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Abstract: A new design strategy was proposed to improve the mechanical performance of double
network (DN) hydrogels by introducing polyhydroxy compounds into the DN structure and
form a physically linked double network through the interaction of hydrogen bonding. Herein,
agar/poly(acrylic acid)/hydroxyethyl cellulose composite hydrogels could be prepared by a simple
one-pot method. The resulting hydrogels exhibit highly mechanical properties and excellent
recoverability, which have potential applications in biomedical fields.
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1. Introduction

Unlike most solid materials, hydrogels consist of a hydrophilic polymer network and a
large amount of water, the wet soft structure of which allows them to be used as biocompatible
materials, such as biosensors [1,2], bio-separators [3,4], drug delivery carriers [5–7], tissue engineering
scaffolds [8–11], super capacitor [12–14], and intelligent devices [15,16]. Nevertheless, the mechanical
properties of conventional chemical cross-linked polymer hydrogels are too weak to be practically
applied in some fields [17]. To overcome this shortcoming and expand the application fields of
hydrogels, researchers have developed many types of hydrogels with new network structures, such
as double-network (DN) hydrogels [18], topological hydrogels [19], nanocomposite hydrogels [20],
tetra-arm polymer-based hydrogels [21], magnetic hydrogels [22], double cross-linked hydrogels [23],
triblock copolymer hydrogels [24], and hydrogen bonding hydrogels [25]. Among these, the DN
hydrogels have been regarded as one of the most excellent hydrogels materials, which can be
prepared by combining two interpenetrating polymer networks: a short-chain network as the
first network and a long-chain network as the second. The use of this type of interpenetrated
structure of the two polymer networks improved and balanced mechanical properties by tuning the
intramolecular interactions between two networks [26]. Upon extra-force loading, an amount of the
short chains were sacrificed to dissipate energy, and the long chains kept elasticity to retain the whole
structure [27], resulting in outstanding fracture stress, critical compression, elastic modulus, and
elongation of the DN hydrogels. Recently, reports have focused on various DN hydrogels materials
due to their excellent mechanical properties. For instance, the compressive fracture stress of the
poly(2-acrylamido-2-methylpropanesulfonate)/polyacrylamide DN hydrogel could achieve 93.5 MPa
greater than those of bovine cartilage [28]. The polyacrylamide-chitosan DN hydrogel displayed high
tensile strength up to 2 MPa [29]. The poly(vinyl alcohol)-poly(ethylene glycol) DN hydrogel exhibited
the shape memory with tensile strength of 0.63 MPa [30].
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Hydrogen bonding can improve the mechanical properties of hydrogels. In contrast with
covalent bonding, the strength of individual hydrogen bonding interaction was relatively weak, but
the synergistic interactions among hydrogen bonds could produce strong interactions even over
covalent bonding [31]. The composite hydrogels based on hydrogen bonding between polyacrylamide
and bacterial cellulose were reported to exhibit good tensile with a breaking elongation of 2200%
and a breaking stress of 1.35 MPa [32]. The mechanical properties of polyacrylamide hydrogels
were enhanced by hydrogen bonding interaction using graphene oxide [33]. Moreover, hydrogen
bonding not only ensures good mechanical properties of the hydrogels but also endow excellent
recovery properties of the hydrogel [34]. In our previous work, the lignosulfonate-graft-poly(acrylic
acid)/hydroxyethyl cellulose composite hydrogels with semi-interpenetrating networks (semi-IPNs)
structure show excellent shape-recovery property owing to the hydrogen bonding interactions between
proton-donating Polyacrylic acid (PAA) and proton-accepting hydroxyethyl cellulose (HEC) [35].

Normally, the DN hydrogels were prepared in a two-step process: firstly, a single-network hydrogel
was prepared. Next, the dried sample was immersed in the second monomer solution until the second
monomer completely filled the sample; it was then gelled to form a DN hydrogel. This synthetic
method had a long preparation cycle and needed to use a large amount of the second monomer soaking
liquid [36]. Chen’s group reported a simple and quick method for the preparation of the Agar/PAM
double-network hydrogels in one step and the whole process of preparation only took a few hours [37].
Inspired by this work, we one-pot synthesized agar/poly (acrylic acid)/hydroxyethyl cellulose composite
hydrogels (Agar/PAA/HEC DN hydrogels) by introducing polyhydroxy compounds HEC into the DN
structure, which physically linked double network by hydrogen bonding. The resulting hydrogels
exhibited highly mechanical properties and excellent recoverability.

