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Abstract

Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal
mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid b (Ab)-induced synaptic stress
and the loss of synapses relevant to the pathogenesis of Alzheimer’s disease (AD). However, the mechanisms controlling
axonal mitochondrial function and transport alterations in AD remain elusive. Here, we report an unexplored role of
cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) in Ab-impaired axonal mitochondrial
trafficking. Depletion of CypD significantly protects axonal mitochondrial motility and dynamics from Ab toxicity as shown
by increased axonal mitochondrial density and distribution and improved bidirectional transport of axonal mitochondria.
Notably, blockade of mPTP by genetic deletion of CypD suppresses Ab-mediated activation of the p38 mitogen-activated
protein kinase signaling pathway, reverses axonal mitochondrial abnormalities, improves synaptic function, and attenuates
loss of synapse, suggesting a role of CypD-dependent signaling in Ab-induced alterations in axonal mitochondrial
trafficking. The potential mechanisms of the protective effects of lacking CypD on Ab-induced abnormal mitochondrial
transport in axon are increased axonal calcium buffer capability, diminished reactive oxygen species (ROS), and suppressing
downstream signal transduction P38 activation. These findings provide new insights into CypD-dependent mitochondrial
mPTP and signaling on mitochondrial trafficking in axons and synaptic degeneration in an environment enriched for Ab.
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Introduction

Neurons are highly polarized cells with axons projecting from

the cell body to transmit interneuronal information. Axons rely on

axonal transport to deliver most essential proteins and membrane

bound organelles [1,2]. Among the many types of axonal transport

cargo, mitochondria play an essential role in supporting synaptic

activity and plasticity due to their ability to generate ATP and

meticulously regulate local calcium homeostasis [3–5]. The

saltatory and bidirectional transports of mitochondria accumulate

axonal mitochondria around structures such as presynapses and

growth cones where there are high energy demand and constant

calcium fluctuation [6–8], suggesting the close relationship of

mitochondrial function, transport and positioning [9].

Indeed, concomitant mitochondrial dysfunction and motility

change has been observed in neurodegenerative diseases including

Alzheimer’s disease (AD) [10]. As a major causative factor of AD,

amyloid beta (Ab) particularly its oligomeric form, exerts multiple

effects on mitochondrial function including intra-mitochondrial

Ab accumulation, decreased mitochondrial respiration and

membrane potential, impaired permeability transition, and in-

creased production of mitochondrial reactive free radicals [11–19].

Our recent studies indicate that mitochondria at synapses

including axonal mitochondria are early victims of Ab toxicity

along with alterations in axonal mitochondrial movement [20–22].

More recently, emerging studies accentuated alterations in axonal

mitochondrial motility and dynamics in Ab-rich environments and

suggest axonal mitochondrial motility change is closely correlated

to synaptic dysfunction in AD neurons [22–26]. It thus raises an

intriguing question of whether Ab-induced mitochondrial dys-

function contributes to changes in axonal mitochondrial motility.

The specific mechanisms underlying Ab-induced impairment in

axonal mitochondrial transport have not been fully elucidated.

Cyclophilin D (CypD; gene: Ppif) is a key component of

mitochondrial permeability transition pore (mPTP) that consists of

the voltage dependent anion channel (VDAC) in the outer

mitochondrial membrane, the adenine nucleotide translocase

(ANT) in the inner membrane, and cyclophilin D (CypD) in the

mitochondrial matrix. Release of CypD from matrix allows it to

bind to the ANT and VDAC to trigger the opening of mPTP. The

opening of mPTP constitutes non-selective, high conductance pore

allowing transport of not only calcium by any solute below the
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pore size. This results in mitochondrial osmotic swelling and

dissipation of mitochondrial membrane potential, reduced mito-

chondrial calcium retention capacity; decreased membrane

potential; increased reactive oxygen species (ROS) production;

and eventually, cell death [13,27,28]. Accordingly, we have

demonstrated that the blockade of CypD significantly attenuates

mPTP-related mitochondrial dysfunction and cognitive impair-

ments in an AD mouse model [12,29], suggesting the protective

effect of CypD depletion against Ab-associated synaptic de-

generation. However, it remains unclear whether CypD-de-

pendent mPTP leading to mitochondrial dysfunction is linked to

Ab-induced damage of axonal mitochondrial transport. If so, does

blockade of mPTP via CypD depletion attenuate impaired

mitochondrial transport and protect from Ab toxicity? Given the

close relationship of mitochondrial function with transport and the

critical role of normal mitochondrial distribution in sustaining

synaptic plasticity and strength, it is essential and logical to

delineate the role of CypD in mitochondrial trafficking in axons in

Ab rich environment. The outcome of this study on axonal

mitochondrial transport deepened our understanding of the

impact of Cyclophilin D related perturbations on mitochondrial

function and added to the body of CypD-dependent mechanisms

underlying Ab-induced mitochondrial and synaptic degeneration

[12,29].

The goal of the present study is to determine the effect of CypD

on Ab-induced axonal mitochondrial trafficking and synaptic

damage. We demonstrate that the blockade of mPTP by CypD

depletion rescues axonal mitochondrial trafficking and protects

synapse from Ab toxicity. The potential mechanisms underlying

the protection of CypD deficiency on axonal mitochondrial

trafficking are related to the suppression of Ab-induced calcium

perturbation and accumulation of axonal reactive oxygen species

(ROS), and activation of downstream signal P38/MAPK pathway.

These studies delineate new insights into the crosstalk of CypD-

dependent mPTP and axonal mitochondrial transport, contribut-

ing to the synaptic pathophysiology in AD pathogenesis, especially

related to Ab-induced axonal mitochondrial injury.

Methods

Ethics Statement
This study was performed in strict accordance with the

recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocol was approved by the Committee on the Ethics of Animal

Experiments of the University of Kansas (IACUC protocol

number: 203-01).

Mice
Animal studies were approved by the Animal Care and Use

Committee of University of Kansas in accordance with the

National Institutes of Health guidelines for animal care. CypD

homozygous null mice (Ppif 2/2) were kind gifts from Dr. Jeffery

D. Molkentin. These animals were backcrossed 10 times into the

C57BL6 background.

Neuronal Culture
Mouse hippocampal neurons were cultured as previously

described [20].

Preparation of Oligomeric Ab
Oligomeric Ab1-42 was prepared as previously described [20].

