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Nanopore sequencing unveils the complexity
of the cold-activated murine brown
adipose tissue transcriptome

Christoph Andreas Engelhard,1 Sajjad Khani,2,3 Sophia Derdak,4 Martin Bilban,5,6,*

and Jan-Wilhelm Kornfeld1,6,7,*

SUMMARY

Alternative transcription increases transcriptome complexity by expression of
multiple transcripts per gene. Annotation and quantification of transcripts using
short-read sequencing is non-trivial. Long-read sequencing aims at overcoming
these problems by sequencing full-length transcripts. Activation of brown adi-
pose tissue (BAT) thermogenesis involves major transcriptomic remodeling and
positively affects metabolism via increased energy expenditure. We benchmark
Oxford Nanopore Technology (ONT) long-read sequencing protocols to Illumina
short-read sequencing assessing alignment characteristics, gene and transcript
detection and quantification, differential gene and transcript expression, tran-
scriptome reannotation, and differential transcript usage (DTU). We find ONT
sequencing is superior to Illumina for transcriptome reassembly, reducing the
risk of false-positive events by unambiguously mapping reads to transcripts.
We identified novel isoforms of genes undergoing DTU in cold-activated BAT
including Cars2, Adtrp, Acsl5, Scp2, Aldoa, and Pde4d, validated by real-time
PCR. The reannotated murine BAT transcriptome established here provides a
framework for future investigations into the regulation of BAT.

INTRODUCTION

Alternative transcription (AT) is a post-transcriptional process in which multiple transcripts arise from a sin-

gle gene locus by using alternative transcription start sites, altered polyadenylation sites and alternative

splicing, thereby increasing the transcriptomic and translational complexity in a cell.1 Alternative transcrip-

tion is estimated to occur within 92%–94% of human genes, substantially expanding the catalog of co-ex-

pressed mRNAs.2,3 In line, sequencing of ribosome attached translated mRNAs (Ribo-seq) and proteomics

studies confirmed that many RNA species produced by AT are translated and contribute to increased pro-

teome diversity.4–7 Interestingly, AT is tissue specific6,8 or marks specific cellular states,9,10 indicating a

seminal role for AT in regulation of cellular identity and function.

Adipose tissue depots can be broadly classified into brown and white depots: While white adipocytes

mainly function to store energy as triglycerides in large unilocular lipid droplets and coordinate energy

metabolism by secretion of endocrine factors, brown adipocytes are densely packed with mitochondria

and morphologically present multiple small lipid droplets.11 Upon sympathetic nervous system activation

e.g., upon cold stimulus, brown adipocytes upregulate lipolysis, where the ensuring free fatty acids activate

uncoupling protein 1 (UCP1) and generate heat by increasing the uncoupling of oxidative respiration from

ATP generation. Additionally, sympathetic activation of brown adipocytes residing in brown fat and in

inguinal white adipose tissue (so-called brown-in-white or ‘‘brite’’ adipocytes) leads to profound changes

in gene expression.12 Recent evidence suggests that not only differential gene expression, but also the

regulation of differential transcript usage (DTU) by RNA-binding proteins i.e., changes in the relative

abundance of transcripts originating from one gene, is crucial for e.g., the regulation of adipocyte thermo-

genesis.13 Transcriptomic studies have shown that DTU is required for adipogenesis, the process of differ-

entiation of preadipocytes into mature adipocytes.9,14 Moreover, AT events in key brown adipocyte genes

such as the transcription factors Pparg and Prdm16 have been reported to play a role in the control of

brown adipocyte function.15,16
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However, most studies focusing on AT and DTU so far have used Illumina short-read sequencing. Short-

read sequencing inherently underperforms in relation to assembling transcripts, since the single reads

only span a fraction of a transcript, and therefore requires complex computational post processing for tran-

scriptome reassembly. This poses a conceptual problem: If two individual AT events in one gene occur too

far away from each other to be spanned by a single short read, it is challenging to unambiguously decide if

both AT events happen (i) in conjunction, (ii) arise independently from each (iii) or are mutually exclusive.17

Short-read sequencing also suffers in respect to transcript level quantification required for analysis of DTU,

as only reads mapping to parts of a gene unique to a single transcript can be unambiguously assigned to a

transcript, while all others must be assigned based on statistical models.18,19 Long-read sequencing

methods such as those developed by Pacific Biosciences20,21 and Oxford Nanopore Technologies

(ONT)22 generate full-length isoform reads that mitigate these limitations, allowing for simple transcrip-

tome reannotation and unambiguous read assignment.23 Importantly, thousands of novel transcripts

across a large collection of different human tissues have recently been revealed using long-read

sequencing with ONT, enabling an understanding of functionally distinct protein isoforms that different

transcripts can give rise to.24 Reference databases like GENCODE are based on a limited number of tissue

transcriptomes.8,10 Since alternative transcription is tissue and cell state specific, it is of high biological in-

terest to reannotate transcriptomes in cell types such as brown adipocytes, which are not represented in

reference annotations, in order to identify and quantify tissue specific transcript isoforms. Long-read

sequencing methods like ONT sequencing on the other hand, suffer from lower throughput and lower

base calling accuracy, resulting in failure to detect lowly expressed isoforms and fuzzy splice junction anno-

tation.23 Accordingly, algorithms that combine short and long reads for improved transcriptome reassem-

bly, either de novo or using a reference genome, have been developed25–27 and consortia such as

GENCODE have started incorporating long-read sequencing in their reference transcriptome annotation

pipelines.28

Here, we have compared three different library preparation methods using theONT platform and assessed

their ability for transcript detection, quantitation and differential expression calling in addition to perform-

ing transcriptome reassembly and analysis of differential transcript usage. Using RNA isolated frommurine

interscapular brown adipose tissue (iBAT), we identified cold induced isoform switches in genes regulating

thermogenic b3 adrenergic receptor (AR) signaling at multiple levels including regulation of cAMP levels

(Pde4d) and receptor signaling (Adtrp), lipid metabolism/signaling (Scp2, Mlixpl) and protein sorting (Er-

gic1). Finally, using FLAIR/chromatin immunoprecipitation (ChIP)-Seq, we identified a novel alternative

transcription start site in the mitochondrial respiration regulating protein cysteinyl-tRNA synthetase

gene (Cars2) and validated coding potential for an alternative (shorter) transcript (Cars2-AT) using theCod-

ing-Potential Assessment (CPA) Tool and determined functional domain structure using pfam. As an

example which demonstrates the potential of the ONT long read iBAT transcriptome reannotation re-

ported here, we show that sgRNAs targeting the Cars2-AT promoter are efficient in inducing the exp-

ression of Cars2-AT in brown adipocytes in vitro. Thus, we provide a reannotation of the murine iBAT

transcriptome, which can be a valuable resource for researchers interested in iBAT biology by facilitating

them to target the relevant isoforms of a gene in study and detect novel DTU events in cold-activated mu-

rine iBAT, demonstrating the contribution of AT in the regulation of brown adipocyte activity.

