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Our immune system has evolved as a complex network of cells and tissues tasked with
maintaining host homeostasis. This is evident during the inflammatory responses elicited
during a microbial infection or traumatic tissue damage. These responses seek to
eliminate foreign material or restore tissue integrity. Even during periods without explicit
disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps
one of the most studied cells in this regard is the macrophage. Tissue-resident
macrophages are a heterogenous group of sensory cells that respond to a variety of
environmental cues and are essential for organ function. Endogenously produced
glucocorticoid hormones connect external environmental stress signals with the
function of many cell types, producing profound changes in immune cells, including
macrophages. Here, we review the current literature which demonstrates specific effects
of glucocorticoids in several organ systems. We propose that tissue-resident
macrophages, through glucocorticoid signaling, may play an underappreciated role as
regulators of organ homeostasis.
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INTRODUCTION

For over 70 years, synthetic glucocorticoids have been used to treat numerous inflammatory
conditions, including allergies, asthma, autoimmune diseases, sepsis, and cancer. This is partially
due to their profound ability to modulate the immune response through anti-inflammatory and
immunosuppressive mechanisms. Endogenous glucocorticoids (such as cortisol in humans and
corticosterone in mice) are a class of adrenal cortex steroid hormones regulated through the
hypothalamic-pituitary-adrenal axis. They are produced in response to stresses such as infection,
but are also naturally secreted in circadian and ultradian cycles. Cortisol acts as a biochemical
signaling molecule and is involved in numerous metabolic processes in the body. However, cortisol
deficiency in the body leads to an exacerbated inflammatory response. Furthermore it is well
recognized that the serum level of cortisol in the body is decreased in the elderly.

Both endogenous and synthetic glucocorticoids (dexamethasone and prednisone, among others)
exert their therapeutic effects primarily through the glucocorticoid receptor (encoded by NR3C1,
hereafter GR), and their efficacy in controlling inflammatory conditions results from the pleiotropic
effects of the GR signaling pathways (1). GR is a member of the nuclear receptor superfamily and is a
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ligand-dependent transcription factor. It is expressed ubiquitously
in almost every human cell, including all immune cells (2). When
bound by its ligands, GR translocates to the nucleus and occupies
specific palindromic DNA sequences within the open chromatin,
called glucocorticoid response elements (GREs), to activate or
repress gene expression (3–8). GR activates gene expression
through different mechanisms that involve direct binding of
dimers to GREs within GR-binding sites or composite binding
in which GR and another transcription factor interact with distinct
response elements within the same genome location. For example,
glucocorticoids enhance phosphoenolpyruvate carboxykinase
gene expression through GR and CREB binding to GREs and a
cyclic AMP response element, respectively, within close
proximity (9).

Glucocorticoid-mediated gene repression or GR transrepression
occurs through direct binding of GR to repressive DNA motifs
(negative glucocorticoid response elements or nGREs) (10, 11) or
tethered recruitment of ligand-bound GR to another transcription
factor without DNA interaction. Tethering is likely the most
studied mechanism for immune regulation by glucocorticoids.
Many studies have linked this mechanism to the beneficial anti-
inflammatory actions of glucocorticoids (12, 13). Tethering occurs
when GR binds to another transcription factor without interacting
with DNA. GR has been shown to tether key pro-inflammatory
transcription factors, including nuclear factor-kB (NF-kB) and
activator protein 1 (AP-1), which antagonizes their interaction
with chromatin, influences the recruitment of co-regulators, and
results in gene expression inhibition. Remarkably, using genome-
wide profiling in LPS activated macrophages upon Dex treatment,
Uhlenhaut et al. found that 20% of GR-dependent repression is
related to nGREs and tethered sites, suggesting that the positive and
negative GR cistromes are predominantly composed of classical
GREs in close proximity to NF-kB and AP-1 binding sites (6).

Interestingly, GRdim mice carrying an amino acid substitution
(A465T) in the D-loop of the DNA-binding domain of GR
showed reduced, but not completely absent, transactivation
ability in response to glucocorticoids (14), suggesting that the
GR dimerization-dependent gene regulation was not essential for
the effects of GCs. Direct binding of GR as monomers also has
been described (5, 15). Initially, the mechanism of
transrepression proposed that the monomeric state of GR
repress the transcription by tethering to DNA-bound TFs (10,
11). Using mouse liver from WT and GRdim under endogenous
corticosterone exposure and chromatin immunoprecipitation
with lambda exonuclease digestion and sequencing (ChIPexo),
Lim HW et al., reported that monomeric GR interaction with a
half-site motif is more prevalent than homodimer binding (5).
This monomeric GR interaction with a half-site motif display
greater cell-type specificity and enrichment for lineage-
determining TFs relative to dimer sites. These data arguing in
favor of a model termed half-site-facilitated tethering, where
sequence-specific interaction of GR monomers to different
motifs promotes transient contacts between monomers and
nearby TFs (5).