Axonal Mitochondrial Trafficking Recording and Data
Analysis
These recordings were performed using previously reported

protocols [20]. Axonal processes were determined by morpholog-

ical characteristics and confirmed by Tau-1 retrospect staining as

previously described [20]. To be more specific, a process that is

two to three times longer than other processes stemming from the

soma is considered to be an axon; besides, neurons were subjected

to retrospect staining of Tau-1, which is abundant in axons and is

widely accepted as axonal marker [20,30–32]. The images were

taken before and after treatment with 200 nM oligomer Ab
(24 hr), and/or 1 mM SB203580 (24 hr), 5 mM Probucol (24 hr)

or 5 mM A23187 (30 minutes).

Treatment of Cyclosporine A
Cyclosporin A (CsA, Sigma) at a final concentration of

500 nM was added to the cells 30 min prior to oligomeric Ab
treatment.

Measurement of Mitochondrial Intra-axonal Ca2+ and
ROS
Neurons were loaded with 1 mM Fluo-4 AM (Invitrogen) for 30

minutes to monitor changes in intracellular Ca2+ or 10 mM
dichlorodihydrofluorescein (H2-DCF) to detect ROS. Fluores-

cence images were captured using the inverted Zeiss Axiovert 200

microscope with a stage based chamber (5% CO2, 37uC). Images

were analyzed using Image J software. Background fluorescence

was calculated by sampling the areas that were around the

measured axons, but had no axons in these fields and background

intensity was subtracted from the raw data.

Immunoblotting Analysis
Samples were lysed in extraction buffer (10 mM Tris-HCl

pH 7.4, 100 mM sodium chloride, 1 mM EDTA, 1 mM EGTA,

1 mM sodium fluoride, 20 mM sodium pyrophosphate, 2 mM

sodium orthovanadate, 1%Triton X-100, 10% glycerol, 0.1%

SDS, 0.5% deoxycholate, 1 mM PMSF) containing protease

inhibitor cocktail (Calbiochem, set V, EDTA free), separated by

SDS-PAGE (12% Bis-tris gel, Invitrogen), and then transferred to

nitrocellulose membrane (Amersham). After blocking in TBST

buffer (20 mM Tris-HCl, 150 mM sodium chloride, 0.1% Tween-

20) containing 5% nonfat dry milk (Santa Cruz) for 1 hr at room

temperature, the membrane was incubated and gently shaken

overnight (at 4uC) with primary antibodies. This was followed by

incubation with corresponding secondary antibody for 1 hr at

room temperature. Chemiluminescence was detected using an

electrochemiluminescence instrument (GE). The following anti-

bodies were used in this experiment: mouse anti-phospho (pT180/

pY182) -p38 (BD Biosciences), rabbit anti-p38 (Cell signaling

technology), goat anti mouse IgG HRP conjugated and goat anti

rabbit IgG HRP conjugated (Invitrogen). NIH image J software

was utilized to analyze the scanned blots and to quantify the

intensity of immunoreactive bands.

Electrophysiological Recording
Recordings were performed at 30uC as described in the

previous reports [33,34]. Cells were continuously perfused with

oxygen saturated artificial cerebrospinal fluid (ACSF) containing

1 mM TTX and 50 mM picrotoxin at a rate of 2 ml/min. Patch

pipettes were filled with intrapipette solution containing 130 mM

K-gluconate, 5 mM KCl, 10 mM HEPES, 2.5 mM MgCl2,

10 mM K-phosphocreatine, 4 mM MgATP and 0.6 mM EGTA,

pH 7.3. Recording pipettes were prepared on a pipette puller
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(Sutter) and had a resistance of 2.5–4 MV when filled with

intrapipette solution. Seal was performed on clearly visualized

neuron bodies with 10–20 mm diameters. The spontaneous

miniature excitatory postsynaptic currents (mEPSCs) were re-

corded at holding potential at 270 mV using MultiClamp 700A

(Axon Instruments) and events were analyzed using Axon clampfit

(Axon Instrument, version 8.2.0.235) and MiniAnalysis 6.0

(Synaptosoft).

Neuronal Synaptic Density
Synaptic density of cultured neurons was measured by counting

synaptophysin clusters attaching to neuronal dendrites and

presented as the numbers of synaptophysin clusters per micron

of dendrite. Neurons were fixed in 4% paraformaldehyde for 20

minutes and then blocked in 10% goat serum for 30 minutes.

Synaptophysin was visualized by rabbit anti-synaptophysin IgG

(Dako) followed by goat anti-rabbit IgG conjugated with TRITC

(Sigma – Aldrich Corp.). Neuronal dendrites were visualized by

mouse anti-MAP2 IgG (Boehringer Mannheim) followed by goat

anti-mouse IgG conjugated with FITC (Sigma – Aldrich Corp.).

Images were taken under a Biorad confocal and analyzed by NIH

Image J program.

Statistical Analysis
One-way ANOVA was used for repeated measure analysis.

P,0.05 was considered significant. Post-hoc ANOVA was used

when appropriate. STATVIEW statistics computer software was

utilized. All data were expressed as mean 6 Standard Error of the

Mean (SEM).

Results

Loss of CypD Attenuates Ab-induced Changes in Axonal
Mitochondrial Motility and Dynamics
Axonal mitochondria are distributed along axons (Fig. S1) and

decreased axonal mitochondrial density is a manifestation of

disrupted mitochondrial trafficking. To determine the direct effect

of CypD, we compared axonal mitochondrial distribution between

cultured nonTg and CypD-deficient (Ppif 2/2) hippocampal

neurons after exposure to 200 nM oligomeric Ab1-42 or rAb
(reversed sequence of Ab1-42) for 24 hours to mimic low in vivo

levels and chronic Ab insults in AD brain. Following Ab
treatment, nonTg neurons revealed significantly decreased axonal

mitochondrial density (vehicle: 0.23660.01/mm vs. Ab:
0.18860.01/mm) (Fig. 1A). In contrast, CypD depletion protected

axonal mitochondrial density from Ab toxicity (Fig. 1A; Ab:
0.24660.01/mm vs. vehicle: 0.25460.019/mm). Axonal mito-

chondrial density showed no significant changes in vehicle-treated

nonTg neurons when compared to Ppif 2/2 neurons (Fig. 1A),
suggesting no effect of CypD depletion on axonal mitochondrial

distribution without Ab insults. The addition of control reversed

Ab42-1 (rAb) did not affect axonal mitochondrial density in

nonTg or Ppif 2/2 neurons (Fig. 1A). These results indicate that

CypD depletion preserves the organization of axonal mitochon-

drial distribution following Ab insults.

