
Vol.:(0123456789)1 3

Microchimica Acta          (2022) 189:74  
https://doi.org/10.1007/s00604-022-05171-2

REVIEW ARTICLE

Micro‑ and nanosensors for detecting blood pathogens 
and biomarkers at different points of sepsis care

Alejandra Alba‑Patiño1,3 · Andreu Vaquer1,3 · Enrique Barón1 · Steven M. Russell1 · Marcio Borges1,2 · 
Roberto de la Rica1

Received: 19 August 2021 / Accepted: 26 December 2021 
© The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2022

Abstract
Severe infections can cause a dysregulated response leading to organ dysfunction known as sepsis. Sepsis can be lethal if 
not identified and treated right away. This requires measuring biomarkers and pathogens rapidly at the different points where 
sepsis care is provided. Current commercial approaches for sepsis diagnosis are not fast, sensitive, and/or specific enough for 
meeting this medical challenge. In this article, we review recent advances in the development of diagnostic tools for sepsis 
management based on micro- and nanostructured materials. We start with a brief introduction to the most popular biomark-
ers for sepsis diagnosis (lactate, procalcitonin, cytokines, C-reactive protein, and other emerging protein and non-protein 
biomarkers including miRNAs and cell-based assays) and methods for detecting bacteremia. We then highlight the role of 
nano- and microstructured materials in developing biosensors for detecting them taking into consideration the particular 
needs of every point of sepsis care (e.g., ultrafast detection of multiple protein biomarkers for diagnosing in triage, emergency 
room, ward, and intensive care unit; quantitative detection to de-escalate treatment; ultrasensitive and culture-independent 
detection of blood pathogens for personalized antimicrobial therapies; robust, portable, and web-connected biomarker tests 
outside the hospital). We conclude with an overview of the most utilized nano- and microstructured materials used thus far 
for solving issues related to sepsis diagnosis and point to new challenges for future development.
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Abbreviations
ALP  Alkaline phosphatase
Au-NHA  Gold nanohole arrays
CD14  Cluster of differentiation 14
cMWCNT  Carboxylated multiwalled carbon 

nanotubes
CRP  C-reactive protein
DTNB  5,5′-Dithiobis-(2-nitrobenzoic acid)
EID  Electrochemical impedance device
EIS  Electrochemical impedance spectroscopy

ELISA  Enzyme-linked immunosorbent assay
ER  Emergency room
FET  Field effect transistor
GO  Graphene oxide
HEMT  High electron mobility transistor
HRP  Horseradish peroxidase
ICU  Intensive care unit
IFN-γ  Interferon gamma
IL-3  Interleukin 3
IL-6  Interleukin 6
ITO  Indium thin oxide
LDH  Lactate dehydrogenase
LFIA  Lateral flow immunoassay
LOD  Limit of detection
LOX  Lactate oxidase
LSPR  Localized surface plasmon resonance
MNP  Magnetic nanoparticles
MR-proADM  Mid-regional proadrenomedullin
NP  Nanoparticle
P3HT  Poly(3-Hexylthiophene-2,5-diyl)
PANI  Polyaniline
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PCT  Procalcitonin
PDA  Poly(Dopamine)
PDMS  Polydimethylsiloxane
PEDOT  Poly(3,5-Dioxoethylthiophene)
PGE  Pencil graphite electrode
PMMA  Poly(Methyl methacrylate)
PMPC  Poly(2-Methacryloyloxyethyl 

phosphorylcholine)
PoC  Point of care
PS  Polystyrene
PVC  Polyvynil chloride
QD  Quantum dots
RC  Regenerated cellulose
SERS  Surface-enhanced Raman scattering
SIRS  Non-lethal systemic inflammatory 

response syndrome
SOFA score  Sequential organ failure assessment score
SPA  Staphylococcal protein A
SPE  Screen-printed carbon electrode
SPR  Surface plasmon resonance
sTREM-1  Soluble Triggering Receptor Expressed by 

Myeloid cells 1
suPAR  Soluble urokinase-type plasminogen acti-

vator receptor
TMB  3,3′,5,5′-Tetramethylbenzidine
TNF-α  Tumor necrosis factor α

Introduction

According to a recent report, about 20% of the world deaths 
in 2019 were caused by sepsis [1]. Sepsis is an exaggerated 
host response to an infection that can lead to the dysfunction 
of several vital organs and eventually to death if not treated 
in a timely manner [2]. The International Surviving Sepsis 
Campaign recommends administering intravenous antibiot-
ics within the first hour of recognizing sepsis, since mortal-
ity rates sharply increase afterwards [3, 4]. However, several 
challenges make sepsis difficult to diagnose and treat at an 
early stage. For starters, there is no ideal gold standard for 
sepsis diagnosis. Detecting pathogens in the bloodstream 
(bacteremia) through blood culture is considered definitive 
proof of sepsis in patients with compatible clinical crite-
ria. However, even though this approach has an ultralow 
limit of detection (a few pathogens in a sample consisting 
of 30–50 mL of blood), it only diagnoses sepsis correctly in 
20–40% of cases [5]. In other words, the diagnostic specific-
ity is very high, but the sensitivity is very low. Furthermore, 
sepsis is strongly time-dependent. It usually starts as a non-
lethal systemic inflammatory response syndrome (SIRS) 
that progresses to multiorgan dysfunction [5]. SIRS can be 
originated by an uncomplicated infection as well as by other 
pathologies such as trauma or cancer, which do not require 

intravenous antibiotics. However, patients with infection-
related SIRS can rapidly evolve to sepsis, and therefore, it 
is imperative to identify them as soon as possible and moni-
tor their progress to avoid poor outcomes. Finally, sepsis is 
more frequent in immunocompromised individuals such as 
cancer patients or the elderly [6]. These populations often 
present confounding factors such as chronic inflammation 
and dysregulated body temperature that make it even harder 
to identify sepsis.

Measuring alterations of the host response to an infection 
is a faster alternative to blood culture for guiding the diag-
nosis of sepsis. Indeed, many diagnosing algorithms include 
measurements of serum biomarkers, which in addition to 
vital constants and epidemiological data, can be used to pre-
dict sepsis cases [2]. Yet, biomarker measurements can also 
be misleading for sepsis diagnosis. On the one hand, bio-
marker levels fluctuate as sepsis progresses and these time-
dependent variations in concentration are different for each 
biomarker [7]. This means that biomarker measurements 
must be rapid to correctly reflect the patient status, and that 
more than one biomarker should be measured in order to 
identify sepsis independently of disease stage. On the other 
hand, most biomarkers used for sepsis diagnosis are inflam-
mation biomarkers whose levels may be altered by other 
conditions such as trauma, surgeries, cancer, or nephropa-
thies. Thus, biomarker levels should always be interpreted 
in the context of a personalized assessment that takes into 
consideration all the variables of each particular patient.

