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This study aimed to determine the expression of omentin and vaspin, inflammatory
markers, body composition, and lipid profile in diet-induced obese rats and high-
intensity interval training (HIIT). Forty Wistar rats were divided into four groups: untrained
normal diet, trained normal diet (T-ND), untrained high-fat diet (Unt-HFD), and trained
high-fat diet (T-HFD). For the animals of the Unt-HFD and T-HFD groups, a high-
fat diet was offered for 4 weeks. After that, all the animals in the T-ND and T-HFD
groups were submitted to HITT, three times per week, for 10 weeks (2 weeks of
adaptation and 8 weeks of HIIT). Muscle (gastrocnemius), liver, epididymal adipose
tissue, retroperitoneal adipose tissue, visceral adipose tissue (VAT), and serum were
collected to analyze TNF-α, IL-6, PCR, IL-8, IL-10, IL-4, vaspin, and omentin. A body
composition analysis was performed before adaptation to HIIT protocol and after the
last exercise session using dual-energy X-ray absorptiometry. Omentin and vaspin in
the VAT were quantified using Western blotting. The results showed that, when fed
a high-fat diet, the animals obtained significant gains in body fat and elevated serum
concentrations of vaspin and blood triglycerides. The HIIT was able to minimize body fat
gain but did not reduce visceral fat despite the increase in maximum exercise capacity.
Moreover, there was a reduction in the serum levels of adiponectin, IL-6, and IL-10.
Finally, we concluded that, although the training protocol was able to slow down the
weight gain of the animals, there was no reduction in visceral fat or an improvement in
the inflammatory profile, including no changes in omentin and vaspin.

Keywords: vaspin, omentin, visceral adipose tissue, high-intensity interval training, body composition, obesity,
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INTRODUCTION

Obesity is related to a wide range of diseases, such as arterial
hypertension, diabetes mellitus type II, some types of cancer, and
non-alcoholic hepatic steatosis. These comorbidities can mostly
be attributed to metabolic and endocrine alterations occurring
in the adipose tissue, from its expansion (Hwang et al., 2015;
Shie et al., 2015). Researchers showed that adipocyte hypertrophy
results in an abnormal function of the cell, and this remodeling
could lead to an alteration in the secretion of metabolites
such as adipokines (leptin, adiponectin, vaspin, and omentin),
causing adipocyte death, local hypoxia, and influx of fatty acid
(Choe et al., 2016).

One of the strategies adopted to mitigate this low-grade
chronic inflammation is to reduce body fat, resulting in higher
circulating levels of anti-inflammatory cytokines, such as
adiponectin, associated with a reduction in pro-inflammatory
characteristics. Thus, physical exercise has been shown to be
an efficient strategy (Gleeson et al., 2011). Physical exercise
has anti-inflammatory characteristics, offering a protective
effect against diseases associated with chronic low-grade
inflammation present in obesity, reducing the levels of
inflammatory cytokines and increasing anti-inflammatory
properties (Hermsdorff and Monteiro, 2004; Petersen and
Pedersen, 2005; Ghoshal, 2015).

Among the training protocols available, high-intensity
interval training (HIIT) has achieved an increase in popularity.
HIIT alternates periods of high intensity with active or
passive intervals and is a time-efficient strategy suitable to
improve cardiorespiratory fitness, reduce cardiometabolic
risks, and improve fat oxidation, leading to significant
weight loss in obese and overweight populations (Alahmadi
et al., 2011; Heydari et al., 2012; Alahmadi, 2014). HIIT
generates physiological adaptations including the elevation
of mitochondrial content, maximal aerobic capacity, and
generation of hypertrophy in skeletal muscle (MacInnis and
Gibala, 2017; Robinson et al., 2017). In addition to these
benefits, the use of HIIT in obese populations can lead to
changes in the inflammatory profile by reducing inflammatory
cytokines while increasing the anti-inflammatory properties
due to the reduction in body weight and visceral adiposity
(Steckling et al., 2015).