The GR has been previously reported to modify chromatin
structure as well (16–18). New evidence establish that glucocorticoids
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exert primary repressive effects on transcription through altering
chromatin structure (18). For example, using a global run-on
sequencing or GRO-seq, Sasse et al., demonstrated that the
repression of many TNF-regulated genes and enhancers by dex
treatment rapidly changes the chromatin structure in a process that
does not required GR occupancy (18). This evidence suggest that
either a transrepressive or nGRE mechanisms on the NF-kB
signaling are not implicated. Moreover, the high resolution given
by GRO-seq also allowed to discover a secondary anti-inflammatory
effects resulting from transcriptional cooperation between GR and
NF-kB at a subset of regulatory regions (18). This cooperative
glucocorticoid-TNF crosstalk in the repression of inflammatory
processes previously was observed by Vettorazzi et al. in a model
of acute lung inflammation (7), where Dex and pro-inflammatory
stimuli in macrophages, synergistically via GR increased
sphingosine1-phosphate (SphK1) expression and the levels of S1P
circulating that play a role in attenuating lung inflammation. These
data provide evidence that reducing the expression of pro-
inflammatory cytokines, a classic feature of glucocorticoids
treatment, is not sufficient to resolve the inflammation.

Glucocorticoids do not only antagonize proinflammatory
gene expression. They have recently been shown to induce
proinflammatory gene expression in several cell types, including
macrophages (19–21). For example, dexamethasone upregulated
expression of the NLRP3 inflammasome in human THP-1
macrophages, causing them to be more responsive to the NLRP3
agonist ATP (19). In addition, co-regulation of genes by
glucocorticoids and cytokines has been demonstrated in which
glucocorticoids and cytokines synergize to enhance
proinflammatory mediator production (20). Finally, GR-
mediated induction of exopeptidase DPP4 contributed to the
increased mobility of macrophages in response to dexamethasone
(21). However, the extent of this co-regulation and its mechanism
in immune cells is poorly understood.

Macrophages are innate immune system effector cells which,
upon inflammation, phagocytose apoptotic and necrotic cells.
They are involved in tissue repair and modulate inflammation by
balancing pro- and anti-inflammatory responses. Interestingly,
glucocorticoids seem to have limited efficacy in the control of
inflammation in diseases related to macrophage activity, such as,
atherosclerosis, ulcerative colitis and respiratory tract diseases
(22, 23). While it is true that many of the diseases mentioned
above are quite successfully controlled by corticosteroids
treatment, this has been associated to early stages of the
diseases because they are able to inhibit many components of
the inflammatory response. Even in the clinical management of
some of them, the use of corticoisteroids has been recommended
as adjunct treatment at the lowest dose possible and for the
shortest time possible. Although glucocorticoids induce cell
death and reduce cell survival in immune cells such as T and B
cells, macrophages are relatively resistant to glucocorticoid-
induced apoptosis (2). These observations support the idea that
the pro-inflammatory versus the anti-inflammatory regulatory
actions of glucocorticoids may be predominant in macrophages.

The macrophage ontogeny has been challenged during the
last two decades. The paradigm that tissue-resident macrophages
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are continuously replenished by blood-circulating monocytes,
which arose from bone marrow (BM)-derived precursors was
updated since Merad et al, showed that Langerhans cells, a kind
of macrophages in the skin, were resistant to the irradiation and
were not derived from donor after congenic BM transplanstation
(24). The current models of macrophage ontogeny have been
established through genetic fate-mapping techniques. For
example, now is well-known that major tissue-resident
macrophage populations, including microglia, liver Kupffer
cells, lung alveolar macrophages, epidermal Langerhans cells
and splenic macrophages, are established during the
embryogenesis from the yolk sac (YS) anf fetal liver and
subsequently maintain themselves independently of replenishment
by blood monocytes during adulthood (25, 26). Contrary,
macrophages population from the gut and heart are constantly
replenished by blood monocytes postnatal (27, 28). In the new era
of “omics” techniques, single-cell RNA-sequencing have revealed a
next level of complexity to the functional heterogeneity of the
embryonic origin of key tissue-resident macrophage populations.
For example, depth analysis of arterial macrophages at single-cell
resolution in steady state and in response to angiotensin-II (AngII)-
induced arterial inflammation revealed dual origin of arterial
macrophages from both YS and BM-hematopoiesis, a process that
is stable in adult mice, but declines in numbers during ageing and is
not replenished by bonemarrow (BM)-derivedmacrophages (29). In
AngII inflammation, BM-derived macrophages invade the inflamed
adventitial tissue, while resident -YS erythromyeloid progenitors
(EMP)-derived macrophages- were self-renewal and proliferate
locally providing a distinct transcriptional profile linked to tissue
regeneration (29). Despite the fact that our understanding of
ontogeny of macrophages is increasing, the precise developmental
trajectories of tissue-resident macrophages remain undetermined.

