBP1 knockout mice (65). In the LPS- and CCl4-
induced chronic liver injury model, NLRP3 inflammasome-
mediated hepatocyte pyroptotic cell death was relieved after ER
stress abrogation via either CHOP knockdown (66) or FXR
regulation (67). The above studies demonstrate that ER stress-
dependent inflammasome activation mediates chronic liver
injury and fibrosis. However, further studies that use
hepatocyte-specific NLRP3 deletion mice are urgently needed.
Although many studies have revealed that NLPR3 is upregulated
in hepatocytes, few studies have focused on the transcriptional
regulation of NLRP3.

3.1.3 Other Hepatocellular Inflammasomes
in Liver Fibrosis
In addition toNLRP3, other inflammasomes inhepatocytes are also
involved in liver injury and liver fibrosis. AIM2 inflammasome
activation bymtDNA resulted in increased expression of IL-1b and
GSDMD in hepatocytes. The release of IL-1b promoted liver
steatosis, inflammation, and activated IL-1 receptor on HSCs,
contributing to the fibrogenic phenotype of HSCs (32); whereas
HMGB1 redox status inhibited activation of caspase-1 through
AIM2 inflammasome in chronic liver inflammation (33). In
addition, NLRC4 inflammasome activation and pro-
inflammatory cytokines induced by bacterial flagellin were
rescued by hepatocyte Toll-Like Receptor 5 (27). The progression
of NASHwas attenuated by the deletion of NLRC4 inflammasome
and the subsequent decrease in hepatocyte pyroptosis (68). The
above studies show hepatocytes express and activate other
inflammasomes, which participate in cellular communication
with HSCs to induce liver fibrosis. Compared to the NLRP3
inflammasome, the effect of other inflammasomes remains
unclear, and further studies are needed.
Frontiers in Immunology | www.frontiersin.org 6
In summary, various chronic injuries lead to inflammasome
assembly in hepatocytes via canonical and non-canonical
signaling pathways. Then inflammasomes and pyroptosis in
hepatocytes initiate liver fibrosis mainly via HSC activation.

3.2 Inflammasomes and Pyroptosis in
Hepatic Macrophages
There are two phenotypes of macrophages in the liver: liver
resident KCs and bone marrow-derived macrophages (BMDMs).
KCs are the predominant macrophages in healthy conditions,
whereas BMDMs infiltrate into the liver in response to danger
signals (49, 69). Macrophages are recognized as the primary
source of inflammasomes and pro-inflammatory cytokines (70).
Generally, inflammasome activation and the subsequent
pyroptosis in macrophages promote chronic liver inflammation
by IL-1 and DAMPs release, which bind to receptors on HSCs
and initiate HSCs-mediated fibrosis from various etiologies.

3.2.1 Hepatic Macrophage NLRP3 Inflammasome in
NAFLD and NASH-Related Liver Fibrosis
In NASH models, the NLRP3 inflammasome activation in KCs
or BMDMs caused inflammatory cytokine production,
contributing to lipid synthesis in hepatocytes and fibrotic
collagen production in HSCs (71–73). Furthermore,
macrophage-specific Nrf2 knockout aggravated NASH
progression by initiating ROS and IL-1b in a yes-associated
protein (YAP)–NLRP3-dependent manner (74). This finding
demonstrates the role of ROS in activating the NLRP3
inflammasome in NASH. Similarly, the activation of the kinase
receptor-interacting protein 1 (RIP1) in BMDMs, which induced
inflammasome assembly and pyroptotic cell death, also
contributed to the pathogenesis of NASH (75). Mechanically,
NLRP3-mediated M1 macrophage polarization was blocked by
the TGR5 signaling pathway, which further restored liver
steatosis, inflammatory infiltration, and liver fibrosis (76).
TLR2 and palmitic acid cooperatively stimulated the NLRP3
inflammasome in KCs and BMDMs. Then the activated NLRP3
inflammasome enhanced macrophage autophagy via the release
of IL-1b to induce HSC activation (77, 78). Accordingly,
inhibiting the NLRP3 inflammasome by TIM-4 via LKB1–
AMPKa-mediated autophagy in macrophages suppressed the
progression of NAFLD (79).