RESULTS

Comparison of nanopore-based approaches for transcript resolution of cold-activated BAT

We isolated RNA from iBAT of 20-week old, male C57BL/6N mice cold treated for 24 h at 4�C or housed at

room temperature (n = 3). To evaluate different library preparation methods for the ONT sequencing plat-

form, we prepared libraries using (i) direct cDNA sequencing, which is PCR-free and avoids bias introduced

by the amplification23,29 and (ii) TeloPrime sequencing, which uses a 50 cap specific template switching

oligo to enrich for full-length RNA but requires PCR amplification. All samples weremultiplexed, and library

pools sequenced on two separate flow cells per library preparation method on an ONT GridION to assess

the variability in performance of the flow cells. Additionally, the samples were pooled within the respective

treatment group and (iii) sequenced following ONT’s direct RNA protocol on one flow cell each. Finally, (iv)

we performed strand specific, paired-end short-read sequencing following Illumina’s TruSeq protocol as

reference (Figure 1A). To the best of our knowledge, this analysis represents the most comprehensive char-

acterization of full-length transcripts and transcript diversity to date in the murine BAT depot, both at basal

levels and upon cold activation. Low quality ONT reads with a minimum average Phred quality score below

7 (20% base call accuracy) were removed, leaving 13.53106 reads from TeloPrime sequencing, 12,73106
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reads from direct cDNA sequencing, and 3,03106 from the direct RNA sequencinq (Table 1). Interestingly,

we observed a high variability in the number of high-quality reads produced per flow cell, varying by 41%

for direct cDNA-Seq and 16% for TeloPrime-Seq, even though the same libraries were used, and flow cells

run in parallel (Figure 1B). Similar variability in MinION flow cell performance has been noticed in other

studies.30–32 Noteworthy, a striking difference in high quality read numbers was seen between the samples

harvested from mice housed at room temperature compared to those from cold treated animals in

TeloPrime-Seq. Read length distributions were similar between samples and flow cells within one library

preparation method (Figure 1C). In good agreement with other reports,33 average read lengths were

similar for direct RNA-Seq (1,033 nt) and direct cDNA-Seq (1,141 nt) but longer for TeloPrime (1,326 nt).

The read length distribution of the TeloPrime method, however, was multimodal, while the other distribu-

tions were unimodal. Average read quality was similar between samples, but interestingly depended on

the flow cell used (Figure 1D), in agreement with the number of high-quality reads received. Thus, our com-

parisons show that the TeloPrime protocol enriches for longer RNA molecules compared to other long-

read protocols, but also reveal substantial technical variation between flow cells.

ONT teloprime improves coverage of full-length transcripts

We next aligned the quality filtered long reads to the murine genome and transcriptome using minimap2.

Overall, alignment rates were high and independent of whether the alignment was performed using the tran-

scriptome or genome as reference, ranging from 93% for the direct cDNA-Seqmethod to >99% for TeloPrime

(Table 1), emphasizing one of themain advantages for long-read RNA-seq. In line with other reports, we noted

accompanying supplementary alignments i.e., reads notmapping linearly to the reference (Table 1; Figures 2A

and S1A–S1C). Reads with supplementary alignments weremost common in direct cDNA-Seq and these were

longer (Figures 2C and S1E) and showed larger unaligned parts (Figures 2D and S1F) then reads from the other

methods. Supplementary alignments can arise from reads mapping to different chromosomes, indicative for

chromosomal rearrangements.34,35 However, in direct cDNA-Seq, supplementary alignments mostly mapped

A B

C D

Figure 1. Characterization of ONT reads

(A) Experimental design. RNA was either sequenced by the Illumina short-read platform or by three different ONT long-

read library preparation protocols: TeloPrime, direct cDNA sequencing (cdna) or direct RNA sequencing (rna). See results

and STAR Methods for details.

(B–D) Total number of reads (B), read length distribution (C), and read quality distribution (D) by ONT sequencing

method, flow cell and housing temperature. Data are represented as mean G SEM.
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anti-sense to the same transcript as the primary alignment (Figures 2B and S1D), indicating that the second

strand of the cDNA was sequenced subsequently to the first strand. Next, we compared the ability of the

different long-read sequencing methods to cover full transcripts. Comparison of the read length distribution

of the different methods to the hypothetical distribution of transcript lengths as inferred from Illumina-Seq

transcript abundances revealed that the direct cDNA-Seq method generated a read length distribution

shifted toward shorter reads (Figure S1G). This was less prominent for the TeloPrime and directs RNA-Seq

methods. Investigation of gene body coverages revealed that Illumina short-read sequencing mostly covers

the middle part of transcripts, with reduced coverage at the 30 and 50 of the gene body in comparison to

ONT sequencing, as demonstrated previously36–38 (Figure 2E). All long-read libraries showed decreasing

coverage from the 30 end of transcripts toward the 50 end. Of note, this decrease was markedly reduced in

TeloPrime-Seq, which is meant to enrich for full length transcripts. To assess the fraction of transcripts covered

by reads and the proportion that represent full-length transcripts, a coverage fraction was calculated. We

defined coverage fraction as the observed transcript length (alignment length) divided by the original known

transcript length.We observed that both the coverage fraction as well as the fraction of full length reads mark-

edly decreased with transcript length, in line with previous reports37 (Figures 2F and S1H). This could have

been caused by RNA degradation during library preparation protocols or software artifacts during the

base-calling process.26,32 Overall, coverage was higher in TeloPrime-Seq as reported.32 Direct cDNA-Seq

showed both the lowest coverage and the smallest fraction of full length reads. As expected, the coverage

of supplementary mappings was lower compared to primary alignments, although full-length supplementary

alignments were present in all three ONT methods. Thus, we demonstrate that the TeloPrime protocol en-

riches for longer, potentially full length, transcripts compared to other two full-length sequencing protocols

due to its dedicated library preparation method.