Another level of complexity into the macrophages biology is given
by the activation or polarization processes.Macrophages are polarized
according to changes in their environment and are classically divided
in two main categories, M1 macrophages and M2 macrophages (30).
M1 macrophages are mainly involved in pro-inflammatory
responses, classically generated upon induction by microbial
products, such as LPS and pectidoglycan and pro-inflammatory
cytokines such as interferon-gamma. M2 macrophages are mainly
involved in anti-inflammatory responses, ultimately associated with
promoting wound healing, tissue repair and for resolving
inflammation (31, 32). Glucocorticoids have been related to a M2-
like phenotype, where the capacity to promote tissue repair and
wound healing has been demonstrated (33–35). However, the direct
participation of GR in the polarization still are not as well-understood.

Macrophages play a critical role in determining the extent of
our body’s inflammatory response. However, macrophage
function becomes impaired with increasing age and this could
be linked to an imbalance between the amount of cortisol
generated and the increase in the quantities of pro-inflammatory
molecules produced in the body. Recently, has been proposed that
low levels of the stress hormone cortisol and loss of the
glucocorticoid-induced leucine zipper (GILZ) expression in
macrophages can trigger chronic inflammatory responses in the
body, contributing to the aging process (36).
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Here, we review mechanisms whereby glucocorticoids can
regulate physiological tissue homeostasis through the macrophage
as a sensor, with emphasis on tissues where glucocorticoid signaling
has been ablated using specific GR knockout mouse models. We
propose that the pro-inflammatory or positive gene regulatory
actions of glucocorticoids on macrophages may be a way in
which macrophages shape the physiology of tissues.
GLUCOCORTICOIDS IN THE IMMUNE-
SURVEILLANCE OF THE HEART

Glucocorticoid signaling has direct effects during cardiac
development and in both physiological and pathological
conditions of the cardiovascular system. Multiple studies have
revealed an important role for circulating glucocorticoids in the
regulation of heart function and in impaired infarct healing, but
they have not discriminated between direct and systemic actions
of these hormones (37). By generating mice lacking GR
expression solely in heart tissue (the cardiomyocyte-specific
GR knockout or cardioGRKO), our group found that mice
died prematurely from pathological cardiac hypertrophy that
progressed to dilated cardiomyopathy and heart failure (38). It is
established that endogenous glucocorticoids can also signal
through the closely related mineralocorticoid receptor
(encoded by Nr3c2, hereafter MR). For example, Oakley et al.
generated mice lacking both GR and MR in cardiomyocytes
which were resistant to cardiac disease in comparison to
cardioGRKOs (39). Interestingly, these findings suggest that an
appropriate amount of glucocorticoid signaling through both GR
and MR in cardiomyocytes is critical for maintaining a
healthy heart.

Heart failure is one of the leading causes of morbidity and
mortality. It is recognized that innate immune cell activation
occurs in patients with heart failure. This activation is associated
with adverse clinical outcomes for disease progression. While it is
accepted that neutrophils produce robust inflammatory
responses and contribute to heart damage after acute ischemic
injury, macrophages improve healing and cardiac remodeling
after injury by promoting neutrophil efferocytosis, suppressing
free radical formation, and modulating fibroblast activation state;
however, the exact roles played by macrophages continue to be
explored and defined (40–42). Paradoxically, macrophages can
also trigger a damaging inflammatory response, which was
shown in a zebrafish model where macrophages directly
contributed to fibrosis during heart repair (43).

It has been suggested that distinct macrophage populations,
such as resident or recruited subsets, may favor healing of injured
areas or promote inflammatory and reparative functions (44). In
the heart, tissue-resident macrophages populate different regions,
including the ventricular myocardium, where they are found
throughout myocardial interstitial spaces and interact directly
with capillary endothelial cells and cardiomyocytes (45). They
are also found in the atrioventricular node, where they facilitate
electrical conduction by coupling to cardiomyocytes through
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connexin 43-containing gap junctions (46). Recently, Nicolas-
Avila et al, demonstrated that macrophages can clean up
dysfunctional mitochondria from cardiomyocytes, helping to
maintain cardiac health and homeostasis (47). These data
suggest broader homeostatic functions for heart resident
macrophages; therefore, macrophages are an emerging target for
therapeutic strategies aimed at minimizing cardiomyocyte death,
ameliorating pathological cardiac remodeling, and treating heart
failure after myocardial infarction.

Glucocorticoids play key roles in the regulation of macrophage
homeostatic functions and in their functional properties to resolve
inflammation and tissue damage (22). The loss of glucocorticoid-
mediated regulation of macrophage function in the heart could
result in the dysregulation of factors that control inflammation,
neovascularization, collagen degradation, and scar tissue
formation. In a model of myocardial infarction, mice lacking GR
in myeloid cells under control of lysozyme M locus (LysM)
promoter die earlier after infarction than wild type controls.
GR-deficient macrophages were shown to exacerbate cardiac
remodeling and to cause impairment of collagen scar formation
and angiogenic response to ischemic injury, resulting in
dysregulation of the resolution of inflammation and defects in
wound healing (34).