We next investigated patterns of axonal mitochondrial move-

ment. Mitochondria in the middle region of the axon were utilized

for the study of movement patterns (movable or stationary) and

movement direction (anterograde or retrograde) as previously

described [20]. Mitochondria with displacement more than its

length (,2 mm) during a 120 second recording were considered to

be movable; less movement was considered as ‘stationary.’ Among

the mitochondria that showed movement, those exhibiting

displacement towards the distal end of the axon at the end of

the recording period were termed anterograde mitochondria,

while those showing movement to the proximal end were termed

retrograde mitochondria.

To objectively examine movement changes following Ab
treatment, we first measured baseline (vehicle treatment) move-

ment patterns. The percentage of stationary mitochondria among

total mitochondria in nonTg neurons was comparable to those in

Ppif 2/2 neurons (Fig. 1B; nonTg: 58.3061.32% vs. Ppif 2/2:

60.2260.92%), suggesting no effect of CypD depletion on normal

docking of mitochondria. However, the percentage of stationary

mitochondria increased by 1.3 fold in Ab–treated nonTg neurons

(Fig. 1B, 1E; Ab: 73.4062.34% vs. vehicle: 58.3061.32%), but

not in Ppif 2/2 neurons (Fig. 1B, 1E; Ab: 62.3061.45% vs.

vehicle: 60.2260.92%). These data indicate that the absence of

CypD reverses Ab-induced impairments in mitochondrial traf-

ficking within axonal processes.

We then analyzed the direction of mitochondrial transport.

Consistent with previous results [20,24,26], Ab treatment signif-

icantly reduced the percentage of anterograde (Fig. 1C1, 1E;
from 24.861.44% to 13.161.34%) and retrograde mitochondria

(Fig. 1C2, 1E; from 17.5261.28% to 12.9160.92%) compared

to vehicle-treated nonTg or Ppif 2/2 neurons. CypD-deficient

neurons showed increases in both anterograde and retrograde

mitochondrial movement in the face of Ab toxicity as compared to

Ab-treated nonTg neurons (Fig. 1C1–2, 1E; anterograde:

21.5561.59%; retrograde: 16.1560.87% ).

Next, we examined the velocity of mitochondrial movement.

Compared to vehicle-treated control, Ab treatment decreased

anterograde velocity of nonTg mitochondria by 26% (Fig. 1D1,
1E; Ab: 0.28760.018 vs. vehicle: 0.38860.016 mm/sec), while

the anterograde velocity of Ppif 2/2 mitochondria was preserved

in conditions of Ab toxicity (Fig. 1D1, 1E; 0.43560.022 mm/

sec). Vehicle treatment alone for nonTg and Ppif 2/2 mitochon-

dria demonstrated comparable anterograde velocity (Fig. 1D1;
nonTg: 0.38860.016 vs. Ppif 2/20.42260.017 mm/sec). Analysis

of cumulative distribution data revealed a leftward shift in the

velocity curve for Ab-treated anterograde nonTg mitochondria

(Fig. 1D2), while velocity in Ab-treated Ppif 2/2 anterograde

mitochondria was not shifted as compared with vehicle-treated

mitochondria (Fig. 1D3). Consistent with our previous results

[20], Ab treatment did not significantly impact the velocity of

nonTg retrograde mitochondria when compared to vehicle-

treatment (Fig. 1D4; vehicle: 0.38160.016 vs Ab:
0.36260.032 mm/sec). Further, the velocity of Ppif 2/2 retrograde

mitochondria was also not affected by Ab insults (Fig. 1D4;
vehicle: 0.45060.022 vs Ab: 0.41960.015 mm/sec). As a control,

the addition of rAb did not significantly change directional

mitochondrial movement in nonTg or Ppif 2/2 neurons (Fig. 1B–
1D4). Taken together, these data indicate that CypD depletion

significantly protects directional mitochondrial transport from the

effects of Ab toxicity.

Effect of CypD Depletion on Ab-instigated Axonal
Mitochondrial Fragmentation
To evaluate changes in mitochondrial morphology, we mea-

sured the average length of axonal mitochondria. Ab treatment

decreased the average length of nonTg axonal mitochondria by

34.3% (Fig. 2A; 1.42160.022 mm in vehicle groups vs.

0.93360.037 mm in Ab-treated groups). Cumulative distribution

data showed that Ab treatment caused a remarkable increase in

the number of small mitochondria and a decrease in the number

of long mitochondria in nonTg neurons (Fig. 2B). Although Ppif
2/2 mitochondria demonstrated a 14.9% decrease in average

length following Ab exposure as compared to the corresponding in
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vehicle groups (Fig. 2A vehicle: 1.48360.071 vs. Ab:
1.25660.043 mm), the average length of Ab superimposed Ppif
2/2 mitochondria was better preserved than that of Ab-treated
nonTg mitochondria (Fig. 2A–C; Ppif 2/2:1.25660.043 mm vs.

nonTg: 0.93360.037 mm). No significant difference was found in

an average length when comparing vehicle-treated nonTg to Ppif
2/2 axonal mitochondria (Fig. 2A). The rAb as a control did not

alter axonal mitochondrial length (Fig. 2A–C). These results

suggest that Ab toxicity leads to increased axonal mitochondrial

fragmentation and importantly, this effect is significantly attenu-

ated by CypD depletion.

CypD-associated Axonal Calcium Perturbation Alters
Axonal Mitochondrial Transport
Ab has been shown to instigate intra-neuronal calcium elevation