ONT direct RNA and cDNA protocols show less bias for gene/transcript detection compared

with TeloPrime

We next compared the ability of the different sequencing methods to detect expressed genes and

transcripts based on the reference annotation. In agreement with previous reports,32 direct cDNA and

RNA-Seq detected a similar number of features as short-read sequencing at any given sequencing depth

far outperforming TeloPrime-Seq (Figures 3A and 3B). While differences in sequencing depth explain the

large sets of genes detected by Illumina-Seq or by direct cDNA-Seq and Illumina-Seq alone, we also

observed 1447 genes only in direct RNA-Seq, indicating technical biases of the differentmethods. Similarly,

most transcripts were observed in direct cDNA and Illumina-Seq. However, the share of transcripts only de-

tected using one but not the other protocol was even more pronounced then on gene level, indicating dif-

ferences in the transcript identification potential of the different technologies (Figure 3C). To detect the

cause of these differences, we stratified the transcript detection rates by transcript length and transcript

biotype (Figure 3D). As reported, detection rates for Illumina, direct cDNA-Seq and direct RNA-Seq

increased with transcript size.37 TeloPrime-Seq detection rates on the other hand were highest for tran-

scripts ranging from 1000 nt to 3000 nt. Detection rates of the direct cDNA-Seqmethod reached the detec-

tion rates of short-read sequencing for coding genes longer than 5000 nt but not for long noncoding RNAs

(lncRNAs). Genes and transcripts detected by either long- or short-read sequencing alonewere enriched for

noncoding RNA as compared to those detected by both sequencing types (Figures S2A and S2B). Since

coding genes are generally higher expressed than other classes of RNA,39 we assessed a potential effect

of expression level on the gene and transcript detection rates by the ONT methods (Figures 3E and S2C).

Table 1. Alignment characteristics

Method Total reads Reference Alignm. rate Prim w/sup Sup alignm.

teloprime 13495575 M22 99.6% 7.3% 1109736

GRCm38.p6 99.7% 8.9% 1386229

cdna 12700471 M22 93.5% 15.0% 2031468

GRCm38.p6 92.8% 22.5% 3247267

rna 3026502 M22 97.0% 0.4% 13385

GRCm38.p6 96.2% 9.2% 311873

Number of total reads (Q > 7), alignment rates, rate of reads with supplementary alignments and number of supplementary

alignments for the three long-read sequencing methods, stratified by mapping to the genome (GRCm38.p6) or transcrip-

tome (GENCODE M22)
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Both genes and transcripts detected by short-read sequencing and long-read sequencing showed on

average a higher expression measured by Illumina-Seq compared to features detected by short-read

sequencing only. However, there were also highly expressed genes and transcripts that were not detected

by the ONT sequencing protocols (Figures S2D and S2E). Interestingly, there were also features with high

expression in the ONT datasets that were not detected by short-read sequencing, more prominently for

transcripts compared to genes. Thus, direct cDNA-Seq anddirect RNA-Seq had comparable gene and tran-

script detection rates, whichwere proportional to gene and transcript length, while TeloPrime yielded lower

detection rates with a non-linear relationship to transcript length.

A B

C D

E F

Figure 2. Characterization of read alignments

(A) Fraction of reads classified by whether the primary alignment against the genome has at least one supplementary

alignment attached to it.

(B) Fraction of supplementary alignments against the genome stratified by their relation to the corresponding primary

alignment.

(C) Read length distribution for reads aligned to the genome.

(D) Aligned length vs. read length for primary alignments to the genome.

(E) Percentile wise coverage of the gene body based on primary genome alignments.

(F) Smoothed average transcript coverage of alignments mapped to the transcriptome for transcripts > 350 nt. See also

Figure S1.
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Direct RNA- and cDNA-Seq is superior to TeloPrime for gene/transcript quantification

RNA-Seq and cDNA-Seq correlated very well on gene (R2 = 0.92; Figure 4) and transcript level (R2 = 0.92;

Figure S4A). However, the situation was different when comparing the long- with short-read sequencing:

While direct cDNA and RNA-Seq results correlated well with the abundance measured by Illumina

sequencing on gene level (R2 = 0.85 and 0.87), larger differences occurred on transcript level (R2 = 0.54,

both). The estimation of transcript abundance is challenging as transcripts from one gene share large parts

of their sequence, causing ambiguity in read assignments when using short-reads.40 TeloPrime-Seq quan-

tification correlated less with the other methods. Noteworthy, the slope of the ratio of TeloPrime counts to

those of other methods was larger than 1, indicating that the TeloPrime method overestimates the expres-

sion of highly abundant features and underestimates lowly expressed features, an observation also made in

ONT RNA-Seq using PCR amplification.29 As we sequenced all TeloPrime and direct cDNA samples on two

A B

C D

E

Figure 3. Feature detection

(A) Feature detection rate by library size. A feature is counted as detected if there is at least one primary alignment to it.

(B and C) Overlap of detected genes (B) and transcripts (C) between the different sequencing methods.

(D) Transcript detection rate by transcript length and biotype. 100% is any transcript detected in any of the sequencing

datasets.

(E) Abundance in the Illumina dataset of genes either detected or not by the different ONT library preparation methods.

See also Figure S2.
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different flow cells, we could make use of technical replicates to assess the variability in sequencing perfor-

mance between different flow cells. While sequencing counts for TeloPrime sequencing correlated very

well among the two flow cells (R2 = 0.86 to 0.90; Figure S3B), the direct cDNA-Seq method showed a higher

variation (R2 = 0.75 to 0.77; Figure S3C) reflecting the variability in read quality and length distributions

(Figures 1B–1D). Thus, we find that direct RNA and direct cDNA protocols are most similar, reflecting a

more unbiased representation of the transcriptome in comparison to TeloPrime.

Differential gene and transcript expression analysis in cold-activated BAT

The main goal of feature quantification is to detect differentially expressed genes and transcripts across

biological samples. We compared the performance of the different ONT library preparation methods

and Illumina sequencing to detect such features between iBAT of mice housed for 24 h either at room tem-

perature or 4�C. Overall, the largest number of differentially expressed genes and transcripts (989 and

1195, respectively) was detected by Illumina sequencing followed by TeloPrime- (568 genes and 552 tran-

scripts) and cDNA-Seq (489 genes and 476 transcripts) (Figure 5A). Each sequencing method detected a

unique set of features not seen by the other methods (312, 247, and 47 for Illimuna, TeloPrime, and direct

cDNA, respectively). Of note, irrespective of the method, most features identified as differentially ex-

pressed were protein coding genes. Interestingly, Illumina and direct cDNA performed better in detecting

differentially regulated lncRNA genes compared with the TeloPrime protocol (Figure 5B). Next, we

compared the expression levels and fold changes between genes called to show differential gene or tran-

script expression by one of theONTmethods alone, Illumina sequencing alone or bothmethods.We found

that genes differentially regulated according to Illumina but not the ONT methods showed low expression

in both types of analysis, but more evident in the long-read method (Figure 5C). On the other hand, genes

detected to be differentially regulated by theONTmethods showed similar expression levels in both short-

and long-read sequencing, independent of their status according to Illumina-Seq, but those features called

by both methods showed higher fold changes in Illumina-Seq upon cold treatment. Thus, we observed that

TeloPrime-Seq showed higher fold changes compared to Illumina-Seq, confirming that this method over-

estimates highly expressed and underestimates lowly expressed features, and that transcripts (but not

genes) called by either of the long but not short-read sequencing methods showed lower expression on

average in Illumina-Seq (Figure S4).