Moreover, the caspase-1–IL-1b signaling pathway in
macrophages leads to lipid accumulation, inflammatory
infiltration, and liver fibrosis in NASH mouse models by
mediating macrophage–hepatocyte and macrophage–HSC
interactions (80). However, this progression was blocked by
ezetimibe administration in an autophagy-dependent manner
(80). Consistently, by exposing hepatocytes and KCs to
cholesterol crystals, NLRP3 inflammasome activation was
demonstrated to be involved in the development of NASH
(81). The above investigations confirmed the vital role of
autophagy in regulating macrophage-derived inflammasome
assembly in NASH. Nevertheless, the role of macrophage-
derived autophagy in inducing disrupted cross-talk in
sinusoids and liver fibrosis in NASH remains unclear. Further
May 2022 | Volume 13 | Article 896473
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studies that focus on cellular cross-talk in the sinusoids are
urgently needed.

3.2.2 Hepatic Macrophage NLRP3 Inflammasome in
Liver Fibrosis
NLRP3 inflammasome activation in KCs and BMDMs drove the
caspase-1 signaling pathway, leading to IL-1 secretion and
pyroptotic death in response to LPS-induced injury in vivo and
in vitro (82, 83). However, NLRP3 inflammasome-derived IL-1b
secretion and pyroptosis in macrophages and collagens
deposition were blocked by pharmaceutical inhibition or
genetic knockdown of COX-2 (84). Consistently, COX-2
promotes the development of liver cirrhosis (85) by inducing
ROS (86, 87) and ER stress (88), indicating that COX-2 might
contribute to liver cirrhosis via macrophage-derived
inflammasomes. However, further studies are needed to
determine how COX-2 regulates the activation of macrophage-
derived inflammasomes and pyroptosis of macrophages in the
context of liver fibrosis.

Studies confirmed that NLRP3 activation was not only
required for hepatic inflammation and fibrosis but also as an
essential mediator to amplify and perpetuate programmed
inflammatory pyroptotic cell death (55). LPS from the
damaged gut barrier and endogenous danger signals from
hepatocytes damaged by ethanol (extracellular ATP and uric
acid) are responsible for macrophage recruitment and
subsequent inflammatory cytokine processing and pyroptotic
cell death (89–92). The process is termed classically activated
(M1) macrophage polarization (93). Increased NLRP3 and
subsequent IL-1b maturation and secretion in macrophages
exacerbated liver inflammation and fibrosis in ALD via
induction of IL-1 receptor expression on HSCs and facilitated
ECM secretion and formation (91). However, macrophage-
specific Atg5 knockout promoted caspase-1 activation, and
pro-inflammatory M1 macrophage polarization, resulting in
liver fibrosis during chronic ethanol exposure. Autophagy, a
conserved cellular process to remove the damaged or
unnecessary component, plays an important role in negatively
regulating NLRP3 inflammasome in macrophages by degrading
mitochondrial-derived DAMPs and inflammasome complexes.
Research has demonstrated that autophagy in macrophages is
protective against alcohol-induced liver injury in an NLRP3
inflammasome-dependent manner (94). Taken together,
NLRP3 inflammasome induction in macrophages polarizes M1
phenotype, which is under the negative regulation of the
autophagy signaling pathway.

Patients with chronic HCV infection and cirrhosis have
elevated serum Il-1b and IL-18 levels (95, 96). Increased serum
IL-1b and IL-18 are the components of NLRP3 inflammasome
activation in response to HCV uptake by liver macrophages (95,
96). The current results confirm that NLRP3 inflammasome
assembly and activation are central to mitigating HCV-related
inflammation and fibrosis (95–97). Besides, NLRP3
inflammasomes expressed in KCs cause inflammatory cytokine
production and fibrotic collagen formation in schistosomiasis-
induced liver fibrosis (SSLF) (98) and idiosyncratic liver injury-
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induced fibrosis (99, 100). The above observation confirms
that the NLRP3 inflammasomes in hepatic macrophages are
crucial in initiating and propagating liver fibrosis from
different etiologies.