The abovementioned issues could be greatly alleviated by 
using biosensors implementing micro- and nanostructured 
components for the frequent, rapid testing of multiple sepsis 
biomarkers [8, 9]. Frequent testing of at-risk patients with 
rapid methods could reveal time-dependent variations in bio-
markers related to the onset of sepsis. This requires inex-
pensive mass-produced tests, for example, electrochemical 
biosensors fabricated with CMOS-compatible procedures, 
or disposable nanoparticle-based biosensors made of paper. 
Measuring multiple biomarkers would increase the specific-
ity of the diagnosis, which can otherwise be confounded by 
timing and comorbidities. Micro- and nanoelectrode arrays 
are ideal for meeting this challenge because they allow fit-
ting multiple sensors into a compact design. Since time is 
of the essence, biosensors for sepsis diagnosis should be 
sensitive, afford a high positive predictive value, and provide 
results at the bedside [9]. The outstanding physical prop-
erties of nanomaterials such as plasmonic nanoparticles, 
quantum dots, and graphene make them ideal candidates for 
boosting the sensitivity and reducing the time-to-diagnosis. 
Decentralized measurements are also important because 
sepsis is managed in a wide variety of healthcare settings, 
from ambulances to the emergency room, medical and surgi-
cal wards, or the intensive care unit (ICU). This means that 
tools for sepsis diagnosis should be made widely available, 
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and that the results obtained at each step of the healthcare 
chain should be collated and shared with other healthcare 
workers. Compact devices are required to tackle this issue, 
for example, microelectrodes that are fully integrated with 
the circuitry and optical biosensors combining plasmonic or 
fluorescent nanoparticles with smartphone readouts. Since 
measurements are to be performed by a frontline healthcare 
worker at the bedside, the biosensors should be easy to use. 
Microfluidic devices can reduce the steps required for com-
pleting the assay, thus making them more user friendly for 
bedside diagnostics. Furthermore, biosensor readers must 
be portable, and if possible inexpensive, in order to ensure 
their widespread implementation in different healthcare sce-
narios. While in many countries sepsis is primarily managed 
in well-equipped hospitals, in resource-constrained areas, 
such infrastructure is unavailable. Unfortunately, sepsis has 
a higher incidence in developing countries, which makes 
finding global solutions for sepsis management highly rel-
evant [1].

In this manuscript, we introduce the main biosensor con-
figurations used for diagnosing sepsis. Subsequently, we 
introduce some of the most promising biomarker candidates 
which, alone or combined, have been proposed for diag-
nosing sepsis. Then, we critically review commercial tests 
and the recent literature for biosensors based on micro- and 
nanostructured materials aimed at measuring biomarkers 
and circulating pathogens, and propose different points of 
the healthcare chain where they could improve sepsis care. 
Methods for pathogen identification samples other than 
blood and for determining their susceptibility to antibiotics 
have been recently reviewed elsewhere [10–12]. We finalize 
by discussing the relevance of micro- and nanostructured 
materials for developing sepsis biosensors and proposing 
future advancements for the field.

Biosensor configuration

Biosensors are a subcategory of chemical sensors that uti-
lize a biomolecule, cell, organism, or biological mimic in 
order to quantify a target analyte. The most common bio-
sensor configuration involves modifying a transducer with 
a biorecognition element, which captures the analyte with 
high selectivity and specificity. This triggers a change in a 
physical property that is measured by the transducer.

Electrochemical methods monitor the reaction kinetics of 
an electroactive species at the electrode/solution interface by 
measuring the current, voltage, or impedance, as recently 
reviewed by others [13]. Microstructured electrochemical 
sensors can be manufactured using well-established methods 
for microchip fabrication [14]. This makes it easy to fabri-
cate sensor arrays, wearable devices, and ultramicroelec-
trodes integrated in microfluidic platforms for point-of-care 

diagnostics. They also exhibit excellent sensitivity and 
reproducibility. Their performance can be greatly improved 
by incorporating nanomaterials such as gold, copper [15], 
platinum [16, 17], Prussian blue or zinc nanoparticles 
[18], carbon nanodots [19], quantum dots [20], magnetic 
beads [21–24], graphene [25, 26], graphene oxide [27–30], 
and carbon nanotubes [15, 27, 31]. The large surface area 
afforded by nanomaterials facilitates the capture of the target 
at the electrode/solution interface and increases currents.

Optical biosensors measure the variation of an optical 
property (e.g., chemiluminescence, absorbance, fluores-
cence) triggered by the biorecognition reactions, as dis-
cussed in detail in previous works [32, 33]. Two configu-
rations of optical biosensors have gained great momentum 
for diagnosing infectious diseases. The first configuration is 
the lateral flow test, which includes a pumpless microfluidic 
system with colorimetric signals that can be evaluated by 
eye [34]. This makes them useful for the rapid evaluation of 
targets without using auxiliary instrumentation, for instance, 
for the rapid detection of SARS-CoV-2 antigens or HIV 
antibodies. The second configuration leverages the camera 
of a smartphone to read signals. This makes it possible to 
perform quantitative measurements using a piece of instru-
mentation that is easily available at any point of healthcare 
[35]. Nanostructured materials have revolutionized the field 
of optical sensors thanks to the outstanding physical prop-
erties afforded by the nanoscale morphology. For example, 
the intense coloration seen in suspensions of noble metal 
nanoparticles are a consequence of their localized surface 
plasmon resonance (LSPR), which strongly depends on their 
size and shape [36]. This has made them ideal probes for 
diagnostic tests based on detecting color changes [37, 38]. 
Quantum dots are fluorescent nanoparticles whose emission 
wavelength is intimately related to their size. They are better 
suited for biosensing than traditional fluorophores because 
they do not bleach [39]. Furthermore, they have a broad 
absorption spectrum that makes it easy to excite them with 
a conventional UV lamp. This facilitates implementing them 
in in-field analyses and makes them ideal for multiplexed 
detections in which different quantum dots generate different 
fluorescent signals within the same experiment [20].

Finally, it is worth mentioning that micro- and nanostruc-
tured materials are making possible new approaches in bio-
sensing that combine electrochemical and optical concepts. 
For example, self-propelled micro- and nanoparticles that 
use an electrochemical reaction as fuel have been proposed 
for detecting inflammation and pathogen biomarkers “on 
the fly” [17, 23, 40, 41]. In this approach, the micro- and 
nanomotors swim in the sample and interact with the target 
analyte. Biorecognition alters the particle motion, which 
can be detected with optical methods. This approach is 
beneficial in that it circumvents the need to add additional 
instrumentation for sample convection (the biosensors are 
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self-propelled) and requires very small sample volumes, 
which is ideal for analyzing samples from neonates.

Biomarkers for sepsis management

Lactate

Lactate is a useful biomarker for monitoring tissue oxygena-
tion. Healthy individuals have basal blood lactate levels in 
the range between 0.5 and 1.5 mM [42]. This value increases 
in the case of an inadequate tissue perfusion, when anaerobic 
metabolism is activated. An anomalous lactate elimination 
rate, which is normally 325 mM  h−1, has been also suggested 
as a cause for hyperlactatemia [43]. Sepsis affects the cardio-
vascular system and vascular self-regulation, and often leads 
to tissue hypoperfusion, which may cause organ dysfunction 
[15]. This is usually accompanied by an increase in blood 
lactate. Thus, lactate is not a sepsis biomarker per se, since 
tissue hypoperfusion can be originated by other conditions. 
However, it is well-accepted that patients with persistent 
hyperlactatemia have poorer outcomes, and therefore, lactate 
is considered an excellent prognosis biomarker [44]. Fluid 
therapy, followed by vasopressors if no adequate response 
is obtained, is often used in order to decrease lactate levels 
and avoid poor outcomes.

In many hospitals, lactate is measured with tabletop gas-
ometers. These devices only require injecting a blood sample 
in order to determine the concentration of lactate, as well 
as other relevant metabolites, within seconds. Point-of-care 
tests for lactate detection are also commercially available. 
Table S1 summarizes the main models currently available in 
the market. Table 1 comprises examples from the academic 
literature published the last 5 years.