Figure 4. Gene quantification

Scatterplots showing the correlation in gene quantification between the different sequencing methods. See also

Figure S3.
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ONT long read reannotation reveals novel features of the murine BAT transcriptome

The ability of long reads to unambiguously identify expressed isoforms facilitates the analysis of complex

splicing events involving multiple exons. To reveal the nature andmagnitude of newly identified transcripts

in murine BAT, we applied two transcriptome reassembly algorithms. FLAIR27 corrects splice-sites of long-

reads based on known, user-provided annotation e.g., from short reads, filters for those long-reads starting

at given transcription start sites (TSS) and then collapses the long-reads to transcripts, keeping those with a

minimum coverage of ONT reads. StringTie41,42 creates a splice graph based on long-reads, moves the

splice junctions in this graph to the nearest junctions supported by short-read sequencing, removing

them if not supported, and uses both short and long reads to filter for a minimum coverage. Each identified

transcript was assigned to a structural category describing the type of relationship to the reference tran-

script (Figure 6A). Generally, StringTie reannotated more transcripts compared to FLAIR (Figure 6A), as

shown previously.26 Irrespective of the reannotation algorithm, direct cDNA sequencing yielded the high-

est, while direct RNA sequencing gave the lowest number of reannotated transcripts, resembling the

A B

C

Figure 5. Differential gene expression analysis

(A) Overlap between genes showing differential gene expression or genes with at least one transcript showing differential

transcript expression over the two ONT methods and Illumina sequencing.

(B) Biotypes of genes and transcripts showing differential gene and transcript expression, respectively, compared

between the different sequencing methods.

(C) Comparison of expression levels and fold changes of genes showing significant differential expression between direct

cDNA/TeloPrime and Illumina sequencing. See also Figure S4.
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number of mapped reads (Figures 3B–3D), suggesting that transcript identification is affected by the ONT

sequencing protocol. In all StringTie and the direct RNA-Seq FLAIR reannotation, most reannotated tran-

scripts fully matched reference annotations (‘‘full splice match’’; Figure 6A). Novel transcripts not present in

the reference annotation (‘‘novel in catalog’’) made up for the second largest set and were relatively more

prominent in FLAIR reannotations compared to StringTie reannotations, especially in the FLAIR-TeloPrime

reannotation. Transcripts missing exons from either the 30 or 50 end (i.e. ‘‘incomplete splice match’’; ISM)

comprised the third largest class. Of note, the TeloPrime-(FLAIR) dataset was almost devoid of ISM tran-

scripts, most likely because of its selective enrichment for full-length RNA molecules. Combinations of

known splice junctions or splice sites were the prevailingmechanisms underlying transcript diversity among

‘‘novel transcripts’’ (Figure 6B). Among the ISM, class 50 fragments as well as ‘‘mono-exonsmatches,’’ were

most often found (Figure 6C). Interestingly, ISMs weremore prominent when the TeloPrime data were used

for reannotation by StringTie, suggesting that the hybrid approach might reintroduce truncated isoform

annotations potentially based on degraded RNA molecules. Noteworthy, even though only primary reads

A B

C D

E F

Figure 6. Reannotation analysis of short- and long-read sequencing protocols stratified by transcript assembler

(A) Overview of different structural categories.

(B and C) Sub-classification within the novel transcript and incomplete splice match categories.

(D) Overlap between transcripts in the reference annotation (gffcompare =, c and m) annotated by the different

transcriptome assemblers and sequencing methods.

(E) Same as D but for novel transcripts not in the reference.

(F) Splice type compared to the hypothetical longest pre-mRNA for known and novel transcripts. See also Figure S5.
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were used for the reannotation, the direct cDNA and the StringTie reannotation of the TeloPrime data,

featured a substantial amount of antisense transcript annotations (Figure 6A). These were on average

shorter (Figure S5A) and consisted of less exons compared to the full splice matching transcripts (Fig-

ure S5B), indicating they might be artifacts. These annotations might interfere with transcript mapping,

especially for non-directional sequencing methods. Comparison of the overlap of reannotated reference

transcripts between the different datasets showed that large sets of transcripts were either detected by

all combinations of reannotation algorithm and sequencing method, or only in all the StringTie datasets,

highlighting the strong impact of the transcriptome reassembly method (Figure 6D). Intriguingly, large

sets of annotated transcripts were only detected in the TeloPrime/StringTie, cDNA/FLAIR or in the Illumina

dataset Curiously, while the TeloPrime/FLAIR dataset included the smallest amount of reference tran-

scripts, the combination of TeloPrime and StringTie reannotated the highest number of reference tran-

scripts apart from the Illumina sequencing-based reannotation. Only a minority of novel transcript were

identified in more than one dataset and interestingly only within the same algorithm (Figure 6E). In both

known and novel transcripts, alternative splicing was more common than alternative transcription start

and termination sites (Figure 6F). Thus, the ONT sequencing method and the algorithm used for reanno-

tation had a significant impact not only on the number but also on the nature of the structural category of

novel transcripts identified.

Differential transcript usage analysis unravels gene expression alterations upon cold

exposure in iBAT

Differential gene expression analysis lacks the sensitivity to detect changes at the transcript level caused by

e.g, alternative TSS or alternative splicing.43 To overcome this limitation, we applied DTU analysis to iden-

tify genes using different transcripts in cold-activated compared to inactive iBAT. Reliable identification of

DTU depends critically on both the accuracy of the transcript expression quantifications as well as the tran-

scriptome annotation. Therefore, we investigated combinations of transcript quantitation (Illumina or

direct cDNA counts) and reannotation algorithms (Figure 7A). As observed for the differential gene expres-

sion analysis (Figure 5A), a higher number of DTUs were identified when Illumina counts were used to assess

transcript quantification (Figure 7A) and alternative splicing was the most common mechanism driving

DTU, before alternative transcription start and termination sites (Figure S6B). We found little overlap be-

tween StringTie and FLAIR reannotations in line with other reports.44 Among the genes with significant iso-

form switches between cold-activated BAT compared to the controls, we observed phosphodiesterase 4D