3.2.3 Other Hepatic Macrophage Inflammasomes in
Liver Fibrosis
Not only NLRP3 inflammasome but also other inflammasome
complexes are involved in liver injury and liver fibrosis.
Assembly of the AIM2 inflammasome in KCs led to the
processing of IL-1b and IL-18 in response to hepatitis B virus
infection, aggregating the development of liver cirrhosis (34,
101). Moreover, perfluorooctane sulfonate (PFOS), a chemical
that causes chronic systematic inflammation, activated the AIM2
inflammasome via the Ca(2+)–PKC–NF-kB/JNK–BAX/BAK
axis (35). In contrast, deletion of the AIM2 suppressed PFOS-
induced inflammation and fibrosis in the liver and other organs
(35). This study shows the critical role of the AIM2
inflammasome in toxin-induced chronic inflammation (35).

The NLRP6 inflammasome promotes the onset of hepatic
granuloma and collagen deposition, indicating that NLRP6 is a
crucial trigger for SSLF (102). Activation of the NLRC4
inflammasome and the subsequent pyroptosis and IL-18 and
IL-1b secretion in macrophages promotes cross-talk with HSCs,
exacerbating inflammation and fibrosis development in NAFLD
(28). Furthermore, the NLRP12 inflammasome negatively
modulated inflammatory responses by blocking the NF-kB and
MAPK signaling pathways as well as IL-1b release from BMDMs
in mouse liver and spleen against the infection of Brucella
abortus, which is a kind of Gram-negative bacterium infection
causing innate immunity and subsequent chronic inflammation
in the host (103).

In summary, inflammasome activation mediates the
polarization of liver macrophages and subsequent interaction
with HSCs, contributing to the progression of liver fibrosis.

3.3 Inflammasomes and Pyroptosis
in Cholangiocytes
Cholangiopathies, e.g. , primary sclerosing cholangitis
(PSC) and primary biliary cholangitis (PBC), represent an
autoimmune inflammatory liver disease characterized by
chronic inflammation and subsequent sclerosis and
destruction of intrahepatic small bile ducts (104). Increased
NLRP3 expression in reactive cholangiocytes resulted in pro-
inflammatory IL-18 production and influenced the epithelial
integrity of cholangiocytes in both murine PSC model and
patients with PSC (105). Meanwhile, inflammasome activation
in cholangiocytes interacts with nuclear translocation of
pSer675b-catenin and transcriptional activation, which recruits
M1 macrophages in a CXC-chemokine ligand-1/10/12 (CXCL-1/
10/12) dependent manner and activates HSCs in a transforming
growth factor-b (TGF-b) dependent manner. These liver cell
phenotype changes initiate biliary inflammation and fibrosis
(106, 107). Furthermore, galectin-3, a pleiotropic lectin that
mediates cell-cell adhesion, is secreted by these inflammatory
macrophages and exacerbates cholangiocyte injury. While
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inflammasome activation and PBC-induced fibrosis can be
improved by deleting macrophage-derived galectin-3 expression
in the mouse model (108).

3.4 Inflammasomes and Pyroptosis
in HSCs
In addition to cross-talk through inflammasomes between other
liver cell types and HSCs, HSC-derived inflammasomes can be
remarkably induced in pathological conditions. Inflammasome
activation in HSCs initiates a range of functional changes such as
transdifferentiating into a fibrogenic activated phenotype, as well
as inhibition of chemotaxis (109).