Finally, the newly discovered macrophage function related to
the active elimination of cardiomyocyte-derived mitochondria
through the phagocytic receptor Mer tyrosine kinase (Mertk)
(47) reinforces the idea that glucocorticoids contribute to cardiac
tissue homeostasis (Figure 1). It’s established that glucocorticoids
upregulate Mertk expression in macrophages (48) and promote the
phagocytosis of apoptotic neutrophils (49). The clearance of
apoptotic cells and dysfunctional mitochondria by macrophages
ensures mitochondrial and cardiomyocyte fitness, tissue
proteostasis, and cardiac function. Therefore, glucocorticoids
acting through macrophages could determine the balance between
cardiac immunity and tolerance. Failure of this mechanism caused
by defects in cardiac macrophage sensing of glucocorticoids, rather
than from age related impairment of cardiomyocytes, could
compromise cardiac homeostasis and promote heart disease.
GLUCOCORTICOIDS IN THE IMMUNE-
SURVEILLANCE OF THE CENTRAL
NERVOUS SYSTEM

The central nervous system (CNS) is a prominent target of
glucocorticoids because GR is ubiquitously expressed in
neurons, glial cells (such as astrocytes, oligodendrocytes and
microglia) (50–53) in addition to brain vasculature (54).
Moreover, differential expression of the glucocorticoid receptor
has been described in specific subregions of the human cortex
such as the basolateral amygdala, CA1 hippocampus and dentate
gyrus. Glucocorticoid effects on the brain are related to the
adaptation to stress. They primarily depend on GR distribution
and functional pattern, and vary with gender, age, hormone
concentrations, timing, and duration of exposure (55). There is
Frontiers in Immunology | www.frontiersin.org 4
compelling evidence for direct GC effects on behavior, cognition
and mood (56, 57). At the cellular level, glucocorticoids are
necessary for neuronal growth and differentiation. They also
have an impact on several neuronal functions, including cell
survival, integrity, and synaptic plasticity (58, 59). In humans
and rodents, it has been described that glucocorticoids play a role
in both embryonic and adult neurogenesis (60). Similar to
embryonic development, neurogenesis in the adult happens in
the hippocampus and involves a multi-step process starting with
the division of neural stem cells and subsequent maturation into
neural progenitor cells, proliferation of progenitor cells,
maturation, morphological changes, migration, physiological
adaptation, and functional integration into the hippocampal
network (61). Newly generated neurons in the hippocampus
contribute to learning and memory (62), forgetting (63) and
cognitive flexibility (64). Interestingly, chronically elevated
glucocorticoid levels under prolonged exposure to stress has
been related to changes in the hippocampal cytoarchitecture,
such as atrophy of dendritic processes and inhibition of
neurogenesis (65, 66). Hippocampal neurons also play an
essential role in the negative feedback regulation of the HPA-
axis (67). Consequently, impaired hippocampal neurogenesis is
closely associated with brain disorders and neurodegeneration by
disrupted hypothalamic-pituitary axis functions. Interestingly,
Quarta C., et al. (68), developed a tissue-specific anti-
inflammatory drug that conjugate glucagon-like peptide-1
(GLP-1) to dexamethasone (GLP-1/Dexa) to selectively delivers
dexamethasone to GLP-1 receptor (GLP-1R)-expressing cells
(68). They showed that GLP-1/Dexa ameliorates the diet-
induced systemic inflammation and does not induce negative
effects on HPA-axis activity however, they do not deepen into the
identity of the GLP-1R-expressing cells (68). Some studies have
shown that macrophages could be one of the cells responding to
the drug because they also express GLP-1R (69, 70). In addition,
we recently published that dexamethasone induced the
expression of the exopeptidase DPP4 that is recognized as one
of the most important inactivator of GLP1 (21).

Glucocorticoids also play a crucial role in regulation of the
immune system and intermediate metabolism within the brain.
By inhibiting the immune system, glucocorticoids prevent
overproduction of inflammatory molecules that can be harmful
to neurons. The most notable CNS immune cells affected by
glucocorticoids are the microglia. As resident macrophages of the
nervous system, microglia are the brain’s professional phagocytes
that sense and coordinate the brain inflammatory response.
Microglia are the predominant immune cells of the CNS,
comprising approximately 10–12% of the cells in the brain,
with higher numbers within the hippocampus (71). Microglia
normally exist in a quiescent or “resting” state in the healthy
adult brain and, in response to tissue injury or disease, can
transform rapidly from a quiescent state to different activation
states (72). They are highly motile cells that survey the local
environment and release cytokines that coordinate the response
of both innate and adaptive immunity to control infection,
remove cell debris and promote tissue repair (73). Upon
activation, microglia upregulate cell surface molecules
May 2021 | Volume 12 | Article 669891
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including major histocompatibility complex class I and II,
receptors for cytokines and chemokines, such as CD200R (74)
and CX3CR1 (75), and several other cellular markers indicative
of increased reactivity (76). The constitutive expression of HLA-
DR in human microglia has been related to their immune-
surveillance of the brain (77). Recently, it has been described
that microglial mTOR-dependent metabolic flexibility and
glutaminolysis support their effector functions within the brain
parenchyma (78).