(Pde4d), regulating levels of the signaling intermediate cAMP, which activates lipolysis, glucose uptake,

and thermogenesis in brown adipocytes;45 the thermogenesis regulating hydrolase androgen dependent

TFPI regulating protein (Adtrp)46 and regulators of fatty acid metabolism (acyl-CoA synthetase long-chain

family member 5, Acsl5; Perilipin 5, Plin5), glycolysis (Aldolase A; Aldoa), protein sorting (endoplasmic re-

ticulum-golgi intermediate compartment 1; Ergic1; Myosin light polypeptide 6;Myl6), lipid synthesis (MLX

interacting protein-like, Mlxipl; choline phospotransferase 1, Chpt1), beta-oxidation (sterol carrier protein

2, liver, Scp2; Enoyl-CoA Delta Isomerase 2, Eci2) and protein cysteinylation (cysteinyl-tRNA synthetase 2;

Cars247; Figures 7C–7E, S7, and S9). qPCR analysis on iBAT from control and cold-treated mice using

primer sets specific for the individual transcripts corroborated our DTU analysis, thus validating the isoform

regulation (Figure 7B). Incorporation of previously published histone modification chromatin immunopre-

cipitation (ChIP)-Seq peaks46 into the FLAIR algorithm revealed that Cars2 is transcribed from two different

TSS, i.e. the ‘‘canonical’’ TSS and an alternative gene-internal TSS, giving rise to either the full-length tran-

script (Cars2-FL) or a 50 truncated transcript (Cars2-AT; Figure S6A). Visual inspection of ONT direct cDNA

sequencing coverage data indicated that the canonical TSS is dominant at room temperature, while the

alternative TSS is predominantly used in iBAT of cold treated animals (Figure S6A). Cars2 is the mitochon-

drial cysteinyl-tRNA synthetase, which is important for the translation of mitochondrially encoded genes,47

but additionally executes a ‘‘non-canonical’’ function in post-translational cysteine and protein persulfida-

tion ultimately affecting mitochondrial respiration.48 Therefore, we analyzed the sequences of Cars2-FL

and Cars2-AT to identify whether these alternative transcripts have coding potential using the Coding-Po-

tential Assessment Tool (CPAT). CPAT predicted both isoforms to be coding (coding potential > 0.99),

annotating the open reading frame correlating with the UniProt reference amino acid sequence to

Cars2-FL and predicting an N terminally truncated protein isoform for Cars2-AT using the same open

reading frame but missing the first 244 aa (Figure 7F). As expected for a mitochondrial protein, targetP pre-

dicted a mitochondrial localization signal at the N terminus of the full length Cars2 protein, which was

missing in the truncated protein isoform (Figure 7F). The truncated Cars2 protein isoform was further pre-

dicted to lack parts of the conserved binding sites for both Zn2+ and pyridoxal phosphate (PLP), indicating a
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potential lack of catalytic function (Figure 7F). Using single guide RNAs (sgRNA) targeting either the canon-

ical or the alternative promoter we aimed to specifically overexpress Cars2-FL and Cars2-AT in wt1-SAM

immortalized brown adipocytes (Figure 7G). Using a sgRNA targeting the alternative promoter, it was

possible to induce the expression of Cars2-AT 10 to 30 times, both with and without b-adrenergic stimu-

lation (p = 0.005 and 0.003) without confounding effects on Cars2-FL expression (Figure 7G). Thus, these

results demonstrate that long-read DTU can identify and quantify biologically relevant changes in isoform

usage.

A B

C D E

F G

Figure 7. Differential transcript usage in cold-activated murine iBAT

(A) Overlap DTU events detected by different combinations of datasets used for transcript annotation and sequencing.

(B) qPCR validation of selected DTU events in murine iBAT from control (22�C) or cold (4�C) treated mice.

(C) Structure of expressed Cars2 isoforms. Arrows show direction of transcription. Narrow lines show intronic regions (not

to scale). Exons displayed as boxes. Taller exonic boxes are coding regions, shorter boxes are 50 and 30 UTR regions.

Colors represent identified protein domains.

(D and E) Abundance (normalized counts) and isoform usage of expressed Cars2 isoforms.

(F) Schematic representation of the general structure of CARS2 showing domains and residues important for catalytic

activity (modified from Akaike et al.,48 and prediction of secondary and tertiary structures of the full length CARS2 and

the predicted truncated protein isoform by LocalColabFold. The color code depicts model confidence; green is low,

red is high.

(G) Expression of Cars2 isoforms in wt1-SAM brown adipocytes after targeting transcript specifics promoters using

sgRNAs. Data are represented as mean G SEM. See also Figures S6–S9.
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DISCUSSION

In this study, we assessed three different ONT long-read sequencing protocols as well as Illumina short-

read sequencing for differential gene expression, transcriptome reannotation and differential transcript us-

age analysis giving us unprecedented views on transcript diversity in murine brown adipose tissue. While

studies of differentially expressed genes have provided much of our current understanding of molecular

mechanisms controlling BAT function,49–51 determining genes where functionally distinct alternative tran-

scripts change between BAT activity states is an interesting gene-regulatory mechanism to uncover.

Feature quantification using direct RNA and direct cDNA protocols correlated well with Illumina on

gene level, and to a lesser extent on transcript level, as described.32 Direct RNA and direct cDNA

sequencing showed an even higher correlation on gene level which was only slightly reduced when

quantifying transcripts, suggesting that (i) reverse transcription to cDNA has a limited impact on transcript

quantification and (ii) long reads give better estimates of transcript abundances, as they more often unam-

biguously map to a single transcript. In fact, direct RNA as well as direct cDNA even outperforms Illumina in

terms of accuracy of transcript quantification and differential expression, which has been attributed at least

in part to the lack of GC content bias.29,31,32 The key challenges with direct RNA sequencing are the large

amount of input RNA required, higher error rate as compared with cDNA sequencing and the lack of multi-

plexing options.29,37 PCR amplification protocols such as TeloPrime typically produce higher sequencing

depth than PCR-free methods, increasing coverage which is required for accurate identification of alterna-

tive transcripts.24,29 However, the TeloPrime method overestimated the abundance of highly expressed

and underestimated the abundance of lowly expressed features, caused in part by the inherent PCR ampli-

fication step compromising transcript diversity.29,32

Comparison of the transcriptome reannotation methods showed that when using the same input data,

StringTie surpasses FLAIR in terms of the number of correctly reassambled transcripts from the reference

annotation (full and incomplete splice matches; Figure 6A), in line with previous reports.26 In contrast to