Procalcitonin

Procalcitonin (PCT) is the precursor of the hormone calci-
tonin. It is released by parenchymal cells mainly in response 
to the presence of bacterial toxins, although it can also be 
found elevated to a lower extent in infections secondary 
to fungi or viruses [5]. It is found at very low basal levels 
(below 0.05 ng  mL−1, which is considered “undetectable” 
from a clinical perspective), but its concentration in the 
bloodstream steadily increases during bacterial infections. 
Values above 1–2 ng  mL−1 are usually considered a warn-
ing sign for sepsis [45]. Although alterations in PCT levels 
are indeed quite specific for bacterial infections, high levels 
of this biomarker can also be found in other non-infectious 
conditions such as pancreatitis, cancer, or trauma [5]. Nev-
ertheless, PCT measurements are routinely used in many 
hospitals in order to aid in the diagnosis of sepsis. These 
are usually performed in central laboratories with automated 

ELISA procedures such as Elecsys BRAHMS. It has also 
been suggested that the concentration of PCT in blood could 
be related to the pathogen causing sepsis [46]. PCT levels 
take about 4 h to elevate, and during this time, PCT meas-
urements may lead to wrong conclusions [7]. However, PCT 
levels stay high for a long time, and therefore, it is a good 
biomarker for identifying sepsis independently of time in 
intermediate and late stages.

De-escalating antimicrobial therapies is essential for pro-
moting antibiotic stewardship, and kinetic measurements of 
PCT are recommended for guiding this process. Current 
guidelines recommend de-escalating the antibiotic treatment 
when PCT decreases by ≥ 80% from peak value or below 
0.5 ng  mL−1 [47].

Table 2 shows the main features of biosensors for PCT 
detection proposed in the recent literature.

Cytokines

Cytokines are small proteins related to cell signaling in 
inflammatory processes such as sepsis. Pro-inflammatory 
cytokines such as IL-6 play an important role during the 
systemic inflammatory response syndrome and have been 
used to aid in the early diagnosis of sepsis [48]. IL-6 acti-
vates a downstream JAK kinase by interacting with soluble 
and membrane bound receptors as well as with the gp130 
receptor. In healthy individual, the basal IL-6 concentration 
is below 10 pg  mL−1 [49, 50], although it is known that this 
concentration can be altered by chronic inflammation and 
aging. IL-6 is a useful biomarker to confirm suspected cases 
of sepsis and is used to monitoring the treatment as well [49, 
51]. IL-6 levels higher than 20 pg  mL−1 in neonates have 
been linked to sepsis [52]. In adults, IL-6 levels higher than 
500 pg  mL−1 lead to death in 11% of the cases, making it 
also a good prognosis biomarker [51].

The concentration of IL-6 in serum peaks during the first 
hours of sepsis [7]. Then, it progressively decreases as PCT 
levels increase. Therefore, the combined monitoring of PCT 
and IL-6 could help identify sepsis cases irrespectively of 
disease stage.

Main approaches for detection IL-6 with biosensors can 
be found in Table 3

C‑reactive protein

C-reactive protein (CRP) is an acute-phase reactant protein 
identified for the first time in 1930 [53]. CRP allows mac-
rophages to eliminate bacteria by binding their phospholipid 
constituents [54]. Its synthesis is stimulated by cytokines 
such as IL-6 or TNF-α, a process that mainly takes place in 
the liver [55]. Even though evidence is lacking for its use as 
a specific sepsis biomarker [55, 56], it has good prognosis 
value as high CRP levels can be linked to the severity of 
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Table 1  Examples of lactate micro- and nanosensors from the academic literature published the last 5 years

Technique Enzyme Electrode LOD Dynamic range Real sample Assay time Ref

Amperometry LOX Prussian blue–modified carbon electrode - 0.2–5 mM serum - [104]
Linear poly(ethylenimine)-dimethylferro-

cene-modified glassy carbon electrode
3 μM 0–5 mM - - [105]

Layer by layer poly(ethylenimine)-CeO2-
modified Pt electrode

0.3 μM 0.02–1 mM Serum 10 s [106]

Carboxylated multiwalled carbon nano-
tubes (cMWCNT)/copper nanoparticles 
(CuNPs)/polyaniline (PANI) hybrid 
film electrodeposited on the surface of a 
pencil graphite electrode (PGE)

0.25 μM 1 pM–2.5 μM Serum 5 s [15]

Prussian blue NP-modified electrode 1 μM 1–100 μM Serum - [18]
Carbon-paste electrode modified with 

Benzo[c]cinnoline and multiwalled 
carbon nanotubes

0.07 μM 0.2–100 μM Serum 50 s [31]

Screen-printed carbon electrodes with 
platinum nanoparticle-decorated carbon 
nanofibers

11 μM 25 μM–1.5 mM Blood 60 s [16]

TiO2 sol/graphene modified 3D porous 
Ni foam

19 μM 50 μM–10 mM Serum 180 s [107]

Reduced graphene oxide, carbon nano-
tubes, and AuNP nanocomposite

2.3 μM 0.05–100 mM Blood 80 s [27]

Carbon nanodots 0.9 μM 3–500 μM Serum 38 s [19]
Platinum disk electrodes 5 μM 5 μM–1 mM Serum 30 s [108]

LDH Poly (3,4-dioxoethylthiophene) (PEDOT) 
on  TiO2 nanowire

0.08 μM 0.5–300 μM Serum - [109]

CeO2-glassy carbon electrode 50 μM 0.2–2 mM Blood 4 s [110]
Nitrophenyl modified reduced oxide 

graphene electrode
2.5 μM 0–90 μM Serum 23 s [26]

Graphene oxide nanoparticle-modified 
pencil graphite electrode

0.1 μM 5–50 mM Serum 5 s [111]

Gold NPs anchored on reduced graphene 
oxide

0.13 μM 10 μM–5 mM Artificial serum 6 s [28]

LDH NP-modified Au electrode 0.01 μM 0.01 μM–55 mM Serum 2.5 s [112]
Polyaniline Ti nanotubes-ethylvinylimi-

dazolium chloride-chloroauric acid
0.16 μM 0.55 μM–3.33 mM Serum 8 s [113]

AuNP-modified microwire electrode 411 μM 0.5–7 mM Serum - [114]
Poly(3,4-Dioxoethylthiophene) (PEDOT) 

doped with poly(acrylamide-co-
acrylate) as polycarboxylate (poly-
COO −)

0.25 mM 0.05–2 mM Serum - [115]

None NiO@Au nanocomposite 11.6 μM 0.1–1.2 mM
10–500 M

Serum - [116]

Inkjet-printed AuNPs/NiO NP electrode 380 mM 0.6–2.2 mM Plasma 60 s [117]
Pt-microneedle electrode-AuNPs-polydo-

pamine nanospheres
50 μM 0.38–12 mM Serum - [118]

Chemiluminescence LOX Luminol chemiluminescence detection 15 μM 0.02–5 mM Serum - [119]
Fluorimetry LOX Polystrirene particles doped with Pt-

tetra(pentafluorophenyl) porphyrin + sil-
ica particles with coumarin 6

0.06 mM 0.1–0.8 mM Artificial serum  < 1 min [120]

Field effect transistor LDH Graphene-based field effect transistor - 0–7.5 mM Serum - [121]
Coulometry LOX Commercial screen-printed electrode 

(DS550, DropSens)
0.25 mM 0–10 mM Serum - [122]
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Table 2  Main micro- and nanosensors for PCT detection proposed in the recent literature

Technique Detection Support Instrumental Real matrix Analysis time Ref

LOD Matrix Dynamic range Matrix LOD

Immu-
nosen-
sor

Electro-
chemi-
cal

Nylon membrane integrated 
onto a microelectrode

0.1 ng  mL−1 PBS-
pooled 
serum

0.1 ng  mL−1–10 μg  mL−1 Blood –- 15 min [123]