3.4.1 HSC NLRP3 Inflammasome in Liver Fibrosis
Palmitic acid upregulated the NLRP3–IL-1b axis in HSCs via the
TLR4–MyD88–NF-kB signaling pathway (110) and hedgehog
signaling pathway (111). Then the activated NLRP3 facilitates
IL-1 receptor expression on HSCs and the consequent fibrotic
induction with the development of NASH (111). Alternatively,
the HSC-derived NLRP3 inflammasome could also be activated
via the PDGFbR–NLRP3–caspase-1 signaling pathway (112),
and result in increased expression of fibrotic markers alpha-
smooth muscle actin (a-SMA), connective tissue growth factor
(CTGF), and tissue inhibitors of matrix metalloproteinase 1
(TIMP1) in the CCl4 mouse model. Mechanically, many
molecules are involved in the activation of the NLRP3
inflammasome. ROS plays a vital role in activating the
NLRP3–IL-1b signaling pathway in HSCs (113). Angiotensin
II-mediated NLRP3 inflammasome assembly contributed to
cholestatic liver fibrosis (114), whereas Nlrp3 knockout or
inhibition of Ang- (1–7) reduced ECM synthesis and
deposition (115). The vitamin D receptor (VDR) agonist
calcipotriol alleviated cholestatic fibrosis via YAP1 mediated
inactivation of the NLRP3 inflammasome and caspase-1 (116).
The P2X7 receptor, which binds with endogenous danger
extracellular ATP, is involved in the immune response and
inflammation by activating the NLRP3 inflammasome and
increasing IL-1b production and pyroptosis in HSCs during
the development of chronic alcoholic liver fibrosis (117).
Meanwhile, the release of inflammasome components from
pyroptotic HSCs, in turn, activates quiescent HSCs (117).
Cysteine–cysteine chemokine ligand 5 (CCL5) secreted from
macrophages, activated HSC-derived NLRP3, IL-1b, and IL-6
and upregulated liver fibrosis markers a-SMA and TGF-b1
(118). In contrast, blocking antibodies against CCL5 inhibited
HSCs activation and HCV-related liver fibrosis (118).

3.4.2 HSC Inflammasomes in Infection-Related and
Hormone-Related Liver Fibrosis
Brucella abortus infection not only affected macrophages but also
triggered NLRP3 and AIM2 inflammasome assembly in HSCs,
which eventually led to collagens deposition in mouse liver (119).
Schistosoma Japonicum is a parasite that causes granulomatous
inflammation and tissue damage. Infection with Schistosoma
Japonicum stimulated the NLRP3 inflammasome via Dectin-1,
and JNK signaling pathways, contributing to SSLF (120).
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Aldosterone, the main mineralocorticoid steroid hormone
secreted by the adrenal gland, was shown to play a role in
regulating myofibroblast contraction and proliferation by
assembly of NLRP3 inflammasome in HSCs. NLRP3 depletion
in primary mouse HSCs attenuated liver fibrosis in the presence
of aldosterone, indicating the crucial role of NLRP3
inflammasome in aldosterone-mediated liver fibrosis (121).

The above research indicates that the NLRP3 inflammasome
is the most well-studied inflammasome in HSCs. Whether other
inflammasomes in HSCs are also involved in the development of
liver fibrosis remains unclear.

3.5 Inflammasomes and Pyroptosis in
Other Liver Cells
Apart from the abovementioned cells, inflammasome activation
has also existed in other liver cells. DAMPs from fatty hepatocytes
initiate NLRP3 inflammasome complex assembly via the P2X7
receptor on sinusoidal lining cells such as LSECs (122), resulting in
NASH-associated fibrosis (123). Inflammasome activation in
natural killer (NK) cells promotes HSC apoptosis and alleviates
the progression of liver fibrosis in a TRAIL-dependent
degranulation manner (124). In contrast, natural killer T (NKT)
cells had dual roles in regulating liver fibrosis via activating the
NLRP3 inflammasome (125). Besides, the NLRC4 inflammasome
in neutrophils initiated auto-inflammatory disease, and these
effects were attenuated in Asc knockout mice or after IL-1
receptor inhibitor administration (126).

The impact of the different inflammasomes in individual cells
varies in liver diseases and animal models. Research that uses
high-throughput technologies might help us establish the
landscape of inflammasomes in liver cells cross-talk.
Additionally, more attention should be paid to the mechanism
of inflammasome-induced pyroptosis of individual liver cells
during different pathological stimulations.
4 INFLAMMASOME-TARGETING
THERAPIES IN LIVER FIBROSIS

An increasing number of studies have confirmed the
involvement of inflammasomes in the development of chronic
inflammation-induced liver fibrosis, indicating the possibility of
therapies targeting inflammasome complex activation as well as
signaling pathways involved in IL-1b and IL-18. Here, we
summarized the pharmacological therapies targeting
inflammasome- and pyroptosis-related signaling pathways on
chronic liver injury-induced fibrosis from clinical trials and pre-
clinical experimental studies (Table 1).