StringTie, FLAIR incorporates ChIP/CAGE-Seq data which can be high value because it discriminates be-

tween true internal TSS and artifacts from 50 degraded RNA, which importantly allowed us to identify a

novel 50 truncatedCars2 transcript isoform (Cars2-AT) highly induced in iBAT of cold-treated mice and pre-

dicted to encode an N-terminally truncated protein (Figure S6). Cars2 has recently been reported to be

involved in sulfur metabolism, which is of importance for mitochondrial morphology and BAT function.48,52

The functional significance of the novel Cars2-AT reported here, the predicted changes in localization, and

its role in thermogenesis remain to be experimentally defined. Our brown adipocyte cell model overex-

pressing Cars2-AT and Cars2-FL by CRISPR/Cas9 mediated activation of the respective endogenous pro-

moter (Figure 7G) will be a valuable tool to answer these questions; and will also allow us to test whether

Cars2-AT may have a dominant negative regulatory role in Cars2 expression, as observed for other trun-

cated protein isoforms.53,54 TeloPrime’s strategy for enrichment of full-length transcripts allowed us to

identify several novel alternative transcripts produced from the same gene with presumably important

functional consequences on protein structure, culminating on thermogenic b3-adrenergic receptor (AR)

mediated cAMP signaling (Figures 7B and 7C): Cellular cAMP levels are also regulated cAMP-specific phos-

phodiesterases (PDEs) and Pde4d regulates lipolysis and thermogenic gene expression.55 Cold-activated

induction of Pde4d-long might lead to reduced thermogenic cAMP signaling since Pde4d-long controls

cAMP levels negatively in a spatial manner due to UCRmotifs present in the long Pde4d isoform.56 Another

factor regulating the thermogenic b3-AR signaling cascade is Adtrp; Adtrp-deficient mice are cold-intol-

erant and have defective thermogenesis.57 Thus, cold-activated induction specifically of the longer (enzy-

matically active) Adtrp isoform shown here might enhance BAT function. Peroxisome derived lipids are

required for brown fat-mediated thermogenesis through regulation of cold-induced mitochondrial

fission.58 The cold-induced switch in the peroxisome lipid transfer protein Scp2 in favor of the longer

(and enzymatically active) isoform (Figure 7B) may thus support a peroxisome-to-mitochondria lipid

signaling hub, supporting mitochondrial uncoupling and thermogenesis.59 Proper BAT thermogenic func-

tion requires cellular protein quality control and removal of misfolded proteins.60 We here identified DTU in

the protein sorting gene Ergic161 with the shorter isoform being specifically increased upon cold activation

(Figures 7B and 7C), which may thus participate in the homeostatic adaptation of BAT to cold stress

involving the ER stress response.

The key transcription factor regulating de novo lipogenesisMlxipl (a.k.a. ChREBP) inhibits BAT thermogen-

esis and downregulates expression of genes involved in mitochondrial biogenesis and respiration.62 Based

on our DTU analysis of Mlixpl, we speculate that the observed downregulation of the long, intact Mlixpl
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isoform specifically in cold-activated iBAT alleviates Mlixpl inhibitory effects of on BAT thermogenesis.

Fatty acid oxidatiocyl-CoA synthetases such as Acsl5 regulate fatty acid trafficking and metabolism.63

Acsl5 activity increases adiposity, decreases Ucp1 expression and energy expenditure in mice.63 Here,

we show DTU in Acsl5 giving rise to two transcripts differing in their 50UTR but otherwise identical protein

domain structure (Figures 7B and 7C) with the longer isoform being the almost exclusively expressed

variant in cold, suggesting differential control of translation efficiency of this fatty acid channeling enzyme

in response to cold challenge in BAT. A similar scenario may be true for the glyceroneogenic enzyme Al-

doa, which controls the cellular levels of glycerol-3-phosphate (G3P) shown to be increased upon cold

exposure in BAT of mice.64 Thus, a systematic characterization of isoform-level variation and complexity

in activated BAT as described here will help understand how isoforms might contribute to the regulation

of BAT function.

Limitations of the study

There are limitations to this work that should be noted. While our study demonstrates several new isoforms

of genes undergoing DTU between control and cold-activatedmurine BAT, our data are limited to the level

of RNA expression. Further studies are needed to investigate whether the newly discovered transcript iso-

forms presented here affect cold-induced thermogenesis in BAT using gain/loss of function models.

Although this study showed an extensive and complex analysis of alternative transcription in cold-activated

BAT, other RNA processing events such as alternative 50capping, or variations in poly-A tail length may also

contribute to BAT transcript complexity.
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treated for 24 h or control
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Direct cDNA Sequencing Kit Oxford Nanopore Technologies Cat #: SQK-DCS109

Barcoding kit Oxford Nanopore Technologies Cat #: EXP-NBD104

TeloPrime Full-Length cDNA Amplification Kit Lexogen Cat #: 0.13.08

The NEBNext Ultra II Directional RNA Library Prep Kit New England Biolabs Cat #: E7760S

NovaSeq 6000 S1 Reagent Kit v1.5 (100 cycles) Illumina Cat #: 20028319

GenElute mRNA Miniprep Kit Sigma Cat #: MRN 10

Deposited data

Direct cDNA sequencing data This paper GEO: GSE212572

TeloPrime cDNA sequencing data This paper GEO: GSE212571

Direct RNA sequencing data This paper GEO: GSE212570

Raw Illumina sequencing data This paper GEO: GSE212569

murine iBAT H3K4me3 ChIP-Seq data Engelhard et al.46 GEO: GSE200651

FANTOM5 CAGE peaks Abugessaisa et al.66 mm10.cage_peak_phase1and2combined_

coord.bed

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Mouse reference transcript sequences Gencode ftp://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_mouse/release_M22/gencode.

vM22.transcripts.fa.gz

Mouse reference annotation Gencode ftp://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_mouse/release_M22/gencode.

vM22.primary_assembly.annotation.gtf.gz

Mouse reference genome (GRCm38.p6) Gencode ftp://ftp.ebi.ac.uk/pub/databases/gencode/

Gencode_mouse/release_M22/GRCm38.

primary_assembly.genome.fa.gz

Code to reproduce analysis and figures This paper Zenodo: https://doi.org/10.5281/zenodo.7990800

Experimental models: Cell lines

wt1-SAM brown preadipocytes Prof. Brice Emanuelli

Experimental models: Organisms/strains

Mouse: C57BL/6N, Wild Type Charles River

Recombinant DNA

sgRNA(MS2) cloning backbone Addgene Cat #: 61424

Software and algorithms

fastqc v0.11.9 Andrews, 2010 https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/