This reduction in visceral obesity has been the target of
studies since it can cause changes in the expression of important
adipokines. Over the last decades, many adipokines have
been discovered and are of special interest to researchers
for improving the condition of obesity, diabetes, and low-
grade inflammation, such as omentin and vaspin. Omentin
is adipokine produced by the stromal–vascular fraction of
visceral adipose tissue (VAT) and, in low concentrations,
by subcutaneous adipose tissue (Yang et al., 2006; De
Souza Batista et al., 2007). It has been suggested in the
literature that production occurs under glucose and insulin
regulation (Komiya et al., 1998) and is modified in several
pathological situations, such as obesity and insulin resistance
(Kuperman et al., 2005). Due to this fact, a reduction in
omentin levels is associated with an increase in metabolic risk

factors, suggesting its use as a negative biomarker for obesity
(De Souza Batista et al., 2007).

On the other hand, vaspin is a member of the serine protease
inhibitor family (Hida et al., 2005; Nakatsuka et al., 2012) and
is highly expressed by VAT in obesity conditions as well as
subcutaneous adipose tissue (Shaker and Sadik, 2013) and in low
quantities by skeletal muscle and liver (Körner et al., 2011; Goktas
et al., 2013). However, although the mechanisms of action of
vaspin are poorly understood, it is proposed that its action may
represent a compensatory mechanism in metabolic abnormalities
induced by obesity (Barraco et al., 2014; Proença et al., 2014).
Thus, a better understanding of the adjacent mechanisms of
exercise in the secretion of adipokines can define more effective
strategies to control obesity and co-morbidities.

Therefore, based on the pathophysiological aspects associated
with obesity, this study aimed to determine the expression of
omentin and vaspin, inflammatory markers, body composition,
and lipid profile in diet-induced obese rats and HIIT.

MATERIALS AND METHODS

Ethics and Experimental Groups
The experimental protocol lasted 18 weeks. The experimental
procedures in this study conformed to the Committee on
Animal Research and Ethics (no. 3963080116) from the Federal
University of São Carlos (UFSCar). Adult Wistar male rats
(n = 40, ∼=300 g) were housed in groups (n = 4 to 5/cage) with
a temperature-controlled environment (22–24◦C), humidity of
50–60%, reversed 12/12-h light/dark cycle (lights on at 6 pm),
and water and food ad libitum. After 4 weeks of acclimatization
(90 days), the rats were randomly divided into two groups:
normal diet (ND; n = 20) and high-fat diet (HFD; n = 20), and
they were fed for 8 weeks. Then, the animals were randomly
distributed into four experimental groups (n = 10): untrained
normal diet (Unt-ND), trained normal diet (T-CD), untrained
high-fat diet (Unt-HFD), and trained high-fat diet (T-HFD).

Diets
The normal fat diet (in pellet form), containing 4.8% total
fat, was used as control diet in the NFD group, as previously
reported (Estadella et al., 2004; de Castro et al., 2017, 2019).
The palatable high-fat diet was prepared with standard rat chow
plus peanuts, milk chocolate, and sweet biscuits in a proportion
of 3:2:2:1 (Estadella et al., 2004; de Castro et al., 2017, 2019).
All components were powdered and mixed to form pellets. This
diet is composed of 20% fat (Table 1) and was standardized
by Estadella et al. (2004); since then, it has been used to
induce obesity phenotype in Wistar rats (de Castro et al., 2017,
2019). The nutritional composition of the diet was analyzed
by CBO Laboratories of Analyzes Ltda., Valinhos-SP, Brazil. It
is worth mentioning that the use of the term high-fat diet is
due to the increase in fat due to the standard diet that has
4% fat vs 20% (HFD), being efficient in the study of obesity
(Bruder-Nascimento et al., 2013; Moreno-Fernández et al., 2018;
Li et al., 2020).
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TABLE 1 | Nutritional composition of the diet.

HFD ND

Energy value (cal/g) 4,665.00 3,854.00

Moisture and volatiles (%) 14.72 12.47

Fat (%) 20 4.80

Carbohydrates (%) 32.90 39.23

Proteins (%) 18.12 22.81

Fibers (%) 2.97 5.82

Minerals (%) 3.29 6.87

Potassium (%) 0.60 1.26

Calcium (%) 0.52 1.2a

Sodium (%) 0.14 0.22

Vitamin A (UI/kg) 1,149.00 25,000.00a

Vitamin D3 (UI/kg) 836.90 4,000.00a

Vitamin E (mg/kg) 229.94 80.00a

Maltose (%) Undetectable Undetectable

Free xylose (%) Undetectable Undetectable

Free glucose (%) 0.12 Undetectable

Free fructose (%) 0.17 Undetectable

Sucrose (%) 12.49 1.65

Lactose (%) 1.88 Undetectable

Free galactose (%) Undetectable Undetectable

Raffinose (%) 0.30 0.74

ND, normal diet; HFD, high-fat diet.
The undetectable values were below the threshold of quantification
(<100 mg/kg, 0.1%).
aNutritional information obtained from the manufacturer.