[35,36], and the elevated intra-neuronal calcium is known to

inhibit mitochondrial transport [37,38]. Given that blockade of

CypD-mediated mPTP formation significantly increases mito-

chondrial calcium buffering capability to maintain intra-cellular

calcium homeostasis [12,27], we evaluated whether CypD de-

ficiency protects axonal mitochondrial motility by stabilizing intra-

neuronal calcium in Ab-insulted neurons. First, we measured

intra-axonal calcium levels in Ab-treated neuron as compared with

vehicle-treated neurons by quantifying the staining intensity of

Fluo-4, a cytoplasmic calcium indicator, and then evaluated the

Figure 1. Loss of CypD protects axonal mitochondrial motility and dynamics from Ab toxicity. (A) CypD depletion increased axonal
mitochondrial density (numbers per micron of axon) in Ab-treated neurons. rAb: reversed Ab42-1. There is no significant difference in the axonal
mitochondrial density between vehicle-treated nonTg and Ppif 2/2 neurons. Data were collected from 3 independent experiments. (B) CypD
depletion decreased the percentage of stationary mitochondria in Ab-treated neurons. There were no significant changes in the percentage of
stationary mitochondria between vehicle-treated nonTg and Ppif 2/2 neurons. Data were collected from 1380, 1074, 1410 mitochondria from vehicle,
Ab and rAb groups in nonTg neurons, and 1634, 1505, 642 mitochondria in Ppif 2/2neurons, respectively, in 4 independent experiments. (C) CypD
depletion restored the decrease in the percentage of anterograde mitochondria (C1) and retrograde mitochondria (C2) in Ab-treated neurons. Data
were collected from 4 independent experiments. (D) CypD depletion increased the velocity of mitochondrial movement. (D1) Ab treatment deceased
the velocity of anterograde movement of nonTg mitochondria but not in CypD-deficient (Ppif 2/2) mitochondria. Data were collected from 209, 141,
46 mitochondria from vehicle, Ab and rAb groups in nonTg neurons, and 158, 209, 52 mitochondria in Ppif 2/2neurons. (D2–3) The cumulative
distribution data showed a left shift of the velocity of anterograde mitochondria when comparing the curve for Ab-treated nonTg mitochondrial to
Ppif 2/2 mitochondria. Data were collected from 3 independent experiments, respectively. (D4) Ab treatment had no effect on the velocity of the
retrograde mitochondria from both nonTg and Ppif 2/2 mice. (E) CypD depletion rescued axonal mitochondrial mobility. Images in the top portion of
the panel and kymographs in the lower panel were generated from the live imaging movies. In the kymographs, the X axis represents the
mitochondrial position and the Y axis is time. Vertical white lines represent stationary mitochondria and diagonal lines represent moving
mitochondria. Anterograde movements are from left to right, retrograde movements are reversed. Scale bars represent 10 mm.
doi:10.1371/journal.pone.0054914.g001
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effect of CypD blockade. As shown in figure 3, Ab-treated nonTg

axons had a 2.3-fold higher Fluo-4 intensity than vehicle-treated

nonTg axons (Fig. 3A–B1–2), while axons treated with

cyclosporine A (CsA), a pharmacological inhibitor of CypD,

(Fig. 3A–B3) or genetic CypD-deficient axons (Fig. 3A–B4-5)
showed no significant change in calcium levels in the presence of

Ab. These results demonstrate that blockade of CypD attenuates

Ab-induced intra-neuronal calcium elevation and maintains intra-

neuronal calcium homeostasis.

To further validate the role of CypD blockage on Ab-induced
calcium elevation as shown in Fig. 3A–B on abnormal axonal

mitochondrial transport, we evaluated the direct effect of calcium

overload on mitochondrial transport. Because CypD deficiency

protects cell death from A23187-induced Ca2+ overload, a strong

inducer of calcium elevation in intact cells [27], we assessed the

effect of CypD depletion on A23187-mediated alterations in

axonal mitochondrial transport. Neurons were exposed to 5 mM
Calcium Ionophore (A23187). Axonal mitochondrial transport

was recorded pre- and post-treatment with A23187 in the same

neurons. Thirty minutes after A23187 treatment, the total of

movable nonTg axonal mitochondria decreased by ,50%

(Fig. 3C, 3G1; 20.0265.12% in post-treatment vs.

42.5463.31% in pre-treatment). As a result, the percentage of

stationary mitochondria was significantly increased (Fig. 3D,
3G1; 57.4663.31% in pre-treatment vs. 79.9865.12% in post-

treatment). Similarly, A23187 treatment reduced anterograde and

retrograde movement of mitochondria by ,54% (Fig. 3E, 3G1;
23.7361.56% in pre-treatment vs. 10.7964.02% in post-treat-

ment) and ,50% (Fig. 3F, 3G1; 18.8162.18% in pre-treatment

vs. 9.2362.39% in post-treatment), respectively. Notably, Ppif 2/2

axonal mitochondria are resistant to A23187-altered mitochon-

drial movement when evaluated for the percentage of movable vs.

stationary mitochondria, anterograde or retrograde movement

(Fig. 3C–G). These results indicate that calcium imbalance plays

a role in axonal mitochondrial trafficking and that CypD depletion

protects against calcium-mediated disruption of axonal mitochon-

drial transport and motility.

Effect of CypD Deficiency on ROS-instigated Alterations
in Axonal Mitochondrial Transport
Because mitochondria are a major site of reactive oxygen

species (ROS) production and because the formation of CypD-

mediated mPTP triggers mitochondrial ROS generation, we next

examined whether increased ROS generation contributes to

impaired axonal mitochondrial transport. We first measured

intra-axonal ROS levels using 2979-dichlorofluorescein diacetate

(DCF-DA) fluorescent probe as an indicator of intracellular ROS

in Ab-treated axons for the comparison with vehicle-treated axons.

Ab-treated nonTg neurons revealed significantly higher DCF-DA

intensity than the vehicle-treated group (Fig. 4A, 4B1–2), while
Cyp D blockade produced by the addition of CsA (Fig. 4A, 4B3)
or genetic deletion of CypD (Fig. 4A, 4B4–5) significantly

blunted Ab-induced increase in axonal DCF-DA intensity. These

results indicate that blockade of CypD attenuates axonal ROS

production or accumulation following Ab insults.

To further evaluate whether increased axonal ROS production

contributes to Ab- mediated alterations observed in axonal

mitochondrial trafficking, we examined the effects of the

antioxidant Probucol on Ab-impaired mitochondrial movement.

Treatment with Probucol completely rescued the reduced

percentage of movable mitochondria following Ab treatment

(Fig. 4C–D; from 26.8761.59% to 41.5362.86%). Accordingly,

probucol treatment protected against Ab-induced disruption of

anterograde (from 14.4461.40% to 21.8361.28%) and retrograde

mitochondrial movement (from 12.2361.61% to 17.3661.23%)

(Fig. 4C–D).