ZnNP-functionalized car-
bon–silica nanocomposite 
graphene oxide

13 fg  mL−1 –- 50 pg  mL−1–80 ng  mL−1 Serum 0.01 ng  mL−1  > 40 min [29]

Quantum dots (QD) and 
indium-tin-oxide (ITO)-
coated glass substrate

0.21 ng  mL−1 PBS 1 ng  mL−1–10 μg  mL−1 –- –-  > 30 min [20]

Magnetic beads and carbon 
electrodes

90 pg  mL−1 PBS 0.25–100 ng  mL−1 Plasma 0.6 ng  mL−1  < 20 min [21]

oO3/Au@rGO nanocom-
posites

2 fg  mL−1 PBS 0.01 pg  mL−1–10 ng  mL−1 NO NO  > 120 min [124]

Glass carbon elec-
trode +  CuCo2S4-Au-Ab2

82.6 fg  mL−1 PBS 0.1 pg  mL−1–25 ng  mL−1 Serum  < 20 pg  mL−1 – [125]

Magnetic beads + carbon 
and gold electrodes

0.1 (C)
0.04 (Au) ng 

 mL−1

PBST 0.5–1000 (C)
0.1–20 (Au) ng  mL−1

Serum 1 ng  mL−1  < 20 min [22]

Magnetic beads + gold 
electrodes

20 pg  mL−1 PBST 0.05–100 ng  mL−1 Serum 
plasma

–-  < 15 min [23]

Bismuth vanadate + GaON/
CdS electrode

0.03 pg  mL−1 PBS 0.1 pg  mL−1–50 ng  mL−1 Serum 0.05 ng  mL−1  > 60 min [126]

Chemilu-
mines-
cence

Polydimethylsiloxane 
(PDMS)

250 pg  mL−1 PBS (30% 
fetal calf 
serum)

250 pg  mL−1–128 μg  mL−1 Serum –- 90 min [127]

Silica capillaries 10 fg  mL−1 –- 0.1 pg  mL−1–100 ng  mL−1 Serum 20 pg  mL−1  < 3 h [128]
Bare fused silica 0.5 pg  mL−1 –- 2.5 pg  mL−1–80 ng  mL−1 Serum 23 pg  mL−−1 2.5 h [129]
Optical fiber 11 pg  mL−1 PBS 0.05–200 ng  mL−1 Serum –-  > 75 min [130]

Electro-
chemi-
lumines-
cence

Graphene oxide + PANI 
nanorod arrays + gold 
nanoparticles

54 fg  mL−1 PBS 100 fg  mL−1–50 ng  mL−1 Serum –-  > 40 min [131]

Diethanolamine and ruthe-
nium co-doped in silica 
nanoparticles

0.85 pg  mL−1 PBS 5 pg  mL−1–100 ng  mL−1 Human 
serum

1 pg  mL−1 –- [132]

CoOOH@Au 
NPs + g-C3N4@NH2-
MIL-101

3.4 fg  mL−1 PBS 0.014 pg mL–40 ng mL −1 Human 
serum

–-  > 120 min [133]

Photoelec-
trochem-
ical

Zinc titanium composite 30 fg  mL−1 Buffer 0.1 pg  mL−1–100 ng  mL−1 Blood 10 pg  mL−1 –- [134]
Acetylcholinesterase 

connected to SiO2nano-
spheres

0.17 pg  mL−1 PBS 0.0005–100 ng  mL−1 Human 
serum

0.17 ng  mL−1 135 min [135]

Fluores-
cence

Polypyrrole microtubes 
with a magnetic layer of 
nickel

70 pg  mL−1 PBS 0.5 − 150 ng  mL−1 Plasma 1.1 ng  mL−1  > 30 min [40]

Lumines-
cence

Core–shell mesoporous 
silica nanoparticles + pol-
yvinyl chloride

0.5 ng  mL−1 PBS 1–200 ng  mL−1 Plasma –-  > 10 mn [39]

Biolumi-
nescence

Magnetic nanoparticle 
polystyrene nanospheres

45 ng  mL−1 PBS 
solution 
(30% 
fetal calf 
serum)

1–104 pg  mL−1 Serum 0.25 ng  mL−1 1 h [99]

SERS Nitrocellulose 0.1 ng  mL−1 PBST 0.5–100 ng  mL−1 –- –- 15 min [136]
Plasmonic 

imaging 
platform

Gold-coated glass slide 2.8 pg  mL−1 Buffer 4.2 pg  mL−1–12.5 ng  mL−1 –- –- ∼ 25 min [98]

Colorimet-
ric

Magnetic beads and filter 
paper

–- Blood 1–20 ng  mL−1 Blood 0.4–1.4 ng  mL−1 13 min [91]
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the infection [21]. Similarly, decreasing CRP values might 
indicate a favorable response to the antibiotic treatment [57]. 
However, CRP levels remain low during the first stages of 
the infection, and therefore, it has low sensitivity towards 
an early diagnosis of sepsis [55, 57]. On the other hand, it 
has shown a strong selectivity to assess the severity of an 
infection after 24 h.

Biosensors for CRP detection proposed in the last 5 years 
can be found in Table 4. Kumar et al. published an excel-
lent compilation of technologies reported between 2006 and 
2015 [8].

Emerging biomarkers

Adrenomedullin is a peptide with metabolic, immunomodu-
lating, antimicrobial, and vasodilator activity [5]. It is syn-
thesized as proadrenomedullin, which has short life in the 
blood stream. However, fragments of the prohormone such 
as mid-regional proadrenomedullin (MR-proADM) are not 
as rapidly metabolized and therefore are an excellent sur-
rogate for measuring variations of proadrenomedullin origi-
nated by sepsis.

MR-proADM is mainly used as a prognosis biomarker, 
since high levels of this molecule for prolonged periods of 
time have been associated with poor outcomes [58]. Some 
authors even suggest that a single measurement of MR-
proADM can be as effective as the sequential organ failure 
assessment score (SOFA score) for evaluating organ dys-
function [59]. This is remarkable because the SOFA score 
requires multiple measurements of biochemical parameters 
and vital constants, and therefore, it is not suitable for the 
rapid assessment of patients.

Other biomarkers that could be useful for the diagno-
sis and prognosis of sepsis that are not used in the daily 
clinical practice as of yet are soluble CD14, also known as 
presepsin, a fragment of glycoprotein produced by mono-
cytes or macrophages [60], sTREM-1 (soluble Triggering 
Receptor Expressed by Myeloid cells 1) [5], copeptin, a 
peptide derived from preprovasopressin [61], and suPAR 
(soluble urokinase-type plasminogen activator receptor) 
[62]. A meta-analysis comparing presepsin with PCT found 
no significant differences between the diagnostic sensitivity 
of these biomarkers for diagnosing sepsis, making it a valu-
able alternative to the classic biomarker [63]. Interestingly, 
presepsin has been found to be useful for identifying sepsis 
in the emergency department in several independent stud-
ies [64]. This makes this biomarker promising for the early 
identification of septic patients in this healthcare setting. 
Urine sTREM has been proposed as a potential biomarker 
for detecting urosepsis and acute kidney injury [65]. In 
serum, it has been shown to have excellent diagnostic value 
for ICU patients [66]. The same study revealed that suPAR 
can be used to predict bad outcomes and 7-day survival.Ta
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Non‑protein biomarkers

MicroRNAs (miRNAs) are non-coding RNAs containing 
19–25 nucleotides that negatively regulate gene expression 
at the post-transcriptional level by binding to their target 
messenger RNAs. In recent years, the use of miRNAs as 
early biomarkers for clinical diagnosis of different types of 
disease has become a research hotspot. Differential expres-
sion of some miRNAs in septic patients compared to control 
patients suggests that miRNAs could be useful biomarkers 
in diagnostics or prognostic stratification. Table 5 shows the 
most consistently found miRNAs as potential biomarkers for 
sepsis. To the best of our knowledge, none of these biomark-
ers has been used as of yet in the routine clinical practice.