Body Mass and Food Intake
Measurement
The body mass (BM) was measured once a week, and food intake
was measured every 2 to 3 days, between 8 and 12 h. Diet intake
was calculated by the difference in weight between the amount of
food offered and the amount of food remaining.

HIIT Protocol
Adaptation
The animals were adapted to a treadmill for 2 weeks. The animals
of the training group ran on the treadmill between 10 and
20 m/min. In order to simulate a similar environment to training,
the untrained animals were also placed on the treadmill so that
they could adapt.

Maximum Exercise Capacity
After the adaptation, a maximum exercise capacity (MEC) test
was performed. The animals started to run on the treadmill
at 6 m/min with 25% incline for 5 min, with an increase of
0.5 m/min every 2 min until the maximum speed was obtained.
As a criterion for determining exhaustion, the interruption
was the moment when the animal was no longer able to run
by increasing the speed of the treadmill (Wisløff et al., 2001;
Høydal et al., 2007).

HIIT Protocol
The HIIT protocol consisted of three exercise sessions per week
for 8 weeks. The training was preceded by a 5-min warm-up, with

the animals running at 40% of the MEC and then the alternation
between high intensity for 4 min (85–95% of MEC) and recovery
for 3 min (40–50% of MEC), with a maximum of six intermittent
intervals. Every 2 weeks, another incremental test to determine
the MEC was carried out again to adjust the intensities of the
exercise (Haram et al., 2009; Kemi et al., 2015; Songstad et al.,
2015). Throughout the procedure, electric shocks were not used
as a form of stimulation.

Experiment and Sample Collection
The animals were euthanized by decapitation using a guillotine
after 8 h of fasting. The trained animals were sacrificed 48 h
after the last exercise session. VAT, epididymal (EPI) adipose
tissue, retroperitoneal (RET) adipose tissue, brown adipose tissue
(BAT), liver, gastrocnemius muscle, and serum were collected,
dissected, weighed, and stored in a freezer at−80◦C for posterior
biochemical and morphometric analyses.

Dual-Emission X-Ray Absorptiometry
Body composition evaluation was performed before adaptation
to the HIIT protocol and after the last exercise session.
The animals were anesthetized with ketamine (40 mg/kg)
and xylazine (5 mg/kg; IACUC) and were later placed in
prone position for them to be scanned using the dual-energy
X-ray absorptiometry (DXA)–dual-range emission densitometry
(Lunar iDXA 200368 GE R© instrument, Lunar, WI, United States).
BM, body fat, fat mass, and fat-free mass values were
obtained. Image analyses were performed using the Encore 2008,
12.20 GE, HEALTHCARE.

Western Blotting to Determine Omentin
and Vaspin
Omentin and vaspin in the VAT were quantified using Western
blotting. The tissues were processed to obtain the total protein
extract using an extraction buffer [sodium dodecyl sulfate (SDS),
0.1% (p/v); Triton, 1% (v/v); Tris–HCl, pH 7.5, 50 mM; NaCl,
150 mM; EDTA, 15 mM; EGTA, 5 mM; NaF, 100 mM; and
Na2P2O7, 10 mM] as well as protease inhibitors (Complete-Mini
Roche R© 1×). The concentration of protein was quantified using
Lowry’s colorimetric method (1951). The crude protein extracts
for each experiment were submitted to SDS–polyacrylamide gel
electrophoresis (12%) and Tris-glycine buffer 1 × (Laemmli’s
method) using a vertical electrophoresis tank (BioRad). The
proteins were then transferred from the gel to the nitrocellulose
membrane (0.45 µm, BioRad) in a submerged transfer procedure
according to the manufacturer’s protocol. Membrane blockage
was done with Tris-buffered saline with 0.1% Tween R© 20 (TBST)
1 × containing 9% of milk powder for 4 h at room temperature.
The membranes were then incubated, overnight at 4◦C, with the
primary antibody anti-omentin (1-1000, sc-104334, and Santa
Cruz R©) and anti-vaspin (1-1000, sc-79815, and Santa Cruz R©)
TBST 1 × containing 5% of milk powder. The membrane was
incubated with a secondary anti-goat IgG-HRP antibody: (1-
3000, sc-2020) in TBST 1×, immunodetection was performed
using a chemiluminescence kit (ECL Prime, GE Healthcare R©,
Life Sciences). The blot image was acquired using the Chemidoc
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(BioRad R©) equipment. Protein concentrations were normalized
by using GAPDH diluted 1:10,000 (Abcam R©) in VAT. All the
membranes were normalized using an intra-membrane control.