CypD-dependent Activation of p38 MAP Kinase Underlies
the Axonal Mitochondrial Injury
It is known that Ab activates a variety of kinases including p38/

MAP kinase [39,40] and that impaired mPTP leads to activation

of p38 [41]. ROS and calcium are inducers for activation of p38/

MAP kinase [42–44]. P38 activation inhibits fast axonal transport

(FAT) by phosphorylation of kinesin (motor protein associated

with FAT), which are respectively responsible for axonal

mitochondrial transport [45,46]. We therefore examined the

relatively unexplored role of CypD-dependent mPTP in activation

of p38 on Ab-mediated axonal mitochondrial damage. To do so,

we first analyzed the effect of CypD on Ab-induced phosphory-

lation of p38 by immunoblotting. As shown in figure 5A–B, Ab-
treated nonTg neurons exhibited significantly increased levels of

p38 phosphorylation compared to vehicle-treated nonTg neurons

(Fig. 5A). Addition of a specific p38 inhibitor (SB203580) to

neurons completely suppressed p38 phosphorylation (Fig. 5A).
Interestingly, CypD-deficient neurons were resistant to Ab-in-
duced p38 phosphorylation (Fig. 5A–B). It was noted that the

Figure 2. Effect of CypD on Ab-induced changes in axonal mitochondrial morphology. (A) The average length of axonal mitochondria
decreased in Ab-treated nonTg neurons, but was largely preserved in Ppif 2/2 neurons. Data were collected from 3 independent experiments. (B, C)
Cumulative distribution data showed that Ab treatment caused a remarkable increase in fragmentation of small mitochondria and a decrease in the
numbers of long mitochondria in nonTg neurons; this was partially attenuated in Ppif 2/2neurons.
doi:10.1371/journal.pone.0054914.g002
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baseline of phospho-p38 or total p38 in Ppif 2/2 neurons was

comparable to that in nonTg neurons, suggesting no effect of

CypD deficiency on p38 signal transduction under physiological

condition. Based on the observations that CypD depletion

significantly stabilized Ab-induced intracellular calcium and

ROS perturbations in neurons and elevated intracellular calcium

and ROS are associated with axonal mitochondrial transport and

dynamics defects, we then tested whether CypD deficiency inhibits

A23187-induced p38 activation by stabilizing intracellular calcium

levels and whether Ab-induced p38 activation is suppressed by

antioxidant. We first exposed nonTg and CypD deficient neurons

to 5 mM A23187. Indeed, A23187 treatment significantly in-

creased phospho-p38 compared to vehicle-treated nonTg neurons

(Fig. S2). No significant elevation of p38 phosphorylation was

detected in A23187-treated CypD deficient neurons (Fig. S2).

Similarly, the co-incubation of Probucol with Ab significantly

suppressed Ab-induced p38 activation in nonTg neurons (Fig. S3).

Taken together, these data suggest the linkage of p38 activation

with mPTP associated intracellular calcium and Ab-induced ROS

disturbances.

To determine if there is a direct link of p38 activation to

mitochondrial transport, we assessed the effect of p38 inhibitor on

axonal mitochondrial transport following Ab treatment. Treat-

ment with a specific p38 inhibitor (SB203580) resulted in

a significantly higher percentage of movable mitochondria in

Ab-insulted neurons than in neurons without SB20358 treatment

(Fig. 5C; 35.3462.74% with SB203580 vs. 21.9462.95% without

SB203580). Similarly, SB203580 treatment protected against Ab-
induced alterations in both anterograde and retrograde mitochon-

dria (Fig. 5C). As the result, SB203580 treatment attenuated Ab-
induced reduction in axonal mitochondrial density (Fig. 5D;

0.19960.01/mm with SB203580 vs. 0.28360.02/mm without

SB203580). These results demonstrate that CypD depletion

reduces Ab-mediated activation of p38 contributing to the

impairment of axonal mitochondrial transport.

Figure 3. Effect of CypD depletion on Ab-induced intra-axonal calcium elevation. (A) Ab-treated nonTg hippocampal neurons displayed an
increase in axonal calcium levels. CypD-deficient or CsA-treated (500 nM for 24 hours) neurons diminished elevated levels of calcium. rAb had no
effect on axonal calcium levels. Data were derived from 3 independent experiments. (B) Representative images of axonal calcium staining in nonTg
and Ppif 2/2hippocampal neurons at indicated treatment. Scale bar represents 2 mm. (C–G2) Effect of CypD depletion on calcium ionophore
(A23187)-impaired axonal mitochondrial motility. NonTg and Ppif 2/2hippocampal neurons were exposed to A23187 (5 mM for 30 min) and
subjected to recording of axonal mitochondrial movements including movable (C), stationary (D), anterograde (E) and retrograde (F) mitochondria.
*P,0.05 vs. other groups of neurons. (G1–G2) The kymograph of axonal mitochondrial movement in nonTg (G1) and Ppif 2/2 (G2) neurons before
and after A23187 treatment. A23187 treatment resulted in less movement than the vehicle-treated group. Ppif 2/2 neurons revealed increased
moving traces compared to nonTg neurons in the presence of A23187. Scale bar represents 10 mm.
doi:10.1371/journal.pone.0054914.g003
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CypD Depletion Protects Against Ab-induced Synaptic
Damage
To analyze the contribution of abnormal axonal mitochondrial

transport and/or its directionality to synaptic dysfunction and loss

of synapses in Ab-rich environment, we measured synaptic activity

by recording the spontaneous miniature excitatory post-synaptic

currents (mEPSCs) and also quantified synaptic density. To

determine the effect of CypD on synaptic activity, nonTg and Ppif
2/2neurons were treated with Ab and then subjected to whole-cell

patch-clamp recording of mEPSCs. The frequency of mEPSCs is

largely associated with the probability of presynaptic release and

the amplitude of mEPSCs at certain levels relies on the size of the

vesicle-releasing pool in presynaptic regions [47–49]. Vehicle-

treated nonTg and Ppif 2/2 neurons showed similar patterns of

mEPSCs frequency and amplitude, suggesting no effect of CypD

deficiency on the spontaneous nonaction potential-dependent

activation of synapses under physiological condition. However,

Ab-insulted nonTg neurons showed a 54.6% decrease in mEPSCs

frequency, compared to 16.4% reduction in Ppif 2/2 neurons

(Fig. 6A). As a result, Ab-superimposed Ppif 2/2 neurons

significantly preserved mEPSCs frequency (Fig. 6A, 6C;
1.8460.24 Hz in Ppif 2/2 neurons vs. 1.0960.23 Hz in nonTg

neurons). Similarly, the amplitude of mEPSC was significantly

increased in Ab-treated Ppif 2/2 neurons compared to Ab-treated
nonTg neurons (Fig. 6B–C; 61.8863.05 pA in Ppif 2/2 vs.

47.0363.28 pA in nonTg neurons).