2. Materials and Methods

2.1. Materials

Agar, N,N’-Methylenebisacrylamide (MBAAm) were purchased from Sino pharm Chemical
Reagent Co., Ltd. (Shanghai, China); acrylic acid (AA) was purchased from Macklin
Chemical Reagent Co., Ltd. (Shanghai, China); hydroxyethyl cellulose (HEC, 5000–6400 mpa.s),
2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone were purchased from Aladdin Chemical
Reagent Co., Ltd. (Shanghai, China). All other agents were analytical grade and used without
further purification.

2.2. Synthesis of Agar/PAA/HEC Double Network (DN) Hydrogels

The agar/PAA/HEC DN hydrogels were synthesized by a one-pot strategy in which 0.1 g of agar
was added into 10 mL of H2O at 90 ◦C and stirred until the agar power was dissolved completely
and a transparent agar water solution was obtained. Then, 2 g of AA, 5.4 mg of MBAAm, 65.4 mg
of 2-hydroxy-4’-(2-hydroxyethoxy)-2-methylpropiophenone, and 0.15 g of HEC were added into the
agar solution to dissolve. The obtained solution was cooled to room temperature and subsequently
the agar was solidified into gel again. Then, polymerization of AA monomers was carried out under
the radiation of UV light (INTELLI-RAY 400, Lamp Intensity 60%, 400 W, Shenzhen, China) for about
50 min. The final hydrogel was immersed into distilled water for 48 h to remove the unreacted
monomer and other impurities.

2.3. Fourier-Transform Infrared Spectroscopy (FTIR) Test

ATR (attenuated total reflectance)-Fourier-transform infrared spectroscopy (FTIR) of the
Agar/PAA/HEC hydrogels was performed on a Nicolet iS10 FT-IR spectrometer (Nicolet iS10, Nicolet,
Waltham, MA, USA). The hydrogel was lyophilized to dry gel. The samples were scanned 16 times
and the scanning range was 4000–500 cm−1.
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2.4. Morphology Characterization

Morphology characterization was investigated by observing the cross-section of the
Agar/PAA/HEC hydrogel using scanning electron microscopy (SEM) (S-3400N Hitachi, Chiyoda, Tokyo,
Japan). The hydrogel sample was lyophilized to dry gel. Cryo-fracturing of the frozen specimens
was done to obtain a cross-sectional interior of the hydrogels, revealing their interior structure. SEM
pictures of the hydrogel were taken after coating with gold nanoparticles under vacuum.

2.5. Measurement of Mechanical Properties

The compressive stress–strain measurements were performed using an Instron 5565 electronic
universal testing apparatus (Instron Co, Boston, MA, USA) with a 5 kN load cell, a compressive strain
rate of 10 mm/min, and no preload at room temperature. The cylindrical hydrogel samples were
~14–16 mm in diameter and 12~15 mm in height. The compressive stress (σ) was estimated as σ = F/πr2,
where F is the force applied on the hydrogel and r is the initial radius of the sample. The compressive
strain (ε), was defined as the change in the height relative to the height of the original sample.

For tensile test, the measurements also were performed by using an Instron 5565 electronic
universal testing apparatus (Instron Co, Boston, MA, USA); a 250 N load cell was used. The hydrogel
samples were cut into a dumbbell shape, with a gauge length of 16 mm, a width of 4 mm, and a
thickness of ~2–3 mm. Moreover, the stretching rate was 50 mm/min. The cyclic tensile tests were
performed immediately following the initial loading. In both loading and unloading, the rate of
stretch was kept constant at 100 mm/min. The tensile fracture stress was defined as the stress at the
breaking point. Tensile modulus was calculated from the slope of the linear region (ε = ~5–10%) of the
stress–strain curves. For the all mechanical testing, a water spray was applied to the sample with a
kettle every 2 min to prevent the hydrogel from drying out.

2.6. Swelling Properties Test

Swelling studies were carried out by comparing the fully swollen weight and the dry weight of
hydrogels. The dried hydrogels (W1) were immersed in an excess amount of deionized (DI) water at
25 ◦C or physiological solution (NaCl 0.9% w/w, NS) at 37 ◦C until swelling equilibrium was attained.
The wet weight of the sample (Wc) was determined after removing the surface water with filter paper.
Equilibrium swelling ratio (Qeq) was determined by the following equation: Qeq = (W2 −W1)/W1

× 100%.