Quantifications of Cytokines and
Adipokines
The quantifications of omentin, vaspin, TNF-α, IL-6, IL-8, IL-
10, C-reactive protein, and adiponectin were performed from
serum and determined by enzyme-linked immunosorbent assay
(ELISA) method following the specifications corresponding to
the kits. For the cytokine analyses, such as IL-4, IL-10, IL-6, and
TNF-α, OptEIA (BD Biosciences R©) kits were used; for the IL-
8, PCR and adiponectin analyses, DuoSet ELISA kits were used
(R&D Systems R©); for the omentin and vaspin analyses, EIA-OME
and EIA-VAP (RayBiotech R©) kits were used. The concentrations
of the samples were calculated from the titration curve of the
cytokine patterns, and the final concentrations were expressed in
pg/ml or ng/ml depending on the kit.

Statistical Analysis
All statistical analyses were performed using the Sigma
Stat Software (version 3.5). Data normality was verified by
the Kolmogorov–Smirnov test; equality of variance (Levene’s
method) and non-parametric tests were used when the data
did not present normal distribution and/or equality of variance.
Comparisons among the groups were made using two-way
ANOVA. Tukey multiple-comparison test was used when
the two-way ANOVA test detected a statistical difference.
Independent t-test was used for comparisons between two
independent groups. The level of significance was set at 5%
(p < 0.05).

RESULTS

Body Mass and Food Consumption
The animals fed on a high-fat diet presented significantly higher
BM than their respective controls at the end of the experiment.
The Unt-HFD and T-HFD groups presented lower caloric intake
when compared to the Unt-ND and T-ND groups, respectively,
(Table 2). In addition, the Unt-HFD group showed significantly
higher triglyceride values when compared to the Unt-ND group.

Maximum Capacity of Exercise
The training variables are presented in Table 3. The MEC at
the beginning of the training protocol was significantly different
between the T-ND and T-HFD groups, 9.1% lower in the T-HFD
group. At the end of 10 weeks, this training capacity was higher
in relation to the first MEC test, showing an improvement of
this variable for the animals trained with HIIT, but there was
no difference between the T-ND and T-HFD groups in the post-
exercise condition (Table 3). The same behavior occurred with
the variable time to exhaustion, but the distance covered was
greater in T-ND compared to T-HFD group. Interestingly, the
MEC in the T-ND group was 228%, and in the T-HFD group it
was 235%; there was no difference in the post-exercise. Therefore,
it showed 16% improvement compared to T-ND.

Body Composition
Figure 1A shows that, from the fourth week, the Unt-HFD group
weight was significantly higher than the untrained normal diet
group (Unt-ND). After the experimental protocol, it was found
that training was not able to promote significant changes in the
T-HFD group. However, it presents 5.72% lower value for this
variable than the Unt-HFD group. The animals’ fat-free mass,
assessed by DXA, was higher in all groups after 10 training weeks,
but there was no significant change between groups for this
parameter considering only the end of training (Figure 1B).

Regarding adipose mass (Figure 1C), it was observed that, at
the end of the diet-induced obesity (pre-exercise), the Unt-HFD
and T-HFD groups showed higher values when compared to the
respective control groups (Unt-ND and T-ND). After 10 weeks
of training, a similar pattern was observed as the groups that
were fed a high-fat diet (Unt-HFD and T-HFD) showed higher
values of body fat compared to the Unt-ND and T-ND groups.
However, the T-HFD group showed significantly lower body fat
values compared to the Unt-HFD.

Relative Weights of Depots
The relative weights of visceral, RET, and EPI abdominal fat
depots and BAT were higher in the groups fed a high-fat diet
when compared to groups fed a normal diet. The exercise, as
observed in Table 4, was not able to cause changes in these fat
depots. The Unt-HFD and T-HFD groups showed lower relative
weights of the hepatic and muscular tissues when compared to the
Unt-ND and T-ND groups, without significant changes between
the HFD groups. The diet led to a reduction in the relative
weight of the hepatic and muscle tissues since the Unt-HFD
group had lower values than the Unt-ND and T-ND, and those
of the T-HFD group were less than those of the T-ND. For these
tissues, the proposed exercise model was also not able to cause
significant changes.