Although some miRNAs circulate freely, detection in 
circulation can be interfered by other components, mak-
ing results less consistent. Alternatively, miRNAs are 
transported by small extracellular vesicles (EVs) such as 
exosomes, cell-derived membranous structures that work as 
intercellular communicators. They exert their function by 
transporting cargo, which includes nucleic acids, proteins, 
and lipids [67]. EVs protect miRNA from blood ribonucle-
ases, giving exosomal miRNAs higher specificity and sta-
bility than circulating miRNAs thus becoming an ideal bio-
marker of circulating fluids. To detect exosomal miRNAs, 
EVs must be first purified from the biological samples and 
subsequently disrupted in order to quantify miRNAs. This 
is challenging because exosomes have nanoscale dimen-
sions, which makes it difficult to purify them via conven-
tional centrifugation. Moreover, miRNAs are found at very 
low concentrations. Therefore, their detection requires an 
ultrasensitive method, which often includes an approach to 
amplify their numbers such as PCR. However, PCR test-
ing is expensive and requires several hours to be completed, 
which makes it unsuitable for the early diagnosis of sep-
sis. Isothermal amplification methods such as rolling circle 
amplification have been proposed for enabling the detec-
tion of miRNAs at low concentrations [68]. Nevertheless, 
the need for exosome purification, miRNA amplification, 
and ultrasensitive detection schemes makes it challenging 
to implement these biomarkers for the rapid diagnosis of 
sepsis in decentralized settings.

Advances in lab on chip technologies are making pos-
sible measuring cell-related biomarkers at the point of 
care. For example, it has been shown that red blood cells 
have reduced deformability in cases of sepsis, which could 
be used to diagnose the syndrome. This observation has 
prompted scientist to design microfluidic devices capable 
of measuring the shear modulus of these cells and determine 
their stiffness [69]. Recently, neutrophil motility has been 
proposed as a new biomarker for diagnosing sepsis. In this 
approach, neutrophil migration patterns were determined 
with a microfluidic device [70]. Samples from ICU patients 

were used to train a machine learning scoring system that 
could subsequently identify septic patients in a double-blind 
prospective study. The proposed method yielded a 97% sen-
sitivity and 98% specificity when tested in a cohort of 42 
patients. Expression of membrane markers in neutrophils 
is also useful for sepsis diagnosis, although its detection 
usually requires flow cytometry, a labor-intensive method 
that is not available at the point of care. This limitation was 
overcome with a microfluidic chip that detected the upregu-
lated expression of CD64 on neutrophils using whole blood 
[71]. In this approach, red blood cells are lysed. The remain-
ing cells are counted before and after circulating through 
a chamber modified with anti-CD64, which is the basis 
to determine the number of cells that have expressed this 
biomarker. The biochip shows an excellent diagnostic and 
prognostic accuracy when tested with patients at different 
times since hospital admission, which makes it promising 
for patient stratification. Finally, it has been proposed that 
plasmonic nanoparticles could be used to detect excessive 
degranulation in neutrophils isolated from septic patients 
[72]. In this approach, cationic proteins from neutrophil 
granules aggregate gold nanoparticles, which changes the 
color of the colloidal suspension. Neutrophils from septic 
patients have degranulated in vivo and therefore were not 
able to aggregate the nanoparticles in vitro. Combining this 
colorimetric signal generation mechanism with microfluidic 
of magnetic separation methods could make this approach 
useful in decentralized sepsis diagnostics.

Detection of bacteriaemia

Detecting the pathogen causing the infection in the blood-
stream and its potential mechanisms of antimicrobial resist-
ance is a powerful tool in sepsis management because it 
allows clinicians to personalize antibiotic treatments accord-
ingly. However, it is important to note that patients may 
have sepsis without confirmed bacteriaemia and vice versa. 
Indeed, the current definition of sepsis (life-threatening 
organ dysfunction caused by a dysregulated host response 
to infection) does not include bacteriaemia.

Table S4 shows the main commercial approaches for 
detecting bacteria in blood. Bacteriological culture followed 
by a full antibiogram is the gold standard for detecting bac-
teria in blood. However, the whole process takes 24–48 h 
during which antibiotics must be provided empirically. Fur-
thermore, this approach cannot detect viruses. Mass spec-
trometry can expedite the process, but it still requires a blood 
culture to increase the number of pathogens in the sample, 
which can be as low as < 10 cells in 30–50 mL of blood [73]. 
PCR panels that detect a battery of pathogens and gens asso-
ciated to antibiotic resistance in positive cultures are also 
commercially available. These approaches can simultane-
ously query the presence of different pathogens (including 
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viruses). Noteworthily, a recent method from T2Biosys-
tems has been proposed for detecting nucleic acids in 3–5 h 
without culture. This approach is based on promoting the 
clustering of magnetic nanoparticles through nucleic acid 
amplification, which affords a highly sensitive detection. 
Finally, the Accelerate Pheno system performs identification 
and antimicrobial susceptibility testing (AST) directly from 
positive blood cultures in ca. 7 h. This approach is based on 
imaging changes in the morphology of cells triggered by the 
addition of antibiotics.

Recent new approaches for detecting pathogens in blood 
are summarized in Table 6. Many of these platforms offer 
extremely low limits of detection that could expedite the 
diagnosis of bacteriaemia when coupled to a shorter blood 
culture step [74–79]. Some are sensitive enough to be cul-
ture-independent [80–83]. Among this, an approach stands 
out for enabling the detection of a single pathogen per milli-
liter in less than 13 min [80]. It is based on using silver nano-
particles and an ultrasensitive technique, surface-enhanced 
Raman spectroscopy (SERS), to detect pathogens as they 
flow through a microfluidic system. The nanoparticles are 
modified with different reporter molecules that enable the 
simultaneous detection of several key pathogens in the sam-
ple. This technology could be a true game changer in sep-
sis management as it would allow clinicians to personalize 
antibiotic treatments way before blood cultures have been 
performed.

Implementation points for decentralized 
measurements of sepsis biomarkers

Triage

Around 50% of sepsis patients enter the hospital through the 
emergency department, where they are initially evaluated 
by a nurse during triage [84]. Triage consists of a series 
of quick examinations that allow the nurse to establish the 
urgency required for the patient to be attended by a doctor. 
Patients are assigned a priority level that determines their 
waiting time. For example, the Manchester triage system 
has 5 levels, level 1 patients require immediate attention; 
level 2 patients should not wait more than 10–15 min; levels 
3–4 are delayed by 1 or 2 h, respectively; and level 5 are 
not considered emergency cases and may wait more than 
4 h. Therefore, the aim of nurse triage is not diagnosing 
a particular pathology but rather prioritizing patients that 
require urgent care. Nurse triage should not take more than 
5–10 min to be completed.