4.1 IL-1 Inhibitors
Macrophages, hepatocytes, and HSCs are the major cells that
produce inflammasome-driven IL-1b due to ethanol and LPS
stimulation. Recombinant IL-1R antagonist administration in
mice inhibited the IL-1 signaling pathway and reversed alcohol-
induced liver steatosis, inflammation, and fibrosis (91, 129).
Anakinra, a recombinant form of human IL-1R antagonist, is
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FDA approved medicine to treat rheumatoid arthritis and
neonatal-onset multisystem inflammatory disease (135). It was
shown that Anakinra could relieve macrophage infiltration, lipid
accumulation, and liver fibrosis in a mouse model of ALD (129).
Moreover, Anakinra treatment alleviated liver injury and
inflammation without affecting fibrosis in a mouse model of
CCl4-induced liver fibrosis, as shown by a decrease in caspase-1
and IL-1b with unchanged CTGF and TIMP expression (55).
Since good efficiency in treating experimental liver diseases,
Anakinra combined with zinc and pentoxifylline is used to
treat patients with severe alcoholic hepatitis and type 2
diabetes. Unfortunately, Anakinra did not affect 30-day
mortality in research focused on 3-month and 6-month
survival rates (ClinicalTrials.gov, AH/NCT01809132) (127). In
another clinical trial, Anakinra was administered to patients with
type 2 diabetes. They found a decrease in insulin resistance and
systematic inflammation, which also participate in the
progression of NASH (128). Further clinical trials on Anakinra
in patients with NASH are needed. Canakinumab, a monoclonal
antibody against IL-1b, was beneficial in patients with
cardiovascular diseases (122), and a clinical trial about its effect
on patients with severe alcoholic hepatitis is ongoing
(ClinicalTrials.gov, AH/NCT03775109). Although many basic
studies have shown beneficial effects by inhibiting the IL-1
singling pathway, few have been translated into clinical
treatment of chronic liver diseases and liver fibrosis. More
clinical trials are needed to explore the role of IL-1 in
liver fibrosis.

4.2 Caspase-1 Inhibitors
The pan-caspase inhibitors, Vx-166 and Emricasan, showed a
beneficial role in liver inflammation and fibrosis in NASH mice
by decreasing the expression of IL-1b and IL-18 and inactivating
HSCs (131, 132). A caspase-1 specific inhibitor, Ac-YVAD, was
demonstrated to block liver steatosis and fibrosis in mice fed with
HFD (130). In view of the excellent effect on animal models,
clinical trials of caspase-1 inhibitors on chronic liver diseases are
urgently needed in the future.

4.3 Inflammasomes and Their
Upstream Inhibitors
The NLRP3 inflammasome inhibitor MCC950 was reported to
relieve liver inflammation via polarizing macrophages into M2
phenotype in CCl4-induced liver injury (136) and fibrosis via
decreasing plasma and hepatic IL-1b and IL-6 in a mouse model
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of NASH (133), suggesting the pivotal role of MCC950 in
attenuating liver inflammation from various etiologies. As the
upstream molecule of the inflammasome, the P2X7 receptor
induces inflammasome activation (18, 117). P2X7 receptor
pharmacological inhibitor SGM-1019 was shown to block IL-1b
secretion in KCs, HSC activation, and collagen deposition in
human cells from NASH and in the primate model from CCl4-
induced liver fibrosis (134). Although inflammasome inhibitors
showed promising effects in experimental models, whether these
inhibitors could improve liver inflammation and fibrosis in
patients with liver cirrhosis remains obscure.
5 FUTURE PERSPECTIVES