In addition to their roles as immune sentinel cells, microglia
also play a direct role in the regulation of neuron networks and
physiology. Microglia can produce factors that modulate
proliferation or survival of neurons (79, 80). Consistent with
the well-known microglia functions as a sensors and phagocyte
cells, Wang et al. (81), demonstrated that microglia eliminate
synaptic components in the adult hippocampus, leading to
dissociation of engram cells and the forgetting of previously
Frontiers in Immunology | www.frontiersin.org 5
learned contextual fear memory in a complement- and activity-
dependent manner.

Conditions that are commonly associated with microglial
activation and inflammation in the brain, such as aging,
chronic stress, and neurodegenerative diseases also affect adult
hippocampal neurogenesis (82). Mechanisms of immune
regulation in the CNS are largely dependent on neuronal
viability and activity, so the interactions between neurons and
microglia are essential in maintaining brain homeostasis (83).
Recently, Diaz-Aparicio et al. (84) showed that microglia also
modulate adult hippocampal neurogenesis through the
secretome associated with phagocytosis of apoptotic newborn
cells via purinergic P2Y12 receptor and MerTK. As we discussed
above for heart immunosurveillance, glucocorticoids could also
regulate the expression of MerTK on microglia and promote the
long-term homeostasis of adult hippocampal neurogenesis
(Figure 2).
FIGURE 1 | Schematic representation of how glucocorticoids could contribute to cardiac tissue homeostasis. Upon damage or stress activation, glucocorticoid-
activated cardiac macrophages promote the active elimination of hypertrophic cardiomyocyte-derived mitochondria and help maintain cardiac health and
homeostasis through the induction of the phagocytic receptor Mer tyrosine kinase (Mertk).
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The CNS is highly sensitive to damage and any inflammatory
response occurring within this organ system must be regulated.
Microglial activation, and subsequent suppression, is necessary
for host defense and neuroprotection following insult. However,
these microglial neuromodulatory mechanisms may become
deficient and/or dysregulated under excessive or prolonged
inflammatory stimulation induced by stress, disease, and injury
(71). One proposed mechanism for maintaining control of
microglial activation is through their interaction with neuronal
signaling molecules. Healthy neurons maintain microglia in their
resting state via secreted and membrane bound signals, including
CD200, CX3CL1 (fractalkine), neurotransmitters and neurotrophins
(83, 85). A reduction in these regulatory factors can lead to microglia
hyperactivation, suggesting an important role for communication
between neurons and microglia in regulating neuroinflammation.

Although it has been known that glucocorticoid signaling is
required for proliferation, differentiation, and survival of neurons,
it appears to also be a critical regulator of microglia
Frontiers in Immunology | www.frontiersin.org 6
immunosuppression. By inhibiting microglial activation,
glucocorticoids may have opposite effects in changing the
immune status of the brain and may make neurons more
susceptible to damage. In contrast, studies have suggested that
GR activation in microglia promotes their neuroprotective function
(86, 87). For example, GR-deficiency in microglia exacerbated
neuronal and axon damage caused by intraparenchymal injection
of LPS, and GR signaling in microglia suppresses stress-induced
neuronal death (86). Interestingly, Maatouk et al. demonstrated that
the number of microglia-expressing GRwas significantly reduced in
the brain of post-mortem Parkinson’s disease subjects compared to
control tissue and also observed a significant upregulation of TLR9
protein (87). Moreover, in twomice model lacking GR inmicroglia/
macrophages (GRLysMcre and GRCX3CR1CreER2 GR mutant
mice), intranigral injection of CpG-ODN (TLR9 ligand), resulted
in significant loss of dopamine neurons in the brain (87). Although
is well known that glucocorticoids are key regulators of TLRs
activation upon inflammation, these data suggesting that the loss
FIGURE 2 | Schematic representation of how glucocorticoids could contribute to central nervous system homeostasis. During hippocampal neurogenesis, cell
debris derived from apoptotic newborn cells and stress-induced glucocorticoid secretion promote microglia activation and transcriptional induction of the phagocytic
receptor Mertk to regulate the production of new neurons in order to maintain homeostasis in the adult hippocampal neurogenic niche.
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of GR in microglia also could contribute to dopamine
neurodegenerative process. While both increased microglia
activation and neuronal injury can be the result of an exaggerated
neuroimmune response, it is unknown if microglial overactivation
precedes and causes neuronal damage, or if activation occurs in
response to loss of normal neuronal integrity. The differential and
separate effects of glucocroticoids on neurons and microglia might
depend on the machinery each type of cell possesses, the timing of
exposure (before, during, or after activation) and the way they
ultimately integrate permissive, preparative, suppressive, and
stimulatory effects.
GLUCOCORTICOIDS IN THE IMMUNE-
SURVEILLANCE OF THE
GASTROINTESTINAL TRACT