3. Results and Discussion

3.1. Preparation of the Agar/PAA/HEC DN Hydrogels

The Agar/PAA/HEC hydrogels were prepared through a simple one-pot strategy. The preparation
scheme is demonstrated in Figure 1. Firstly, all of the reactants: agar, AA monomer, HEC, UV initiator,
and cross linker (MBAAm) were dissolved together in water at 90 ◦C. Agar is in sol state at 90–95 ◦C and
in gel state at 30–35 ◦C, resulting from the coil-helix structural transition of the agar molecule between
high and low temperatures. Upon cooling, the gelation of agar occurred and built a three-dimensional
network, which was the first network of the hydrogel. After photo-initiation, the second network
was formed by the free-radical polymerization of the AA monomer under ultraviolet irradiation and
the Agar/PAA/HEC hydrogel was successfully synthesized. In this system, in addition to the double
network structure, the long-chain polyhydroxy macromolecule HEC acted as a physical cross linker
agent to form a special DN network structure based on the hydrogen bonding interaction among the
carboxyl of PAA, the hydroxyl of agar, and the hydroxyl of HEC. As shown in Figure 2, in comparison
with with pure PAA, the characteristic absorption peaks of C=O of PAA in the Agar/PAA/HEC hydrogels
were shifted from 1670 to 1696 cm−1, confirming the existing of hydrogen bonding interaction between
PAA and HEC. Figure 3 shows the interior morphology of the Agar/PAA/HEC hydrogels measured
by SEM. Similar to the Agar/PAA and PAA/HEC hydrogel, the Agar/PAA/HEC hydrogels also have
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porous structures. However, the pore size of the Agar/PAA/HEC hydrogels was much smaller than
that of the other two hydrogels. The hydrogen bonding interaction between the two networks reduced
the distance between the polymer chains and made the structure of the hydrogel denser, showing
the size of the pore decreasing at the macro. The hydrogen bonding that exists in the structure of the
hydrogels gradually dissipates the stress and fracture energy when external forces act on the hydrogels,
allowing the hydrogels to withstand high strength deformation. In combination with double network
and hydrogen bonding interaction, the Agar/PAA/HEC hydrogels would be expected to have excellent
mechanical properties.

Figure 1. Scheme of the synthesis of the Agar/PAA/hydroxyethyl cellulose (HEC) hydrogels.

Figure 2. Attenuated total reflectance (ATR)-Fourier-transform infrared spectroscopy (FTIR) spectra of
(a) Agar; (b) HEC; (c) PAA and (d) Agar/PAA/HEC hydrogel.

Figure 3. Scanning electron microscopy (SEM) images of hydrogels: (a,b) Agar/PAA hydrogel; (c,d)
PAA/HEC hydrogel; (e,f) Agar/PAA/HEC hydrogel.

3.2. The Mechanical Properties of the Agar/PAA/HEC DN Hydrogels

As seen in Figure 4, the Agar/PAA/HEC DN hydrogels could withstand the deformation of
bending as seen in Figure 4a, knotting as seen in Figure 4b, compression as seen in Figure 4c, and
elongation as seen in Figure 4d, without obvious damage, revealing that they possessed excellent
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compression, bending, and tensile properties. Firstly, the compression property was evaluated.
Figure 5 was a typical compressive stress–strain (σ-ε) curve for the Agar/PAA/HEC DN hydrogels.
When the strain reached approximately 80%, the stress increased sharply. One explanation for this
occurrence is that, with the increase of strain, some chains were fully compressed, resulting in the
rapid increase of stress. When the stress intensity was 15.7 MPa, the hydrogels still did not break
and the strain achieved 96%. In contrast, the fracture compressive stress of the ordinary PAA/HEC
hydrogels and PAA/Agar DN hydrogels were 0.024 Mpa and 7.1 Mpa, respectively, suggesting that HEC
significantly improved the compressive property of the Agar/PAA/HEC DN hydrogels. The recovery
performance of the Agar/PAA/HEC DN hydrogels was also studied through an loading-unloading
compression experiment. As shown in Figure 6, the cylindrical Agar/PAA/HEC DN hydrogel sample
was compressed to 90% of original height and remained intact; after the pressure was released, the
original shape of the sample was almost restored. The compressive stress–strain curves of the process
were further investigated, as seen in Figure 7. There was a hysteresis in the first loading-unloading
cycle, implying that an irreversible fracture event may have occurred at strain. Next, the recovered
sample was placed in a moist environment for 2 h and the load-unloading compression curve was
measured again. No serious deformation and strength degradation occurred in the hydrogel at a
highly set critical strain of 80%, revealing the robust DN structure of the agar and PAA network. This
result showed the excellent anti-deformation abilities of the Agar /PAA/HEC DN hydrogels.

Figure 4. Agar/PAA/HEC hydrogels show extraordinary mechanical: (a) Bending; (b) Knotting; (c)
Compression; (d) Elongation.

Figure 5. Compression stress–strain curves of different hydrogels.
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Figure 6. Photographs of the Agar/PAA/HEC DN hydrogel under compression.

Figure 7. Stress–strain curves of loading-unloading cycles.