Nurse triage has been recognized as one of the main 
bottlenecks in sepsis care, as patients that arrive to the 
emergency room with mild symptoms can rapidly worsen 
while sitting for hours in the waiting room if they are not Ta
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prioritized correctly. High lactate levels are indicative of 
bad outcomes, and biosensors for rapid lactate detection in 
whole blood are already available (Table S1). Several clini-
cal studies have validated that lactate measurements can 
improve triage [85]. Indeed, The Third International Con-
sensus Definitions for Sepsis and Septic Shock (Sepsis-3) 
stated that septic shock, which has a poor prognosis, could 
be identified by a vasopressor requirement to maintain a 
mean arterial pressure of 65 mmHg or greater and serum 
lactate level greater than 2 mmol  L−1 (> 18 mg  dL−1) in 
the absence of hypovolemia [86]. Thus, bedside methods 
for the rapid detection of lactate are required in order to 
monitor patients at risk of septic shock and prioritize them 
accordingly. However, lactate levels vary very rapidly, and 
they are not specific for sepsis. Therefore, lactate determina-
tions should be complemented with measurements of IL-6, 
PCT, or MR-proADM measurements [87]. In the context 
of triage, these measurements should be rapid and easy to 
perform and interpret by a frontline healthcare worker with 
only a drop of capillary blood. Combining these measure-
ments with advances in machine learning, which have shown 
to improve sepsis diagnosis even with scarce data sets [88, 
89], could help prioritize patients that need urgent care [90].

Commercial lateral flow immunoassays for PCT and IL-6 
require 20 min to be completed, and they are not recom-
mended for analyzing whole blood (Tables S2 and S3). Bio-
sensors that could reduce the assay time and detect biomark-
ers in unprocessed blood could make a great impact in the 
triaging of sepsis patients. For example, a recent prototype in 
the literature was able to detect PCT in whole blood within 
13 min with a paper biosensor and a smartphone reader 
[91]. In this approach, magnetic microparticles captured 
PCT through a competitive immunoassay using catalase 
as a label. The magnetic particles were spotted on a paper 
substrate, which generated an intensely colored spot due to 
the inherent brown color of the iron oxide beads (Fig. 1A). 
Then, hydrogen peroxide was added, and catalase gener-
ated oxygen bubbles that dispersed the particles within the 
paper in a few seconds. The corresponding change in color 
was then quantified with a smartphone app. This detection 
scheme combines a fast turnaround time with a mobile 
reader, which is ideal for decentralized measurements such 
as the ones required in triage.

As commented above, IL-6 is one of the earliest biomark-
ers that is altered during sepsis, making it ideal for the early 
identification of at-risk patients during triage. Recently, a 
lateral flow immunoassay (LFIA) that measured IL-6 with 
a portable fluorescence strip reader (PorFloR™) was devel-
oped [92]. Staphylococcal protein A (SPA) conjugated with 
CdTe QDs, anti-IL-6, and anti-rabbit IgG are bound sepa-
rately on SPA-QD complex to develop the biosensor mixture 
(Fig. 1B). The device includes a control and test spots. The 
test showed a low limit of detection of 0.9 pg  mL−1 with a 

wide dynamic range between 1 and 1000 pg  mL−1. The per-
formance of the device, in terms of sensitivity, selectivity, 
and analysis time (30 min) shows potential as a PoC device 
for the analysis of IL-6 in patients with infection. However, 
sample treatment is needed and the device has still to be 
tested in patient samples.

Recently, an alternative has emerged that used a col-
orimetric detection scheme and smartphone readouts for 
detecting IL-6 in whole blood with a paper biosensor within 
10 min [93]. In this approach, the sample is dried on a piece 
of filter paper, and then, nanoparticles are transferred from 
another paper biosensor. The nanoparticles are covered 
with anti-IL-6 antibodies that specifically recognized the 
target with an incubation step of only 5 min. The biosensors 
showed an ultralow limit of detection of  10−3 pg  mL−1 in 
ideal conditions that enabled a sample dilution step for elim-
inating interference from the blood matrix that circumvented 
the need to purify serum or plasma. Colorimetric signals 
were read with a smartphone app that uses an augmented 
reality guidance system to eliminate artifacts [94]. While 
the rapid turnaround time and smartphone-based detection 
scheme make this approach suitable for decentralized analy-
ses, further work is needed to match the easy manipulation 
of the lateral flow immunoassay, especially with regard to 
washing steps.

A platform for the detection of IL-3 has also shown 
promising results towards an early diagnosis and progno-
sis of sepsis [95]. It is a hybrid magneto-electrochemical 
sensor which produces results in 1 h from native blood 
samples. First, IL-3 is captured from native blood using 
magnetic microparticles and is labeled with antibod-
ies conjugated to HRP. Then, magnetic beds are mixed 
with TMB and the oxidized TMB is reduced by the elec-
trode transducer. The electrical current generated can be 
related to IL-3 concentration in the sample, with a limit 
of detection below 10 pg  mL−1. The fact that blood can 
be used without any sample treatment, and the low vol-
ume required (less than 100 μL) makes the device a good 
candidate for point-of-care implementation. Moreover, the 
device is small (10 × 10 × 2.5  cm3) and thus can be easily 
fitted in a nurse office.

As for lactate biosensors, dynamic range and measure 
time are two key points that need to be optimized to make 
the sensor useful for triage. A wide dynamic range is nec-
essary to distinguish normal physiological concentrations 
from alarmingly high concentrations, which would allow to 
prioritize patients with a bad prognosis. A biosensor based 
on a platinum electrode modified with reduced graphene 
oxide, carbon nanotubes, and gold nanoparticles has been 
proposed as a good candidate to meet this challenge [27]. In 
this approach, lactate oxidase, which catalyzes the conver-
sion of lactate to  H2O2 and pyruvate, is immobilized in the 
electrode surface. The amperometric signal resulting from 
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the oxidation of  H2O2 can be related to the l-lactate con-
centration in the sample. The device showed a very wide 
dynamic range (0.05–100 mM), and could detect lactate in 
blood samples, making it useful for patient prioritization at 
the point-of-care.

Emergency room

After nurse triage, the patient will be visited by a clinician 
in the emergency room, who will diagnose the patient. For 
external patients, the information available for the diagnosis 
is still very limited. Measurements of vital constants per-
formed during nurse triage will be repeated and laboratory 
tests will be commissioned. These will include immuno-
logical determinations such as lymphocyte counts and organ 
dysfunction tests such as the quantification of bilirubin. In 
many hospitals, these tests will be complemented with lab-
oratory-based measurements of CRP and PCT. It has been 
already shown that combining biomarker measurements with 
data from electronic medical records could improve the sen-
sitivity and specificity towards sepsis diagnosis [96]. Rapid 
diagnostic tests performed at the bedside and machine learn-
ing algorithms could streamline this diagnostic paradigm in 
the near future.

Two analytical advances could make a great impact in the 
diagnosis of sepsis at this point. On the one hand, repeat-
ing the rapid measurements proposed during nurse triage 
could shed light into patient progression. As highlighted 
above, sepsis is strongly time-dependent. Determining vari-
ations in biomarkers with time could reveal patients that 
are quickly worsening before all the battery of laboratory 
tests is completed. On the other hand, biosensors for deter-
mining multiple sepsis biomarkers simultaneously would be 
a tremendous help for diagnosing sepsis, since little infor-
mation is known at this point. An elegant example of such 
platform is a nanoplasmonic biosensor microarray for the 
multiplex detection of cytokines [97]. This device comprises 
480 nanoplasmonic sensing spots in a microfluidic device 
that can be completely run within 40 min. The array meas-
ures changes in the localized surface plasmon resonance of 
gold nanorods modified with antibodies upon target bind-
ing. The readout is performed with dark-field microscopy. 
Authors demonstrated the simultaneous detection of IL-2, 
IL-4, IL-6, IL-10, TNF-α, and IFN-γ with these devices. 
Adapting this technology for using compact readers such 
as mobile phones, which have been repurposed as point-of-
need dark-field microscopes, and incorporating a purification 
step for direct blood determination at the bedside could be a 
game changer in sepsis diagnosis at the point-of-care.