To examine the protective effect of CypD depletion on Ab-
induced loss of synapses, we quantified synaptophysin-positive

clusters attaching to dendrites in cultured hippocampal neurons

derived from nonTg and CypD-deficient mice. Synapses were

recognized as synaptophysin-positive clusters attaching to den-

drites and dendrites were determined by MAP2 (microtubule-

associated protein 2) staining. Ab-treated nonTg neurons

exhibited significantly decreased presynaptic density compared

to vehicle-treated control (Fig. 6D–E; vehicle: 0.49260.029/mm
vs Ab: 0.27360.02/mm), whereas CypD depletion completely

reversed the loss of presynaptic density (Fig. 6D–E;
0.52760.026/mm). The rAb did not affect synaptic density

(Fig. 6D–E; 0.50660.019/mm). There was no difference in

presynaptic density between nonTg and Ppif2/2 neurons in the

vehicle-treated groups (Fig. 6D–E). To determine effect of p38

activation on loss of synapses, neurons were treated with specific

p38 inhibitor (SB203580) for 30 min prior to Ab. A shown in

Fig. 6C–D, the addition of SB203580 to culture increased synaptic

density (Fig. 6F–G; 0.44260.033% with SB203580 vs.

0.27360.020% without SB203580). Taken together, our results

indicate that lack of CypD protects neuron from Ab-insulted
synaptic injury with involvement of CypD/Ab-associated P38

MAPK signaling, which is associated with compromised mito-

chondrial transport in axon.

Discussion

Abnormal axonal mitochondrial transport is a recently recog-

nized mitochondrial pathology induced by Ab [20–26,50]. The

precise mechanisms underlying impairments in axonal mitochon-

drial transport and the link of mitochondrial dysfunction to

synaptic damage in AD are not well understood. In this study, we

Figure 4. CypD depletion attenuates Ab-induced intra-axonal ROS elevation. (A) Quantification of DCF intensity in nonTg- or Ppif 2/2

hippocampal neurons treated with vehicle or Ab. Addition of CsA (500 nM) to cells for 24 hours reduced the DCF intensity. Data were derived from 3
independent experiments. (B) Representative images of axonal DCF staining in nonTg and Ppif 2/2 hippocampal neurons for the indicated treatment.
Scale bar is 10 mm. (C–D) Effect of antioxidant (Probucol) on Ab-induced axonal mitochondrial motility. (C) Administration of Probucol (5 mM, 24
hours) ameliorated changes in Ab-induced axonal mitochondrial motility. (D) Kymograph images show the protected effects of axonal mitochondrial
moving traces following Probucol treatment. Scale bar is 10 mm.
doi:10.1371/journal.pone.0054914.g004
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analyzed the effect of CypD on Ab-mediated mitochondrial

motility and distribution in hippocampal neurons using mice with

genetic depletion of CypD. Our results show that CypD depletion

protects against Ab-induced alterations in axonal mitochondrial

transport as shown by increased mitochondrial motility and

distribution, and improved anterograde and retrograde move-

ment. The possible mechanisms underlying the protective effect of

lacking CypD are suppressed mPTP opening, reduced ROS

production, and increased calcium buffering capacity in axonal

mitochondria. Furthermore, we also demonstrated that CypD-

mediated p38 activation contributes to Ab-impaired axonal

mitochondrial transport and synaptic injury. We focus our

attention on the protective effect of CypD deficiency on axonal

mitochondrial movement in view of the essential role of normal

axonal mitochondrial trafficking in supporting synaptic plasticity.

Our current study uncovers the role of CypD in Ab-mediated

alterations in axonal mitochondrial motility and dynamics

contributing to synaptic degeneration in AD.

An increasing body of evidence suggests that oligomeric Ab
inhibits axonal mitochondrial transport and breaks the mitochon-

drial fusion/fission balance. Ab-disrupted axonal mitochondrial

trafficking is a mechanism underlying synaptic degeneration in AD

[20,23–26,50]. In the present of study, we examined the effect of

relatively low concentration of Ab (200 nM) that did not alter cell

viability on axonal mitochondrial transport to mimic low in vivo

levels and chronic Ab insults in AD brain. Similar to what have

been reported [20,23–26,50], under our experimental condition,

200 nM oligomeric Ab significantly reduced mitochondrial density

and movement in axon by 30–40% (Fig. 1A–D and 2A) without

significant changes in the cell viability. This suggests an early

change in axonal mitochondrial trafficking is prior to neuronal

death. A relatively low concentration of Ab (200 nM) used in our

study may account for the modest effects on mitochondrial

movement without significant neurotoxicity. Indeed, a study has

shown that the acute treatment of monomeric Ab demonstrated

significant inhibitory effect on neuronal mitochondrial movement

[51], suggesting that both Ab species (monomeric or oligomeric

forms) are toxic to neuronal mitochondrial transport. In consid-

eration of the significance of oligomeric Ab-induced mitochondrial

and synaptic dysfunction relevant to the AD pathogenesis [52] and

our experimental condition (chronic treatment of low concentra-

tion of 200 nM Ab for 24 hours) in which condition that

monomeric Ab is prone to form oligomers during incubation time

[53], we used oligomeric Ab for all our experiments. In addition,

Figure 5. Effect of CypD on Ab-induced activation of p38 MAP kinase and axonal mitochondrial motility. (A) Quantification of phospho-
p38 immunoreactive bands (pT180/pY182) in hippocampal neurons treated with vehicle, Ab, or SB203580 (SB, 1 mM) plus Ab, respectively, which was
normalized for the total p38. (B) Representative immunoblots for phospho- and total-p38. (C–E) Administration of p38 inhibitor, SB203580 (1 mM, 24
hours) to cells ameliorated Ab-induced axonal mitochondrial motility changes (C) and mitochondrial density (D). (E) Kymographs showed the
protected effects of axonal mitochondrial movement after SB203580 treatment. Scale bar is 10 mm.
doi:10.1371/journal.pone.0054914.g005
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reversed Ab peptide (rAb) that has the same molecular weight and

composition of amino acids with Ab but without biological effects

was used as a widely accepted control to verify the specific effects

of Ab [54,55].