Snakemake Köster and Rahmann,67 https://snakemake.readthedocs.io/en/stable/

cutadapt v3.7 Martin68 https://cutadapt.readthedocs.io/

en/stable/index.html

multiqc v1.12 Ewels et al.69 https://multiqc.info/

samtools v1.12 Li et al.70 https://www.htslib.org/

bedtools v2.30 Quinlan and Hall,71 https://bedtools.readthedocs.io/

en/latest/index.html

nanofilt v2.3.0 De Coster et al.72 https://github.com/wdecoster/nanofilt

minimap2 v2.24 Li et al.73 https://github.com/lh3/minimap2#cs

salmon v1.8.0 Patro et al.19 https://combine-lab.github.io/salmon/

pfam_scan v1.6 Aziele http://xfam.org/

hmmer v3.3.2 Eddy et al.74 http://hmmer.org/

STAR v2.7.8a Dobin et al.75 https://github.com/alexdobin/STAR

FLAIR v1.5 Tang et al.27 https://flair.readthedocs.io/en/latest/

stringtie v2.2.0 Shumate et al.42 https://ccb.jhu.edu/software/stringtie/

gffcompare v0.12.6 Pertea and Pertea,76 https://ccb.jhu.edu/software/

stringtie/gffcompare.shtml

gffread v0.12.7 Pertea and Pertea,76 http://ccb.jhu.edu/software/stringtie/gff.shtml

sqanti2 v7.4.0 Tardaguila et al.77 https://github.com/Magdoll/SQANTI2

mashmap v2.0 Jain et al.78 https://github.com/marbl/MashMap

R v4.1.2 R Core Team, 2021 https://cran.r-project.org/

tximport v 1.22.0 Soneson et al.40 https://bioconductor.org/packages/

release/bioc/html/tximport.html

GenomicAlignments v1.30.0 Lawrence et al.79 https://bioconductor.org/packages/release/

bioc/html/GenomicAlignments.html

DESeq2 v1.34.0 Love et al.80 https://bioconductor.org/packages/release/

bioc/html/DESeq2.html

(Continued on next page)
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Prof. Dr. Jan-Wilhelm Kornfeld (janwilhelmkornfeld@bmb.sdu.dk).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d RNA-seq data have been deposited at GEO and are publicly available as of the date of publication.

Accession numbers are listed in the key resources table. Any other type of data reported in this paper

will be shared by the lead contact upon request.

d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyse the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Study animals and housing

For maintenance, mice were kept at 22�C to 24�C on a regular 12 h light cycle with ad libitum access to food

(Altromin 1324, Altromin Spezialfutter GmbH & Co. KG, Lage, Germany) and water. For the experiment,

20 weeks old male wild type C57BL/6N mice were singly housed at 4�C (cold treatment) or at 22�C to

24�C (control group) for a period of 24 h prior to harvesting adipose tissues.

All animal experiments were approved by the Danish Miljø- og Fødevarestyrelsen (license 2018-15-201-

01548) and conformed to the relevant regulatory standards.

Brown adipocyte cell culture

wt1-SAM brown preadipocytes were grown in high glucose DMEM supplemented with 10 % fetal bovin

serum (FBS) and 1 % penicillin-streptomycin. After reaching confluence, differentiation was induced by

0.5 mM rosiglitazone, 1 nM T3, 1 mM Dexamethasone, 850 nM insulin, 125 mM indomethacine and

500 mM IBMX. Two days later, mediumwas exchanged for medium supplemented with 0.5 mM rosiglitazone

and 850 nM insulin. Afterwards, medium was changed for medium containing 0.5 mM rosiglitazone every

second day until reaching full differentiation 7 days after induction.

METHOD DETAILS

RNA isolation

Whole frozen iBAT samples were homogenised in 1 ml TRIsure (Bioline, Memphis, Tennessee, USA) per an-

imal using a tabletop homogeniser (FastPrep-24 5G, MP Biomedicals, Irvine, California, USA). RNA was iso-

lated by phenol chloroform extraction and alcohol precipitation as described by.85

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DRIMSeq v1.22.0 Nowicka and Robinson,81 https://bioconductor.org/packages/release/

bioc/html/DRIMSeq.html

IsoformSwitchAnalyzeR v1.16.0 Vitting-Seerup and Sandelin,82 https://bioconductor.org/packages/release/

bioc/html/IsoformSwitchAnalyzeR.html

CRISPick Doench et al.83 https://portals.broadinstitute.

org/gppx/crispick/public

LocalColabFold Mirdita et al.84 https://colabfold.mmseqs.com/
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Illumina RNA sequencing

TheNEBNext Ultra II Directional RNA Library Prep Kit (New England BioLabs, Ipswich, Massachusetts, USA)

was used to prepare 50 nt paired-end, strand specific libraries following the manufacturer’s protocol and

sequenced on aNovaSeq 6000 (Illumina Inc., San Diego, California, USA) for approximately 25million reads

per library.

ONT library preparation

For all experiments, sequencing on the GridION platform (ONT, Oxford UK) was performed using FLO-

MIN106 R9 flowcells (ONT). Libraries prepared according to the TeloPrime and the direct cDNA protocol

were sequenced on two different FLO-MIN106 R9 flow cells to examine sequencing variability.

poly(A) enrichment

RNA used for ONT sequencing was poly(A+) selected in two consecutive rounds using oligo(dT) beads

(GenElute mRNA Miniprep Kit, Sigma MRN10, MilliporeSigma, Burlington, Massachusetts, USA) following

the manufacturer’s recommendations. Subsequently, RNA was alcohol precipitated using sodium acetate

and glycogen following the protocol from the Ribo-Zero rRNA Removal Kit (Illumina).

TeloPrime libraries

The TeloPrime Full-Length cDNA Amplification Kit (Lexogen, Vienna, Austria) was used to select for full

length mRNAs with intact 5’ CAPs from 7 ng poly(A+) RNA. The resulting cDNA was PCR amplified with

SYBR Green I (MilliporeSigma), TeloPCR enzyme mix and 3’ and 5’ primers (RP: 5’-TCTCAGGCGTTT

TTTTTTTTTTTTTTT-3’ and FP: 5’-TGGATTGATATGTAATACGACTCACTATAG-3’) to determine the opti-

mum cycle numbers for the large-scale PCR to generate enough material for long-read sequencing. The

determined cycle number of 27 was applied for large scale PCR in the absence of SYBR Green I followed

by processing of 400 ng of the cDNA with the SQK-LSK109 ligation sequencing kit (ONT) and the EXP-

NBD104 barcoding kit (ONT) following manufacturer’s instructions.

Direct cDNA libraries

Libraries were prepared from 100 ng poly(A+) RNA using the SQK-DCS109 direct cDNA sequencing kit

(ONT) and the EXP-NBD104 barcoding kit (ONT) according to manufacturer’s protocol.