Cytokines
In Figure 2C, it can be observed that serum IL-6 was reduced
in the T-HFD group when compared to the Unt-HFD and
T-ND groups. Besides that, there were no significant changes
due to exercise and diet in the values for cytokines CXCL-8,
PCR, and TNF-α (Figures 2A,B,D). It is shown that adiponectin
decreased in the trained T-HFD compared to the Unt-ND
and T-ND (Figure 3C). Besides that, serum IL-10 is reduced
in the T-HFD compared to the T-ND group and Unt-HFD
group (Figure 3A). Serum IL-4 showed no statistical differences
between the groups (Figure 3B).

Vaspin and Omentin
The vaspin serum concentration increased upon obesity
induction, but it was not changed after the HIIT protocol
(Figure 4A). In VAT, the values of vaspin were not altered
either by the diet or by the exercise (Figure 4C). Considering
the response of omentin in the experimental groups, no
statistical differences were found in both serum (Figure 4B) and
VAT (Figure 4D).
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TABLE 2 | Body mass gain and food intake.

Groups Body mass (g) Caloric intake (kcal/day) Triglycerides (mg/dl)

Initial Final Body mass gain

Unt-ND 280.90 ± 15.50 527.80 ± 43.88d 246.90 ± 36.85 121.98 ± 2.84 34.51 ± 10.04

T-ND 273.80 ± 23.69 497.40 ± 31.74d 223.6 ± 23.32 118.44 ± 2.67 30.96 ± 8.09

Unt-HFD 277.40 ± 19.54 619.00 ± 77.94ad 341.90 ± 72.42a 114.89 ± 3.59a 50.88 ± 11.73a

T-HFD 282.50 ± 14.57 584.70 ± 49.51bd 302.20 ± 56.18b 109.87 ± 3.34b 42.08 ± 9.09

Unt-ND, untrained normal diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained high-fat diet (n = 10).
Data presented as mean ± SD (p < 0.05).
avs. Unt-ND.
bvs. T-ND.
d Initial vs. final.

TABLE 3 | Variables of exercise.

Variables T-ND T-HFD

Pre-exercise MEC (m/min) 13.74 ± 0.87 12.5 ± 0.95a

Time to exhaustion (min) 28.66 ± 1.65 25.77 ± 3.15a

Distance covered (m) 393.78 ± 1.43 322.12 ± 2.99a

Post-exercise MEC (m/min) 31.36 ± 3.63b 29.25 ± 2.67b

Time to exhaustion (min) 27.00 ± 6.60 20.20 ± 10.15b

Distance covered (m) 846.70 ± 24.00b 590.85 ± 27.10ab

1 of MEC (%) 228 235

Unt-ND, untrained normal diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained high-fat diet (n = 10).
Data presented as mean ± SD (p < 0.05).
avs. T-ND.
bPre-exercise vs. post-exercise in the same group.

DISCUSSION

This study reports the response to omentin and vaspin of Wistar
rats fed or not with a high-fat diet and under HIIT. We expected
that HIIT could cause metabolic adaptations in adipose tissue,
promoting changes in the concentration of omentin and vaspin
in obese animals. However, we do not confirm these results.
Although the training protocol was able to slow down the weight
gain of the animals, there was no reduction in visceral fat or an
improvement in the inflammatory profile.

In the present study, the high-fat diet induced an increase
in body weight, serum triglycerides, all visceral depots and
organs evaluated, and fat mass. We also highlight that, although
there were no differences between most cytokines, there was
an increase in vaspin in obese animals, which has been used
as a biomarker of adiposity, and a reduction of adiponectin in
HFD animals. These data together show the effective induction
of obesity, supporting the studies already described in the
literature (Estadella et al., 2004; Duarte et al., 2008; Sene-
Fiorese et al., 2008; Speretta et al., 2012, 2016; Suk and Shin,
2016; Diogo et al., 2020). In addition, the diet promoted a
decrease in the food intake of these animals. This behavior
was observed in previous investigations and is justified by the
increased caloric density of the high-fat diet, which results
in a greater satiety of the animals when compared with the
commercial chow diet (Estadella et al., 2004; Zambon et al., 2009;
Rocha et al., 2016).