The gastrointestinal (GI) tract represents the largest interface
between the organism and the external environment. The GI
tract is persistently exposed to a high antigenic load derived from
the dense, but largely harmless, commensal microbiota. Because
of the mutualistic relationship between microbiome and host, the
GI tract establishes a delicate coupling of immune resistance to
pathogens and tolerance to tissue damage and inflammation. An
important player in this process is the tissue macrophage.
Intestinal macrophages, which function as phagocytes, are
crucial to maintain the homeostasis of normal healthy GI tract
tissues, but are also important for protection against pathogens
through the secretion of pro-inflammatory mediators. Intestinal
macrophages are also involved in the repair of damaged tissue
through the production of proteins that drive epithelial cell
renewal (88–90). Tissue-resident macrophages in the steady
state are strongly influenced by the microbiota, and major
populations are distributed in the stomach as well as along the
length of the small and large intestines (91, 92). Unlike many
other tissue macrophages, those in the mucosa of the GI tract are
derived by continuous but distinct replenishment rates from
circulating monocytes (27, 93). Interestingly, a new population of
self-maintaining macrophages that are closely positioned in the
intestinal submucosa and muscularis externa and arise from both
embryonic precursors and adult bone marrow-derived monocytes,
persists throughout adulthood and promotes intestinal homeostasis
(94). At the functional level, these self-maintaining macrophages
control intestinal physiology by supporting the vascular
architecture, the permeability, and the intestinal motility that
regulates neuronal function in the myenteric plexus (94).

The important role of resident gastrointestinal macrophages
in maintaining local homeostasis was discovered through a study
by Zigmond et al. (95), where mice harboring IL-10 receptor
alpha subunit (IL10RA) deficiency failed to sense interleukin-10
(IL-10; a pleiotropic and anti-inflammatory cytokine produced
by T cells, B cells, and macrophages upon inflammation),
resulting in spontaneous development of severe colitis. In a
mouse model of inflammatory bowel disease (IBD), a chronic
inflammatory disorder of the GI tract, mice lacking GR in
Frontiers in Immunology | www.frontiersin.org 7
myeloid cells (GRlysM) displayed impaired disease resolution
to dextran sulfate sodium (DSS)-induced colitis and a diminished
expression of IL-10 (35). The defect in the acquisition of an anti-
inflammatory status and the lack of tissue repair caused by GR
ablation in myeloid cells was characterized by persisting clinical
symptoms and tissue damage, demonstrating an essential role for
GR in macrophages for the induction of tissue repair mechanisms
after intestinal tissue damage (Figure 3).

Glucocorticoid signaling in the GI tract plays a role in both
regulation of the intestinal stress response and intestinal tissue
homeostasis. This is suggested by the fact that synthetic
glucocorticoid therapy is effective in inducing remission in IBD
patients (96). Elevated GC levels as a result of stress or treatment
also enhance the nutrient absorption by enterocytes (97, 98).
Moreover, an increase in gastric acid secretion, induction of
gastroparesis or gastric emptying, and the possible formation of
gastric ulcers, in addition to enhanced intestinal glucose transport,
have been observed after GC treatment (99). In a study using
GRvillinCre mice, Reichardt et al. (100) demonstrated that the lack
of GR in enterocytes did not protect mice from glucocorticoid-
induced gastroparesis, suggesting that this pathology could be
mediated directly by GR in the stomach. Moreover, Cipriani et al.
demonstrated that proinflammatory macrophages were necessary
for the development of gastroparesis in diabetic mice (101),
suggesting that glucocorticoid signaling in the epithelium is
needed to control macrophages activation.

Therefore, it is conceivable that GC effects on enterocytes might
also contribute to the homeostasis of the entire GI tract. The role of
glucocorticoid signaling in the stomach was recently investigated
by our group through the depletion of circulating glucocorticoids in
mice by adrenalectomy (ADX) (102). The lack of systemic
endogenous glucocorticoids in mice resulted in the rapid onset of
spontaneous gastric inflammation and the appearance of a clinical
phenotype of spasmolytic polypeptide expressing metaplasia
(SPEM), a precursor of gastric cancer (102). Moreover, the
SPEM which developed in ADX mice was prevented by
clodronate treatment and within the Cx3cr1 knockout mouse
model, indicating that CX3CR1+ macrophages derived from
monocytes are critical mediators of gastric inflammation (102).
Intriguingly, the adrenalectomy does not trigger inflammation
within another section of the stomach (gastric corpus greater
curvature) and neither in other sections of the GI tract, such as
ileum and colon (102). Interestingly, both small and large intestinal
mucosa have been recognized as site of extra-adrenal
glucocorticoid synthesis (103–105). One of the plausible reasons
why ADX mice would not develop spontaneous inflammation in
the intestine could be the local production of GCs. In order to cope
the local stress, GCs would regulate the immune homeostasis,
however this hypothesis have not been addressed yet. The nuclear
receptor liver receptor homologue-1 (LRH-1, NR5A2) would be
essential to regulate the intestinal glucocorticoid synthesis in vivo
(104). Moreover, thought 3 different models, human intestinal
organoids, humanized murine intestinal organoids, and a
humanized murine IBD model Bayrer al. showed that LRH-1
promotes normal intestinal epithelial homeostasis suggesting that
this NR can be an important regulator of intestinal tissue integrity
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(105). Summarizing, all these findings indicate that glucocorticoid
signaling could participate in the immune-surveillance of the
gastrointestinal tract and is a critical mediator of both gastric and
intestinal homeostasis.
GLUCOCORTICOIDS IN THE IMMUNE-
SURVEILLANCE OF THE LIVER