Electrochemical biosensors for the simultaneous detec-
tion of PCT and CRP have also been proposed in the lit-
erature (Fig. 2) [21]. In this approach, antibody-decorated 
magnetic microparticles captured the biomarkers, which 

were subsequently detected with a sandwich immunoassay 
using horseradish peroxidase as the label. The enzyme oxi-
dized hydroquinone in the presence of hydrogen peroxide, 
which generated dose-dependent signals. The whole assay 
was performed within 20 min, making it suitable for the 
rapid identification of sepsis. Detection was accomplished 
with a portable potentiostat/galvanostat using a small drop 
of sample (30 µL), which makes it useful for diagnosing 
sepsis in neonates.

In the emergency room, patients that have been identified 
as septic will receive their first antibiotic treatment. Meth-
ods for expediting the identification of pathogens in blood 
could greatly help clinicians decide on the best treatment 
option. For example, it has been shown that a microfluidic 
system can detect pathogens in blood at the single cell level 
within 90 min using DNAzymes. The DNAZyme recognized 
and cleaved target molecules produced by Escherichia coli 
thanks to its biocalytic activity. This turned a fluorescent 
reporter on that enabling the detection of single bacterial 
cells [78]. Encapsulating each bacterium in a microscopic 
droplet was a key aspect to achieve ultra-high sensitivity, 
as it greatly increased the concentration of targets that are 
recognized and cleaved by the DNAzyme. Electrochemical 
methods have also been applied for the rapid detection of 
bacteria at ultralow concentration in plasma [81]. In this 
approach, redox-active probes consisting of a gold core sur-
rounded by electropolymerized 4-aminothiophenol (4-ATP), 
or (B) 5-amino-2-mercapto-1,3,4-thiadiazole (AMT), and 
antibodies were used to target the bacteria. Pathogens were 
detected with electrodes implemented in a nano-sieving 
microfluidic system that removed probes not bound to the 
bacteria. Using this method, pathogens at concentrations as 
low as 10 cells  mL−1 could be detected within 30 min, which 
could be fast enough to fine-tune the first antibiotic regimen 
according to the type of pathogen generating the infection.

Intensive care unit

Patients in the ICU may acquire nosocomial infections by 
multi-resistant pathogens that can easily progress to sepsis 
if not timely treated. Immunosuppressed patients, as well as 
those previously treated with antibiotics, on mechanical venti-
lation, or wearing catheters, are particularly susceptible. Thus, 
tools for rapid diagnosis highlighted in the previous sections 
are also relevant for identifying sepsis cases in the ICU. Once 
diagnosed, it is crucial to closely monitor patient progres-
sion. Thus, the rapid detection of biomarkers along the chain 
of care should be complemented with a system for real-time 
data collation and sharing. An “Internet of Things” paradigm 
that enabled the direct communication between biosensors 
and electronic health records could make this idea a reality.

As highlighted above, serial measurements of PCT are rec-
ommended in order to de-escalate the antibiotic treatment. 
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This requires an analytical platform capable of performing 
quantitative analysis over a wide dynamic in order to detect 
80% variations over peak values, and with a low limit of detec-
tion for those cases where PCT drops below 0.5 ng  mL−1. For 
example, a plasmonic platform was recently introduced for 
detecting PCT in serum in the concentration range between 

4.2 and 12,500 pg  mL−1 in less than 25 min (Fig. 3A) [98]. In 
this approach, PCT is captured by a sandwich immunoassay 
on a gold-covered glass chip. The detection antibodies are 
labeled with biotin, which interacts with streptavidin-coated 
gold nanoparticles. The binding of PCT to the sensor is then 
monitored with a plasmonic platform that uses p-polarized 

Table 5  Biosensors for the 
detection of miRNAs as 
potential biomarkers for sepsis

Detection miRNA strand Dynamic range LOD Matrix Ref

Colorimetric  − 21
 − 155
 − 210

0–10 nM
0–5 nM
0–10 nM

73 pM
61 pM
85 pM

Spiked serum [178]

208 10 fM–100 nM 10 fM Serum [179]
- 0.01–1 nM 250 pM Cell lysate [180]
148 0.1–1000 nM 1.9 nM Buffer [181]
10 5 pM–10 nM 2.45 pM Urine (mice)

Plasma (mice)
[182]

Colorimetric and 
fluorescence

21 50 pM–1 nM 50 pM Cell lysate [183]

Electrochemical 21 5 fM–100 pM 2.7 fM Spiked serum [184]
10 aM–1 μM 38 aM Cell lysate [185]
0.1 fM–10 pM 0.03 fM Cancer cells [186]

21
126

20 fM–50 pM 5.36 fM Cancer cells [187]

21
141

0.5–1000 pM
50–1000 pM

0.3 pM
10 pM

Spiked serum [188]

Table 6  New approaches for detecting pathogens in blood

Pathogen Technique Support LOD Dynamic range Analysis 
time 
(min)

Ref

E. coli Immunosensor + optical 
interferometry

Gold 102 cell  mL−1 102–105 cell  mL−1 40 [74]

Aptasensor + plasmonic AuNPs 40 CFU  mL−1 102–106 CFU  mL−1 60 [75]
DNAzyme + fluorescence PDMS and oil 1 CFU  mL−1 1–104 CFU  mL−1 90 [80]

E. coli
P. aeruginosa
S. aureus

Bacteriophage assay + biolu-
minescence

Polystyrene 100 CFU  mL−1 102–106 CFU  mL−1  > 60 [76]

Antimicrobial pep-
tide + SERS

Magnetic particles + Au-
coated Ag-decorated 
graphene oxide nanocom-
posites

10 CFU  mL−1 10–106 CFU  mL−1  > 60 [81]

E. coli
P. aeruginosa
S. aureus
S. pyogenes

Protein aggregation 
assay + fluorescence

Au and Cu nanoclusters on 
paper

26–63 CFU  mL−1 102–108 CFU  mL−1 1 [77]

E. coli
P. aeruginosa
S. aureus
S. agalactiae

Immunosensor + SERS AgNPs 1 CFU  mL−1 1–102 CFU  mL−1 13 [82]

E. coli ATCC 25,922
Staphylococcus capitis

Metabolic activity + photo-
catalytic + colorimetric

Filter paper 103 CFU  mL−1 103–108 CFU  mL−1  < 300 [78]

P. aeruginosa
S. aureus

Immunosensor + ampero-
metric

Redox-active AuNPs 10 CFU  mL−1 10–105 CFU  mL−1 30 [83]

B. cereus DNA + bioluminescence Magnetic nanoparticles 103 CFU  mL−1 103–106 CFU  mL−1 30 [79]
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light from a super luminescent emitting diode to excite plas-
mons on the gold surface. The resulting scattered and reflected 
light can be used to image individual gold nanoparticles a 
temporal resolution of ∼ 37.5 ms. This unique feature enables 
resolving multiple nanoparticle binding events in an area com-
prised within the diffraction limit, which is responsible for the 
reported wide dynamic range.