The Agar/PAA/HEC DN hydrogels exhibited much higher ductility and positive effect of HEC on
the tensile properties of the Agar/PAA/HEC DN hydrogels was well reflected in Tables 1 and 2.
We systematically studied the effects of the contents of HEC on the tensile properties of the
Agar/PAA/HEC DN hydrogels. In Table 1, we observed that the tensile strain of the hydrogels
(Gel-1–Gel-3) from 15.1 to 19.9 and the tensile stress from 125.5 kPa to 160.2 kPa with the increasing
HEC content. It was reasoned that, with the addition of HEC, hydrogen bonding was formed between
the HEC and the PAA polymer chain, improving the interaction between two networks by physical
crosslinking, effectively promoting the energy dissipation of the hydrogels. When the ratio of HEC/AA
was 0.15/2 (g/g), the tensile properties of the hydrogel were optimal. Once the ratio of HEC/AA
exceeded 0.15/2 (g/g), the performance of the hydrogel did not continue to improve, potentially because
the hydrogen bonding interaction had reached saturation point. On the other hand, as shown in
Table 2, the hydrogel prepared by high-viscosity HEC had better performance.

The loading-unloading tensile cycle experiment was an effective method to analyze the internal
fracture process of the hydrogels. Figure 8 shows the successive loading-unloading cycles of the
Agar/PAA/ HEC DN hydrogels at different strain values, in which a new stretching cycle was performed
immediately after the end of the previous cycle. The large hysteresis loops of each cycle suggested that
the hydrogels could dissipate energy effectively. It was observed that any two adjacent stress–strain
curves shared an overlap region to some extent, which pointed to the self-recovery ability of the
hydrogels. The recover ability of the hydrogels may be attributable to the hydrogen bonding between
HEC and PAA polymer chains. The hydrogen bonding would rupture upon an action of external force,
and reformed after the external force was removed.
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Table 1. Tensile properties of the Agar/PAA/HEC DN hydrogels with different HEC contents.

Sample

Synthesis Tensile Test

HEC/AA/H2O
(g/g/g)

HEC Viscosity
(mpa.s, 25 ◦C)

Strain at
Fracture

(mm/mm)

Stress at
Fracture (kPa)

Tensile
Modulus (kPa)

Gel-1 0.05/2/10 5000–6400 15.1 125.5 4.5
Gel-2 0.10/2/10 5000–6400 16.7 147.6 18.5
Gel-3 0.15/2/10 5000–6400 19.9 160.2 21.9
Gel-4 0.2/2/10 5000–6400 14.6 99.3 9.3

Table 2. The tensile properties of the Agar/PAA/HEC DN hydrogels with different HEC viscosity.

Sample

Synthesis Tensile Test

HEC/AA/H2O
(g/g/g)

HEC Viscosity
(mpa.s, 25 ◦C)

Strain at
Fracture

(mm/mm)

Stress at
Fracture

(kPa)

Tensile
Modulus

(kPa)

Gel-5 0.15/2/10 80–125 8.6 138.0 27.4
Gel-6 0.15/2/10 1000–1500 12.0 131.4 22.1
Gel-7 0.15/2/10 5000–6400 19.9 160.2 21.9

Figure 8. Stress–strain curves during loading-unloading cycles at different critical compression strains
of the Agar/PAA/HEC hydrogel.

3.3. Swelling Properties of the Agar/PAA/HEC DN Hydrogels

The swelling property of the hydrogels has many applications, which are mainly determined
by various functional groups inside the hydrogels. The content of HEC in the Agar/PAA/HEC DN
hydrogels plays an important role in the swelling behaviors of the hydrogels. Figure 9 shows that the
swelling rate of the hydrogels reduced as the HEC content increased. In physiological saline, the sample
was slightly more swollen due to the presence of salt. The carboxyl groups in the PAA determined
the swelling rate of the hydrogels; however, with the addition of HEC, the formed hydrogen bonding
inhibited the swelling of the hydrogels.
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Figure 9. Swelling rate of the different hydrogels (a) Gel-1 in DI water; (b) Gel-2 in DI water; (c) Gel-3
in DI water; (d) Gel-4 in DI water and (e) Gel-4 in salt solution.

4. Conclusions

We have successfully fabricated a new physically linked double network Agar/PAA/HEC hydrogel
using a one-pot method by the hydrogen bonding interaction between proton-donating PAA and
proton-accepting HEC. The Agar/PAA/HEC hydrogel has very high compression and tensile strength
as well as high recoverability, which may be due to the synergy of the network structure and the
reversible energy dissipation mechanism of the hydrogen bonding. The optical mass ratio of HEC/AA
for the hydrogel is 0.15/2 (g/g). In consideration of the advantages of good mechanical properties as
well as one-pot synthetic methods, the agar/PAA/HEC hydrogel has many potentials in biomedical
applications, such as tissue engineering scaffolds and artificial muscles.
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