As their name suggests, glucocorticoids are profound regulators
of glucose metabolism. It is no surprise then that the liver, the
organ responsible for controlling glucose levels, is a major target
of glucocorticoid action. Glucocorticoids exert permissive effects
on glycogen metabolism and stimulate gluconeogenesis through
direct regulation of rate limiting enzymes involved in this
process, such as PEPCK and G6Pase (106, 107).

Studies using liver-specific GR knockout (L-GRKO) mice
have demonstrated the many roles played by GR signaling in
hepatocytes. The daily rhythmic production of endogenous
glucocorticoids coordinate glucose, lipid, and fatty acid
metabolism with periods of feeding and fasting (108, 109). This
coordination is lost in L-GRKO mice, which exhibit fasting
hypoglycemia and reduced body weight, which may involve
Frontiers in Immunology | www.frontiersin.org 8
impaired growth hormone signaling (110, 111). Our group
evaluated the actions of glucocorticoids on hepatic expression
of inflammatory genes in male and female L-GRKO mice.
Interestingly, in response to pro-inflammatory LPS challenge,
deletion of GR reduced the number of inflammatory genes in a
sex-specific manner, with female mice exhibiting regulation of
more genes than males (112). Therefore, GR signaling influences
diverse gene expression programs in hepatocytes, some of which
are sexually dimorphic.

In addition to its roles in regulating metabolism, the liver is also
an important part of the immune system. It serves as a major filter
for the blood coming from the digestive tract and can respond to
potential threats such as bacterial toxins and cellular debris.

Hepatocytes release large amounts of immunoregulatory proteins
into the circulation that function to eliminate pathogens and fine-
tune innate immunity. These include members of the complement
system, acute-phase proteins, LPS signaling regulators, and several
iron-metabolism-related proteins (reviewed in (113)). The liver also
contains the single largest reticuloendothelial cell network in the
body, which is composed of tissue-resident macrophages called
Kupffer cells. Kupffer cells are intimately involved in the hepatic
response to various toxic insults. They constitute a primary line of
defense against invading microorganisms, function as sensors for
FIGURE 3 | Proposed model of how the lack of glucocorticoid receptor (GR) in macrophages could be detrimental to gastrointestinal tissue homeostasis. In the
dextran sodium sulfate (DSS)-induced colitis model, deletion of GR in myeloid cells delays the resolution of inflammation through an increase in the number of pro-
inflammatory macrophages which perpetuates tissue damage. Other immune cells, such as B cells, dendritic cells and ILCs relevant to the intestinal physiology have
been deliberately neglected to highlight the function of macrophages.
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altered tissue integrity, and control immunological tolerance in the
liver by providing an anti-inflammatory microenvironment during
homeostasis (114). Kupffer cells are largely stationary and adhere to
the liver sinusoidal endothelial cells where they are exposed to the
contents of the blood. During times of inflammation, the hepatic
macrophage pool is expanded by circulating blood monocytes that
give rise to monocyte-derived macrophages (115), which have been
shown to resemble the transcriptional phenotype of Kupffer cells
after lymphocyte choriomeningitis virus infection (116) or after
acetaminophen-induced hepatotoxicity (117).

Relatively few studies have explored the role of GR signaling in
Kupffer cells and monocyte-derived liver macrophages.
Nevertheless, there is good evidence that glucocorticoid regulation
of these immune cells may be essential for liver homeostasis. Kupffer
cells respond to glucocorticoids by upregulating the anti-
inflammatory gene Gilz, and mice with macrophage-specific
deficiency in GR exhibit more severe obesity-induced liver
inflammation (118). In human and mouse, Kupffer cells secrete
the immunosuppressive cytokine IL-10 (119). IL-10 deficiency or
depletion exacerbates hepatic immune-mediated liver damage and
abrogates tolerance induction (120). For example, in the
Concanavalin A hepatitis model, which is used to study tolerance
induction and immune-mediated hepatitis, Kupffer cell-derived IL-
10 exerts hepatoprotective and tolerogenic effects through Treg
activation (121). Similarly, Kupffer cells interact directly with T cells
in response to administration of particulate antigens, causing the
expansion of IL-10-expressing Tregs (122). It is well known that IL-
10 is a glucocorticoid-induced gene (123, 124); therefore,
glucocorticoid levels may directly influence the inflammatory
environment in the liver by modulating Kupffer cell IL-10
expression (Figure 4).

The liver’s response to injury is complex and depends upon
the interaction of multiple cell types, both parenchymal and non-
parenchymal. Paradoxically, Kupffer cells have been implicated
in both liver regeneration and fibrosis. They secrete pro-
inflammatory mediators, such as reactive oxygen species,
eicosanoids, prostaglandins, and cytokines that induce
recruitment of additional inflammatory cells to the liver (125).