Given the small participation of HIIT in slowing down the
gain of adipose mass, BM, and triglyceridemia of animals fed a
high-fat diet, we believe that these adjustments may be related
not only to exercise (Sene-Fiorese et al., 2008; Speretta et al., 2012;
Ramos-Filho et al., 2015; MacInnis and Gibala, 2017) but also to
the increase in the supply of fats provided by the type of diet.
We consider that the energy expended by the animals during the
exercise equalized the excessive energy consumption offered in
the high-fat diet, thus avoiding a greater accumulation of BM.

Our data reinforced the lipogenic activity generally observed
from the consumption of high-fat diet since the animals had
an increased rate of lipid anabolism, resulting in the high
accumulation of fat in the depots EPI, RET, and VAT (Estadella
et al., 2004; Sene-Fiorese et al., 2008; Speretta et al., 2012). Besides
the increase in abdominal adipose tissue, the diet caused an
increase in the BAT, which was already expected since diets rich
in fat are able to elevate the thermogenic activity of BAT, leading
to a greater synthesis of UCP1. As a consequence, there is an
increase in the weight of this tissue (LeBlanc and Labrie, 1997;
Estadella et al., 2004). In addition, an increase in liver lipids
was observed, probably due to an increase in lipogenesis, or a
decrease in beta oxidation (Gauthier et al., 2015). Surprisingly,
although the high-fat diet effectively promoted obesity, the liver
weight was reduced, which was not commonly observed by
other studies using the same type of diet (Duarte et al., 2008;
de Castro et al., 2017). This finding can be partially explained by
the increase in hepatic triglyceride concentrations (Sene-Fiorese
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FIGURE 1 | Body composition. (A) The evolution of body weight gain, (B) fat-free mass pre- and post-exercise, and (C) adipose mass pre- and post exercise.
Unt-ND, untrained normal diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained high-fat diet (n = 10). Data
presented as mean ± SD (p < 0.05). avs. Unt-ND; bvs. T-ND; cvs. Unt-HFD; and dpre-exercise vs. post-exercise.

et al., 2008). This accumulation displaces the predominance of
fatty acids as the main energy substrate in organic reactions to the
detriment of hepatic glycogen. In turn, the reduction of glycogen
levels in the liver, as observed in this study, may be associated
with lower liver weight since glycogen carries water molecules for
its transport, and this would significantly increase the weight of
the liver (Zambon et al., 2009; Gauthier et al., 2015).

It is important to mention that exercise capacity and
adaptations have also been measured indirectly through distance
covered and time to exhaustion (Kemi et al., 2015). Both animals
that were fed a standard diet (228%) and a high-fat diet (235%)
achieved increases in MEC, showing evidence of the adjustments
promoted by the proposed exercise model as previously described
(Kemi et al., 2015). However, the effects of HIIT on adipose
depots (EPI, RET, VAT, and BAT), liver, and muscle proved
to be inefficient since the weights of these tissues were not
changed by HIIT but only by diet. These results suggest a possible
mobilization of free fatty acids from other depots of white adipose
tissue during exercise, such as the subcutaneous tissue (Maillard
et al., 2019; Motta et al., 2019).

As the exercise did not cause changes in the abdominal
fat depots, we already expected that HIIT would also not
change the concentration of omentin and vaspin in VAT and
circulation. However, an interesting fact was that HIIT was
able to reduce the serum levels of adiponectin, IL-10, and IL-
6. This dynamic, which was presented by the anti-inflammatory
molecules because of the physical exercise used, seems to be

related to the mobilization of different fat depots as well as
different tissues that secrete these cytokines such as the muscle
itself (Pedersen and Febbraio, 2012).

The secretion of inflammatory cytokines is altered in obesity as
a compensatory way to mitigate the deleterious effects resulting
from obesity (You and Nicklas, 2008; Stefanyk and Dyck, 2010;
Golbidi and Laher, 2014). Concerning omentin and vaspin, it
was observed in the present study that the training was not able
to promote changes in its production in all groups, regardless
of the type of diet. These data have been observed previously
in our research group (de Castro et al., 2019). The positive
values of omentin in their work were observed only in diabetic
animals (type 2) submitted to aerobic exercise when compared to
combined and resistance exercise. Because it does not mobilize
visceral fat, it can be hypothesized that the exercise model
proposed in our study was not able to bring about changes in
omentin and vaspin within the proposed time. Thus, we assume
that the mobilization of these adipokines may be more related to
visceral adipose depots.