Inflammasome, a double-edged sword in liver injury, could
protect the liver from pathogen infection, metabolism
syndrome, and oxidative stress by eliminating the initial cause
of cell injury and promoting wound healing. However, excessive
and chronic inflammasome activation contributes to the
pathogenesis of various liver diseases, which is the primary
topic of our review. In summary, the pathological role of
inflammasomes in liver fibrosis has gained substantial
recognition from diverse chronic liver injury models.
Exogenous and endogenous danger signals activate
inflammasomes via canonical or non-canonical signaling
pathways, leading to increased IL-1b, IL-18, and pyroptotic cell
death. In vivo and in vitro studies over the recent years have
evidenced central roles of IL-1b, IL-18, and pyroptotic cell death
in NLRP3 inflammasome-induced biological responses, but the
functions of the non-canonical inflammasome activation
signaling pathway and other NLR genes in liver fibrosis
remains poorly understood. Further studies are needed to
explore the cellular source of other inflammasomes and their
roles in liver fibrosis. In addition, the mechanism of GSDMD
assembly leading to cell lysis is largely unknown. Apart from IL-
1, inflammasomes also regulate the release of other immune
factors, such as leukotrienes and prostaglandins (137), which
could regulate liver fibrosis progression (85). Therefore, further
studies are required to explore the potential mechanisms.

Quiescent HSCs change phenotypes and have different cell
fates after stimuli, including activation, senescence, and
inactivation. These phenotypes can be transdifferentiated from
each other (5). Most studies illustrate that HSCs are activated by
paracrine profibrogenic cytokines and danger signals, while
TABLE 1 | Potential Therapeutic Agents for liver fibrosis.

Targeting molecule Therapeutic agent Targeted disease Species Reference

IL-1 receptor
Inhibitor

Anakinra ALD, Diabetes; Toxin-induced liver fibrosis Human; Mouse (55, 91, 127–129)

IL-1 inhibitor Canakinumab ALD, CVD Human (122)
Caspase-1 inhibitor Ac-YVAD NASH associated fibrosis Mouse (130)

Vx-166 (pan-caspases) NASH associated fibrosis Mouse (131)
Emricasan (pan-caspases) NASH associated fibrosis Mouse (132)

NLRP3 inhibitor MCC950 NASH associated fibrosis Mouse (133)
P2X7R Toxin-induced liver fibrosis; NASH associated fibrosis Mouse; Human cell (18, 134)
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other molecules from pyroptotic cells that regulate HSC fate have
scarcely been investigated. Specifically, it remains unclear
whether inhibition of inflammasome-mediated cell interactions
with HSCs could regress liver fibrosis. Although IL-1 from
inflammatory hepatic macrophages could activate HSCs, the
release of matrix metalloproteinases (MMPs) from these
inflammatory macrophages degrades ECM and resolves fibrosis
(138). Inflammasome-activated NK cells and NKT cells secreted
inflammatory cytokine IL-1 to promote liver fibrogenesis,
whereas IFN-g secreted from the two kinds of cells have an
antifibrotic role and trigger HSC apoptosis, promoting the
regression of liver fibrosis (139, 140). Therefore, the cell-
specific mechanisms of intercellular cross-talk in HSC
activation need in-depth investigation.

In recent years, the pharmacological treatment of
inflammasomes in chronic liver injury mainly focuses on IL-1b
and IL-1 receptors. Research on blocking other molecules in the
inflammasome pathway, such as caspase-1 and GSDMD, is
missing. Though a recent study has shown that IL-18 inhibitor
attenuates renal fibrosis in the ischemia-reperfusion murine
model (141), there is no research on IL-18 inhibitors treating
liver fibrosis in either animal models or human. Further studies
are urgent to explore the potential of blocking IL-18, as well as
caspase-1 and GSDMD in treating liver fibrosis. Although
inflammasomes have been confirmed to have critical effects in
many experimental animal models and in vitro cell lines, no
direct evidence demonstrates that inflammasomes mediate liver
fibrosis in humans. Organoids are self-organized 3D tissue
cultures from stem cells that could recapitulate the function of
the represented organ (142). Hence, organoids may be a novel
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research method to explore the mechanism of the inflammasome
in regulating liver fibrosis. It is shown that bone marrow-derived
mesenchymal stem cells (BM-MSCs) injection could decrease
inflammasomes in the ischemic stroke rat model (143).
Therefore, cell therapy by in vivo delivery of BM-MSCs may be
helpful to mitigate inflammasomes during the development of
liver fibrosis. Further studies are needed to target the novel
direction. In summary, targeting inflammasome signaling
pathways to treat liver fibrosis is promising, and more basic
research and clinical trials are demanded in the future.
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