Glucocorticoid receptor ligands have been shown to suppress
hepatic expression of pro-fibrotic genes, leading to decreased
extracellular matrix deposition (126). In addition, GR ligands
inhibit immune cell infiltration to the damaged liver, which can
exacerbate injury in certain cases. Using models of tissue-specific
deletion of GR, Kim et al. (126) demonstrated that GR signaling
controls pro-fibrotic gene expression and immune cell
infiltration via two cell types. Specifically, GR deletion in
Kupffer cells (via LysM-cre) reversed inhibition of immune cell
infiltration in response to dexamethasone. GR deletion in hepatic
stellate cells (via hGFAP-cre) reversed downregulation of fibrotic
gene expression in response to dexamethasone. These studies
suggest that GR signaling in Kupffer cells modulates factors
involved in cell recruitment to the liver, while GR signaling in
hepatic stellate cells modulates fibrosis in response to injury.
Other studies have also supported the idea that GR signaling in
Kupffer cells promotes liver homeostasis. Direct targeting of
dexamethasone to Kupffer cells promoted replenishment of
Frontiers in Immunology | www.frontiersin.org 9
glycogen stores lost during hepatic fibrosis caused by bile duct
ligation (127). Interestingly, Rose et al. (128) demonstrated that
the use of glucocorticoids completely sustained hepatocyte
longevity and improved hepatocyte functionality during the
establishment of co-culture conditions between hepatocytes
and Kupffer cells. Additional studies are needed to pinpoint
the effects of both endogenous and synthetic glucocorticoids on
specific cells within the liver and to understand the interaction
between these cell types during times of injury and homeostasis.
CONCLUSIONS AND PERSPECTIVES

Glucocorticoids mediate physiological processes in different tissues
and cell types with high specificity to systematically influence
behavior and cognition, metabolism, cardiovascular function, and
the immune system. Synthetic glucocorticoids are administrated as
drugs to treat several inflammatory conditions because of their
ability to induce potent anti-inflammatory and immunosuppressive
effects that occur due to the repression of pro-inflammatory genes
and the activation of anti-inflammatory pathways in immune cells.
Whereas restricted inflammation is beneficial, excessive or
persistent inflammation could be associated with chronic diseases.
The immune regulation process and anti-inflammatory
homeostatic mechanisms mediated by glucocorticoids are
essential in limiting and resolving the inflammatory process. The
balance of pro- and anti-inflammatory pathways plays an
important role in maintaining immune homeostasis. In addition
to its immunosuppressive functions, GR signaling may regulate
cellular metabolism and survival.

The main mechanism of action of GCs on immune cells has
been linked to their ability to induce cell death and reduce cell
survival through direct genomic effects. GR-regulated genes that
are required to drive apoptosis include pro-apoptotic mediators,
such as the BH3-protein BIM (BCL2LII), which is activated (129)
and the anti-apoptotic BCL2, which is downregulated (130). Non-
genomic effects of GR have also been proposed. Interestingly, a
second mechanism that could explain the effectiveness of GC
regulation of the immune response is the promotion of Treg
proliferation directly or indirectly through macrophage activation.
Bereshchenko et al. (131) reported that glucocorticoid-induced
leucine zipper (GILZ) promotes Treg production and enhance
Treg signaling. Macrophages have been shown to possess the
potential to induce Treg function to maintain tissue homeostasis,
while Tregs can enhance the ability of macrophages to engulf
apoptotic cells which promotes resolution of inflammation (132).
Disruption of the crosstalk between macrophages and Tregs leads
to severe autoimmune disease and chronic inflammation.

The glucocorticoid regulation of local homeostatic
mechanisms has been exemplified through the study of tissue-
specific GR knockout mice. We still have limited knowledge of
how GR-dependent gene expression contributes to the
phenotypes of tissue-specific GR knockout mice. Future studies
are needed to fully understand how GR signaling is acting in
specific tissues and in different disease states.
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Its well-known that glucocorticoids can regulate different
stages of macrophage biology, including differentiation,
survival, movement, activation and polarization. While it has
been long believed that tissue macrophages were originated from
myeloid cells and circulating adult blood monocytes, it is now
clear that many resident tissue macrophages are established
during embryonic development and persist by self-renewal.
Even, we now know that multiple populations of macrophage-
like cells co-exist in both, steady-state and inflammation.
Moreover, under inflammatory conditions, the macrophage
pool is expanded by pro-inflammatory infiltrating blood
monocytes that may or may not acquire the phenotype of the
resident macrophages in a given tissue. Whether glucocorticoids
can regulate the gene expression profile of macrophages
independently of their ontogeny, activation or polarization
states is one of the most important questions that must be
addressed. Uncovering distinct glucocorticoid-mediated gene
expression networks in macrophages may aid in the
production of targeted therapies for diseases characterized by
dysregulation of homeostasis.
Frontiers in Immunology | www.frontiersin.org 10
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