To confirm the predominance of secretion by adipose tissue,
we evaluated the serum and protein expression of adipokines
in VAT. We observed that vaspin, but not omentin, was
responsive to the induction of obesity, which increases its
serum concentration considering the expansion of fat deposits,
as previously reported (Shaker and Sadik, 2013; Dimova
and Tankova, 2015). Adipocytokines such as omentin and
vaspin may be involved with inflammation and have different
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TABLE 4 | Relative weight of abdominal fat depots and organs (g/100 g body weight).

Groups Abdominal fat depots BAT Liver Muscle

EPI RET VAT

Unt-ND 1.39 ± 0.10 1.35 ± 0.15 0.91 ± 0.08 0.04 ± 0.005 2.71 ± 0.19 0.47 ± 0.03

T-ND 1.25 ± 0.14 1.23 ± 0.21 0.68 ± 0.06 0.05 ± 0.005 2,78 ± 0.18 0.48 ± 0.03

Unt-HFD 2.70 ± 0.14a 2.99 ± 0.23a 1.81 ± 0.17a 0.08 ± 0.006a 2.32 ± 0.33a 0.40 ± 0.05a

T-HFD 2.79 ± 0.14b 3.22 ± 0.20b 1.65 ± 0.10b 0.08 ± 0.008b 2.38 ± 0.17b 0.42 ± 0.04b

Unt-ND, untrained normal diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); T-HFD, trained high-fat diet (n = 10); EPI, epididymal
adipose tissue; RET, retroperitoneal adipose tissue; VAT, visceral adipose tissue; and BAT, brown adipose tissue.
Data presented as mean ± SD (p < 0.05).
avs. Unt-ND.
bvs. T-ND.

FIGURE 2 | Serum concentrations of pro-inflammatory cytokines. (A) CXCL-8: interleukin 8, (B) PCR: C-reactive protein, (C) IL-6: interleukin 6, and (D) TNF-α:
tumor necrosis factor alpha. Unt-ND, untrained normal diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained
high-fat diet (n = 10). Data presented as mean ± SD (p < 0.05). bvs. T-ND; and cvs. Unt-HFD.

FIGURE 3 | Serum concentrations of anti-inflammatory cytokines. (A) IL-10: interlecucin-10, (B) IL-4: interleukin-4, and (C) adiponectin. Unt-ND, untrained normal
diet (n = 10); T-ND, trained normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained high-fat diet (n = 10). Data presented as mean ± SD
(p < 0.05). bvs. T-ND; and cvs. Unt-HFD.

expressions in eutrophic and obese individuals (Hida et al., 2005;
de Castro et al., 2019). These adipokines have been studied
as pathological biomarkers because they relate to insulin

resistance (Flehmig et al., 2014). Thus, we monitored adipose
tissue expansion by the values of serum vaspin in high-fat diet
animals. However, despite finding an increase in the expression
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FIGURE 4 | Behavior of serum adipokines and adipose tissue. (A) Serum vaspin concentration, (B) serum omentin concentration, (C) Western blot representative of
vaspin (47 kDa) in visceral adipose tissue (VAT), and (D) Western blot representative of omentin (40 kDa) in VAT. Unt-ND, untrained normal diet (n = 10); T-ND, trained
normal diet (n = 10); Unt-HFD, untrained high-fat diet (n = 10); and T-HFD, trained high-fat diet (n = 10). Data presented as mean ± SD (p < 0.05). avs. Unt-ND; bvs.
T-ND.

of vaspin mRNA in obese women compared to eutrophic women,
no positive correlation with obesity was observed (Auguet et al.,
2011). In general, studies with vaspin still show controversial
results as some point to the lack of a relationship between the
serum levels and obesity and the distribution of fat, while others
demonstrated a positive correlation (Blüher, 2012). Moreover, the
hypothesis that vaspin may be directly related to the consumption
of excess lipids is not ruled out, thus triggering possible insulin
resistance, arteriosclerosis, and heart problems (Derosa et al.,
2013; Szkudelska et al., 2014). The increase in serum vaspin
without changing its expression in VAT may be due to a
greater contribution from the subcutaneous adipose tissue, as
previously shown (Jung et al., 2011; Shaker and Sadik, 2013;
Weiner et al., 2019).