To elucidate the protective mechanisms of CypD depletion, we

focused on the major consequences of mPTP formation on axonal

mitochondrial motility and morphology: impaired mitochondrial

calcium handling capacity and ROS generation. Ab has been

reported to increase intracellular Ca2+, which could have more

targets than mitochondrial trafficking. In view of the role of CypD-

dependent mPTP on maintaining intracellular Ca2+ homeostasis,

significance of Ab-impaired mitochondrial transport on synaptic

degeneration, and unexplored role of CypD on mitochondrial

transport, it is essential and logical to investigate the involvement

of CypD on Ab-induced abnormal axonal mitochondrial trans-

port. CypD is a key component for the formation of mPTP

contributing to maintaining calcium homeostasis. CypD deficiency

inhibits opening of mPTP, subsequently, increases mitochondrial

calcium buffering capacity in response to changes in intracellular

calcium levels such as calcium overloading [12,27,29,56]. There-

fore, CypD-dependent mPTP is an important regulating mecha-

nism of intracellular Ca2+ homeostasis.

We have presented data showing that blockade of CypD by

genetic depletion of CypD or pharmacological CypD inhibitor

significantly suppressed Ab-induced elevation of the intracellular

calcium in axon (Fig. 3A), which are consistent with our [12] and

other [27] published studies. These results suggest that an

inhibitory effect of CypD deficiency on Ab-mediated changes in

intracellular Ca2+ levels is important for maintaining normal

mitochondrial transport. To test this hypothesis, we examined

a direct effect of CypD deficiency on ionomycin (A23187)-induced

Ca2+ overload, a strong inducer of Ca2+ elevation in intact cells,

Figure 6. Effect of CypD on Ab-induced synaptic damage. (A–C) Electrophysiological recording of mEPSCs for Ab-treated nonTg and Ppif 2/2

neurons. CypD deficiency alleviated Ab-induced decrease in mEPSCs frequency (A) and amplitude (B). Data were derived from 16–19 neurons for
each group. (C) Representative traces of mEPSCs in the indicated group. Scale bar represents 100 pA in amplitude and 25 seconds in time. (D–E)
Effect of CypD deficiency on synaptic density. The results were derived from 20–30 neurons of each group. Dendrites were visualized by the staining
of MAP2 and synapses were recognized as synaptophysin-positive clusters overlapping with dendrites. (E) Representative images for double staining
of synaptophysin and MAP-2 in the indicated groups. MAP2 is shown in green color and synaptophysin is labeled by red fluorescence. (F–G) Effect of
Ab-induced activation of p38 MAP kinase on synaptic density. (F) Administration of p38 inhibitor, SB203580 (1 mM, 24 hours) to cells ameliorated Ab-
induced synaptic loss. (G) Representative images showed the protected effects of synaptic density after SB203580 treatment.
doi:10.1371/journal.pone.0054914.g006
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and alterations in axonal mitochondrial transport [27]. As

expected, CypD-deficient neurons blocked A23187-induced ele-

vation of intracellular Ca2+ (Fig. S4) and p38 activation (Fig. S2).

This could be a mechanism of the protective effect of CypD

deficiency on A23187-altered axonal mitochondrial trafficking

(Fig. 3C–G). Compared to the effect of Ab, A23187 treatment had

a greater effect on mitochondrial transport (50% decline in

A23187 treatment vs. 30–40% in Ab-treated cells). A strong

induction of calcium elevation in intact cells (high levels of Ca2+)

by A23187 could be the explanation for a more dramatic effect of

A23187 (50% in Fig. 3C, E–F) than Ab treatment (30% in

Fig. 1A–B, C2, D1 and 40% in Fig. 2A–C) in which elevated

levels of Ca2+ are expected to be lower than A23187-treated cells.

A direct role of intracellular calcium in controlling axonal

mitochondrial motility and dynamics is also supported by the

recent study. For example, calcium-induced mitochondrial disso-

ciation has been postulated as a potential mechanism for

modulation of mitochondrial docking under physiological condi-

tions [57]. Increased calcium levels are reported to decrease

mitochondrial movement/transport by interrupting Miro and

kinesin complexes [57,58]. At pathological states with significant

and sustained calcium elevation achieved by the activation of N-
Methyl-D-aspartate (NMDA) receptors [37] or the application of

A23187 [59], mitochondrial morphology and movement are

substantially disrupted, suggesting the impact of pathological intra-

calcium perturbations. In Ab-rich environment where calcium

levels are abnormally high [60–63], increased mitochondrial

detachments occur in Ab-treated axons (represented by an

increased percentage of stationary mitochondria). Thus, axonal

mitochondria are crucial to the calcium buffering process.

Maintenance of axonal calcium homeostasis by CypD depletion

is an underlying mechanism for controlling axonal mitochondrial

calcium in the face of Ab insults. Ab-mediated elevation of calcium

is a potential mechanism at the nexus of Ab toxicity and

alterations in mitochondrial motility. The dramatic protection of

lacking CypD against A23187-disturbed calcium balance as well as

mitochondrial motility and dynamics changes provides substantial

evidence that the blockade of CypD-mediated mPTP counteracts

calcium-instigated axonal mitochondrial alterations in trafficking

and morphology.

Another major consequence of CypD-mediated mPTP forma-

tion is increased ROS production/accumulation leading to release

of ROS from mitochondrial to cytosol. As Ca2+ metabolism and

oxidative stress are intertwined, especially in mitochondrial

processes, these organelles can become severely dysfunctional

during the permeability transition in combination with effects of

oxidative stress and dysregulation of cytosolic free Ca2+. Indeed, in

the present study, we report reduced mitochondrial calcium

buffering capacity, increased membrane permeability transition,

and accumulation of ROS in axons in the presence of Ab. ROS

has been implicated in disruption of mitochondrial movement. For

example, zinc-induced ROS generation is associated with

phosphatidylinositol (PI) 3-kinase activation, which in turn disrupts

mitochondrial transport in neurons [64]. However, to our

knowledge, the contribution of axonal ROS dysregulation to

Ab-induced defects in mitochondrial transport has not yet been

documented. We showed here that the addition of probucol, an

antioxidant drug to suppress ROS generation, or genetic deletion

of CypD to blunt oxidative stress and to enhance mitochondrial

calcium buffer capability significantly rescues mitochondrial

movement against Ab toxicity, indicating the significance of

oxidative stress on Ab-altered axonal mitochondrial trafficking.

These data support that Ab-induced intra-axonal ROS has

deleterious effects on transport.