Direct RNA libraries

Libraries were prepared from 500 ng poly(A+) RNA using the SQK-RNA002 direct RNA sequencing kit ac-

cording to manufacturer’s protocol (ONT).

Reverse transcription and qPCR

RNA was reverse transcribed into cDNA using the High Capacity cDNA Reverse Transcription Kit (Applied

Biosystems 4368814, Applied Biosystems, Waltham, Massachusetts, USA) following the manufacturer’s

instructions.

qPCR primer sets were designed using Primer3Plus. They either include one primer overlapping an exon-

exon junction, or the two primers are placed in different exons to exclude the amplification of genomic

DNA. Primer sets were designed against sets of isoforms as indicated in Figures S7–S9 (amplicon tracks).

Sequences of the primers and chromosomal start/end positions of the amplicons are listed in Table S1.

qPCR was performed in 384 well format in a LightCycler 480 II (Roche, Basel, Switzerland). 4 ml of 1:20

diluted cDNA, 0.5 ml gene specific primer mix (5 ml each) and 4.5 ml FastStart Essential cDNA Green Master

(Roche) were amplified using 45 cycles of 25 s at 95�C, 20 s at 58�C and 20 s at 72�C after 300 s at 95�C initial

denaturation. All combinations of primers and samples were run in duplicates and Cq values calculated as

the second derivative maximum. Genes of interest were normalised against housekeeper genes using the

DCq method.

Transcriptome reannotation

For transcriptome reannotation using StringTie42 (v.2.2.0), bam files from aligning the reads to the genome

as described above were provided to stringtie. Additionally, the reference annotation in gtf format
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(-G, GENCODE M22) was provided to stringtie and a splice junction cutoff (-j) of 10, a minimum coverage

(-c) of 1 and aminimum transcript fraction (-f) of 1 %were used. For ONT long-read runs, the –mixmode was

used, additionally providing StringTie with the short-read bam files of the same sample. Afterwards, all re-

annotations were pooled within the respective library preparation methods using StringTie –merge with a

coverage cutoff (-c) of 3 and only isoforms with a minimum isoform fraction of 5 % per gene were kept (-f).

Reference annotation was not provided to StringTie in the merge step.

For the reannotation using FLAIR27 (v1.5), bam files from alignment against the genome as described

above were first converted to bed format using bam2Bed12.py from the FLAIR suite. Splice junction

coverage files from aligning the short-read data to the genome using STAR (SJ.out.tab) were filtered for

a minimum splice junction coverage of 10 using a custom R script. For each sample, the bed files and

the corresponding filtered short-read based junction data was provided to flair.py correct, additionally

providing the reference genome in fasta format (-g) and a table of chromosome sizes (-c, created from

the genome fasta using samtools faidx). Subsequently, the corrected reads in psl format were concate-

nated into a single psl file using gnu cat and collapsed into a transcriptome reannotation by FLAIR collapse

using a minimum coverage (-s) of 3 and setting the –stringent flag, additionally providing the genome in

fasta format (-g), the reference annotation in gtf format (-f) and the reads from all samples of the respective

library prep method in fastq format (-t). In order to mark true transcriptional start sites, a combined bed file

from FANTOM5 CAGE peaks67 and iBAT H3K4me3 peaks48 was provided. For the TeloPrime data, the

–trust_ends flag was additionally set.

The reannotated transcripts were compared to the reference annotation using SQANTI277 (v7.4.0). The

overlap between annotated known (classcode =, m,and c) and novel transcripts in the different datasets

and the reference annotation was calculated using the tracking file from gffcompare.

Annotation of transcripts

Annotation of transcript isoforms including open reading frames, nonsense mediated decay,86 functional

protein domains (pfam87) and splice type analysis was done using IsoformSwitchAnalyzeR82 (v1.16.0).

Cars2 protein fold predictions were generated in LocalColabFold using standard parameters72. Com-

putation of the models was performed on the UCloud interactive HPC system, which is managed by the

eScience Center at the University of Southern Denmark.

7 Cars2 overexpression in cell culture

For in vitro gain of function studies using the wt1-SAM cell line, single guide RNAs (sgRNAs) were designed

using CRISPick73 and cloned into the sgRNA(MS2) cloning backbone (addgene 61424) as described by Koner-

mann.88 To transfect mature adipocytes, 3 ml TransIT and 250 ng plasmid DNA or 1.4 ml (10 mM) in 100 ml Opti-

MEM I were pipetted into a well of a 24 well plate. After 15min, 500,000 cells resuspended in 500 ml Opti-MEM I

were added. 24 h later, mediumwas changed for regular differentiation medium. Guide sequences used were

ATTTAGGCATTTGGGCACGG for Cars2-FL and GTGGCTGAACAGATCTGGCC for Cars2-AT.

QUANTIFICATION AND STATISTICAL ANALYSIS

Long-read alignment and quantification

For the reference-based comparison of ONT library preparation methods, reads were mapped against

the transcriptome (GENCODE M22; -ax map-ont –secondary=no -uf) and genome (GRCm38.p6; -ax splice

–secondary=no -uf) using minimap275 (v2.24). Reads were subsequently filtered for an average PHRED

score > 7 using NanoFilt76 (v2.3.0). GenomicAlignments77 (1.30.0) was used to directly extract read level

information from BAM files, including transcript level reference sequence, flag based mapping types, map-

ping position and cigar based aligned length information as described by Soneson37.

Short-read alignment and quantification

Illumina short-reads were quality filtered using cutadapt78 (v.3.7; -q 28 -m 30) and mapped to the genome

(GRCm38.p6) using STAR79 (v2.7.8a). Transcript level quantification was done using salmon19 in selective align-

ment mode (GENCODE M22; v1.8.0). Gene level abundance estimation was done using tximport40 (v1.22.0).
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Differential gene and transcript expression analysis

Differential gene and transcript expression analysis was done using DESeq2 with H0: log2FC > 0.580

(v1.34.0). Adjustment for multiple testing was done using the s-value method proposed by Stephens89 im-

plemented in apeglm90 and s-values < 0.05 were considered significant.

Analysis of differential transcript usage

Only genes with at least 10 counts in all samples were included in the analysis. Transcripts were filtered for a

minimum of 5 counts and 10 % of the counts of the parent gene in half of the samples. Differential transcript

usage analysis was done using DRIMSeq83 (v.1.22.0). FDR < 0.1 and transcript usage changes > 5 % were

considered significant. In order to detect differential transcript usage from qPCR data, a linear model was

fitted with isoform and temperature as variables and the interaction term was tested. p-values were

adjusted for multiple testing using Holm’s method.
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