Regarding omentin, these results were not expected since
earlier data showed evidence that omentin can be significantly
reduced in obese rats when compared to non-obese rats (De
Souza Batista et al., 2007; Feng et al., 2013; Proença et al.,
2014). There is no consensus in the literature regarding the
concentration of omentin in patients with obesity because their
response has not yet been fully elucidated (Derosa et al., 2013;
Escoté et al., 2017; Aliasghari et al., 2018). Just as HIIT slowed
down fat gain, but this loss was not seen in abdominal fat

depots, we suggest that this exercise may have mobilized more
subcutaneous fat, which did not reflect the change in adipokines
omentin and vaspin.

The importance of these adipokines lies in the fact
that they can influence adipocytes and other tissues in an
autocrine or paracrine manner, affecting multiple metabolic
processes such as regulating eating behavior, insulin sensitivity,
inflammation, and immunity (Escoté et al., 2017). Thus, obesity
is directly associated with low-grade chronic inflammation,
as the expression of proinflammatory cytokines (IL-6, IL-
8, PCR, and TNF-α) is shown to be increased in this
pathology. Studies show that there is a close link between
cytokines from obesity and the development of other chronic
diseases (de Leal and Mafra, 2013; Mraz and Haluzik, 2014).
However, in the present study, no inflammatory condition
was observed in animals that were fed the high-fat diet. It
is believed that this situation was due to the short time
of exposure of the animals to the high-fat diet and that
the accumulation of fat was not sufficient to cause changes
in the production of such adipokines with pro-inflammatory
characteristics (Rocha et al., 2016). This was contrary to
other studies found in the literature (Tzanavari et al., 2010;
Jung and Choi, 2014).
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Even with this slight inflammatory activation caused by the
diet, it is noteworthy that HIIT in obese animals reduced the
levels of IL-6, IL-10, and adiponectin. It is known that the
stress promoted by physical exercise is linked to an increase in
catecholamine discharge and that the catecholamine receptors
present in macrophages have great importance in modulating
the inflammatory response (Figueiredo et al., 2017). In the
condition of obesity, a high-fat diet could lead to an increase
in catecholamines, which, in turn, via cAMP response element-
binding protein, would suppress the expression of adiponectin
(Liu and Liu, 2009). Thus, it can be considered that the lower
values of adiponectin and IL-10 in trained animals may also
mean that the training was intense for the metabolic condition
of obese animals.

The effects of HIIT in the systemic inflammatory profile
are controversial since serum levels may arise not only from
adipose tissue but also from muscle, liver, and others. Studies
show that this reduction in adiponectin in obese individuals
may contribute to the susceptibility to viral lung infections and
the severity of these infections in obese individuals (Salvator
et al., 2020). Despite the benefits of adipokine in protecting
against metabolic diseases such as obesity and diabetes (Jortay
et al., 2012; Martinez-Huenchullan et al., 2020), it is important
to note that there are different adiponectin isoforms with
functions that are not entirely clear, and exercise seems to
regulate each isoform differently (Gerosa-Neto et al., 2016;
Martinez-Huenchullan et al., 2018). Further studies are needed
to verify the role of different exercise modalities in circulating
adipokines and cytokines.

The potential limitations include failure to assess the
thermogenic effects of HIIT on whole-body fat metabolism (often
done by direct or indirect calorimetry or oxygen uptake and
carbon dioxide gas exchange measurement). However, exercise
performance improvement in both HFD and NFD animals
suggests the negligible thermogenic effects of HIIT on adipose
tissues. Still HIIT fat loss thermogenic effects and adipose
tissue mobilization need further investigation. Another potential
limitation is that, although in this study we used a lower fat (20%)
content than other studies to induce obesity, previous results
showed that our diet was effective to promote obese phenotype,
including augmentation in body adiposity, body weight, weight
gain, total mass, and visceral depots (Estadella et al., 2004; Duarte
et al., 2008; Sene-Fiorese et al., 2008; Oishi et al., 2018).

In summary, we suggest that vaspin and omentin are not
responsive to HIIT in obese and eutrophic animals, although
the training protocol was able to retard the weight gain, with
no change in visceral abdominal fat and no improvement in the

inflammatory profile. Further studies are needed to explore the
molecular mechanisms involved in the expression of omentin and
vaspin in response to exercise.
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