Activation of P38 mitogen-activated protein kinase (MAPK) is

associated with increased intracellular calcium, ROS production/

accumulation, Ab stimulation, and mitochondrial stress [43,65–

71]. We demonstrated that levels of P38 phosphorylation were

significantly increased in Ab-treated neurons. Antioxidant Probu-

col blocked Ab-induced p38 activation, indicating a role of Ab-
induced oxidative stress in disruption of signal transduction such as

p38 MAP kinase contributing to abnormal axonal mitochondrial

transport. Notably, Ab-induced p38 phosphorylation was blunted

in neurons lacking CypD. The addition of a specific p38 inhibitor

(SB203580) resulted in pronounced preservation of mitochondrial

motility and morphology even in the face of Ab insults, indicating

the involvement of CypD/Ab-associated p38 MAPK signaling in

disruption of axonal mitochondrial trafficking. The application of

p38 inhibitor did not interfere with Ab-induced calcium elevation

(data not shown). These results suggest that p38 is a downstream

target of Ab. Thus, we propose that CypD-dependent impaired

calcium homeostasis and ROS production/accumulation in axons

are responsible for p38 MAPK activation, which leads to further

mitochondrial injury including abnormal axonal mitochondrial

transport and loss of synapse. The detailed mechanisms of P38

activation in injuring axonal mitochondrial transport need further

investigation. For example, P38 activation is connected with

changes in mitochondrial movement via phosphorylation of

kinesin [46] and dynein [72], which dissociates mitochondria

from the motor proteins. In addition to p38, perturbations of

several other signaling cascades including PKA [51] and GSK-3b
[23] are also reported to be involved in Ab-induced disruption in

mitochondrial transport. Given the tight interaction of these

signaling cascades [73], they may work together in keeping axonal

mitochondrial movement in normal fashion while their indepen-

dent effects on mitochondrial trafficking remain unclear. In view

Figure 7. Working hypothesis. Ab-Cyclphilin D mediates impair-
ments in axonal mitochondrial transport. In the present of Ab, there is
an increase in the opening of CypD-mediated mitochondrial perme-
ability transition pore (mPTP), leading to disruption of Ca2+ balance and
increase in reactive oxygen species (ROS) production/accumulation.
Consequently, elevation of Ca2+ and oxidative activates downstream
signal pathway p38 MAP Kinase contributing to mitochondrial
dysfunction, deficits in axonal mitochondrial trafficking, eventually,
synaptic damage.
doi:10.1371/journal.pone.0054914.g007
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of potential involvement of motor proteins in mitochondrial

movement, we will further examine whether mPTP-associated

axonal mitochondrial transport changes are related to changes of

motor proteins such as hyperphosphorylation of dynein and

kinesin and altered Miro activity state in near future. Nevertheless,

our study suggests that CypD-involved activation of p38 signaling

plays a role, at least in part, in Ab-insulted abnormal mitochon-

drial transport in axon.

Axonal mitochondria are dynamic organelles and their traffick-

ing and docking are critical for synaptic plasticity and function.

Synaptic loss and deactivation are biological basis of AD.

Increasing evidence emphasizes the importance of mitochondria

for the maintenance of synaptic function. Defects in dendritic

mitochondria lead to dendritic degeneration [74] and injured

mitochondria in the presynapse region are associated with

compromised presynaptic function [75]. Mitochondrial transport

maintains functional mitochondria around synapses [76] Pre-

viously, we and other groups showed that Ab insults results in

impaired mitochondrial distribution and trafficking in axons

[20,23–26], while in the present study, we demonstrate the

protective effects of CypD depletion on Ab-mediated deficits in

axonal mitochondrial transport and synaptic injury including

synaptic activity and loss of synapses. Notably, blockade of p38

activation significantly rescue synaptic loss insulted by Ab (Fig. 6F–

G), supporting a connection of CypD/Ab-involved signal trans-

duction (p38) with mitochondrial and synaptic degeneration.

In summary, our data offer new insights into the mechanism of

mitochondrial perturbation in the pathogenesis of AD, specifically

the role of CypD in axonal mitochondrial transport. Ab-CypD
interaction promotes opening of mitochondrial permeability

transition pore, consequently, disrupts calcium balance and

enhances production/accumulation of ROS, thereby further

activating P38 MAPK signal transduction pathway. All these

events disrupt mitochondrial trafficking and dynamics, ultimately

causing synaptic damage (Fig. 7). We have clearly demonstrated

that CypD depletion protects axonal mitochondrial transport from

Ab insults along with suppressing Ab-induced elevation of calcium

and accumulation of oxidative stress. Importantly, CypD depletion

also suppressed Ab-induced activation of p38/MAPK and this

inhibition rescued axonal mitochondrial movement and pre-

synaptic density. Thus, our results provide evidence that CypD/

Ab-mediated mitochondrial dysfunction is correlated with disrup-

tion of axonal mitochondrial transport and synaptic injury. These

findings significantly enhance our understanding of the patholog-

ical role of CypD in axonal pathology in AD.

Supporting Information

Figure S1 Cultured hippocampal neurons were transfected with

pDsRedmito and observed under microscope. The figure showed

the image of a transfected neuron. Middle part of the axon (in the

frame) was selected for the experiment to detect mitochondrial

movement.

(TIF)

Figure S2 CypD depletion suppresses A23187-induced p38

phosphorylation. NonTg and CypD deficient hippocampal

neurons were exposed to 5 mM A23187 for 15 and 30 min,

respectively. Cell lysates were subjected to immunoblots for

phospho- and total-p38. The treatment of A23187 on nonTg

neurons significantly increased p38 phosphorylation level as

compared to the vehicle-treated neurons (vehicle: 160.021 vs.

A2318715 min: 1.8960.047; vehicle vs. A23187 30 min:

2.0660.18). CypD depletion significantly suppressed A23187-

induced elevation of phospho-p38. Data were derived from 4

independent experiments.

(TIF)

Figure S3 Addition of Probucol attenuates Ab-induced p38

phosphorylation in nonTg neurons. nonTg neurons were treated

with Ab co-incubated in the presence or absence of Probucol

(5 mM, 24 hours). Ab treatment resulted in a significant elevation

of p38 phosphorylation level as compared to vehicle treatment

(vehicle: 160.077 vs. Ab: 3.0660.27), while Ab-induced p38

phosphorylation was inhibited by the addition of Probucol (Ab:
3.0660.27 vs. Ab+Probucol: 1.1560.46). Data were derived from

3 independent experiments.

(TIF)

Figure S4 Effect of CypD depletion on A23187-induced intra-

axonal calcium elevation. NonTg and Ppif 2/2 hippocampal

neurons were exposed to A23187 (5 mM for 30 min) and subjected

to recording of intra-axonal calcium before and after A23187

treatment. A23187 treatment resulted in increased axonal calcium

level in nonTg neurons. Ppif 2/2 neurons abolished A23187-

induced calcium elevation.

(TIF)
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