Another promising point-of-care tool to detect PCT was 
presented in 2017 [99]. The device utilizes a double enzyme 
reaction where the ATP-luciferin-luciferase bioluminescent 

signal is produced and measured by a portable detec-
tor (Fig. 3B). The total assay time is less than 1 h with a 
wide working range of 1 to  104 pg  mL−1 and a low LOD 
(0.045 pg  mL−1). In this method, a sandwich immunoassay 
is performed employing magnetic nanoparticles modified 
with anti-PCT (monoclonal) and polystyrene nanospheres 
conjugated with both anti-PCT and the enzyme alkaline 
phosphatase (ALP). ALP, in the presence of the analyte, 
dephosphorylates ATP, thus inhibiting luciferase action and 
therefore reducing the production of the bioluminescent 

Fig. 1  Examples of biosensors 
for PCT detection. A Motion-
to-color biosensors based on a 
competitive immunoassay on 
magnetic microparticles. Mag-
netic particles that capture PCT 
are spotted on a piece of paper, 
which generates a colored spot 
due to the brown color of the 
iron oxide. After the addition of 
hydrogen peroxide, the particles 
are dispersed due to the oxygen 
bubbles generated by catalase 
and the change in color is 
quantified with a smartphone. 
Adapted with permission from 
reference [36] (Elsevier 2019). 
B LFIA for the detection of 
IL-6. The paper strip is read 
with a portable fluorimeter 
(PorFloR™). Adapted with per-
mission from ref. [37] (Elsevier 
2019)
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signal. The device was applied to real clinical samples and 
showed good correlation with standard devices.

Other hospital departments

Oncology patients are often immunocompromised by the 
chemotherapy and other immunosuppressed drugs, and 
therefore, they are at higher risk of sepsis. Patients that have 
undergone invasive procedures (surgeries) also need to be 
closely monitored for nosocomial infections potentially lead-
ing to sepsis. An implantable biosensor for the real-time 
detection of cytokines has been recently proposed that could 
revolutionize sepsis care in these scenarios. It consists of a 
graphene oxide transducer modified with an aptamer that 
changes its conformation upon binding interferon γ (IFN-
γ) (Fig. 4A) [100]. The binding releases ruthenium com-
plexes encapsulated in the closed aptamer configuration, 
which in turn generates an electrochemical signal. The sen-
sors had a low limit of detection of 1.3 pg  mL−1, and it was 
able to detect changes in the inflammatory state of mice 
in vivo during 48 h. Adapting this technology to monitor 
inflammation biomarkers in at-risk patients could be a game 
changer in sepsis care. It could also help better understand 
the syndrome, as it would provide information about time 
fluctuations in sepsis biomarkers. A label-free biosensor for 
detecting IL-6 with impedance spectroscopy has also been 
recently proposed for this purpose, although its performance 
in vivo has not been tested as of yet [51]. Recently, wearable 
biosensors capable of measuring several cytokines (IFN-γ, 
TNF-α, and IL-6) in sweat were proposed in the context 
of COVID-19 care [101]. The biosensors used graphene-
based field effect transistors integrated with microfluidics for 
sweat collection. The implementation of this nanomaterial 

enabled low limits of detection (476 ×  10−15, 608 ×  10−15, 
and 611 ×  10−15 M, respectively) with a turnaround time 
within 7 min. The signals generated by the biosensors were 
transmitted to smartphones (Fig. 4B). When combined with 
sweat induction using drugs like pilocarpine, these biosen-
sors could enable a new paradigm in sepsis management 
based on the continuous monitoring of patient with wear-
able devices.

Non‑hospital environments

Ambulances

Many sepsis patients arrive to hospitals in ambulances, 
where they are attended by a paramedic. It has been pro-
posed that paramedics could provide a first evaluation of 
sepsis in order to avoid delays in antibiotic prescription. 
As in triage, this consists of a few measurements of vital 
constants, which has very low specificity towards sepsis 
diagnosis. Incorporating lactate measurements could help 
evaluate if the patients have a bad prognosis and bypass 
nurse triage to avoid delays in life-saving treatments. 
These only require puncturing a finger with a lancet and 
analyzing a drop of blood with a small, portable reader, 
which can be done in a moving vehicle. Yet, the perfor-
mance of enzyme biosensors varies with temperature, and 
this parameter is not as controlled in an ambulance as it is 
in a hospital environment, which could yield misleading 
results.

Most previously proposed biosensors for measuring 
protein biomarkers would be difficult to implement in an 
ambulance, as the wobbly ride may have an impact on 
microfluidic systems, or the alignment of optical devices. 

Fig. 2  Electrochemical bio-
sensor for the simultaneous 
detection of PCT and CRP. 
Antibody-decorated magnetic 
particles capture PCT and CRP, 
and afterwards, the biomarkers 
are quantified by a sandwich 
immunoassay with HRP as the 
label. The total analysis time 
is 20 min and only 30 μL of 
sample are needed.  Reproduced 
with permission from ref. [43] 
(American Chemical Society 
2019)
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For example, it is known that the distance and angle 
between the smartphone and the sensor have a great impact 
in densitometric analysis with mobile devices. Therefore, 
smartphone-based detection schemes would have to take 
into account the difficulties of focusing under unsteady 
conditions. A potential solution to this issue would be 
to implement paper transducers for colorimetric read-
out based on augmented reality. In this approach, a piece 
software uses a smartphone camera to recognize a pattern 
printed on a piece of paper. When the colorimetric signal 
is generated, the pattern blurs and recognition is blocked. 
Pattern recognition is less sensitive to changes in angle and 
distance than densitometric analysis, which makes more 

robust in this scenario [35, 102]. This method can be used 
to develop an “on–off” optical switch that generates and 
augmented message depending on the levels of a particu-
lar biomarker. For example, it has been shown that this 
approach can be used to detect elevated levels of C-reactive 
protein via the visualization of a “CRP” message on the 
smartphone screen when coupled with a competitive immu-
noassay on magnetic beads (Fig. 5A) [35]. It has also been 
used to detect procalcitonin with paper biosensors [102] 
(Fig. 5B). Integrating these paper transducers with paper 
fluidics for automated detection [103] could enable the 
detection of sepsis biomarker in unsteady conditions like 
those encountered during the ride to the hospital.

Fig. 3  Examples of biosensors 
for measuring PCT in the ICU. 
A Plasmonic platform based 
in a sandwich immunoassay 
on a gold-covered glass chip. 
Streptavidin-coated gold nano-
particles interact with biotin and 
this binding is monitored with a 
plasmonic platform. Assay time 
is less than 25 min.  Reproduced 
with permission from ref. [44] 
(American Chemical Society 
2019). B This device uses a 
double enzyme reaction and 
measures the ATP-luciferin-
luciferase bioluminescent signal 
with a portable detector. In the 
presence of the analyte, the 
signal is inhibited and the bio-
luminescent signal decreases. 
Reproduced with permission 
from ref. [45] (American 
Chemical Society 2017)
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Resource‑limited settings

Sepsis has a greater incidence in countries with less 
resources [1]. There, infections are often managed by a 
frontline healthcare worker with very limited access to diag-
nostic tests. In this scenario, decentralized approaches for 
detecting biomarkers could greatly help diagnosing sepsis. 

These approaches will need to be not only inexpensive, but 
also extremely robust, since the detection will be performed 
in different humidity and temperature conditions.

Recently, an analytical platform was proposed that 
could meet this challenge [77]. It is based on measuring 
changes in the fluorescence emission of a multisensor upon 
the addition of serum. The multisensor contained gold and 

Fig. 4  Implantable biosensor for the real-time detection of cytokines. 
When IFN-γ binds with the aptamer, it releases ruthenium complexes 
which generate an electrochemical signal. The device has a low limit 
of detection and is able to monitor mice in vivo during 48 h.  Repro-
duced with permission from ref. [46] (American Chemical Society 

2018). B Wearable biosensors for several cytokines detection. Sweat 
is collected using a microfluidic design and analyzed by graphene-
based field effect transistors, which transfer the signal to smart-
phones. Adapted with permission from ref. [47] (John Wiley and 
Sons 2021)
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copper nanoclusters capped with different ligands. Sera 
of different composition change the fluorescence emis-
sion of the array in different ways, which is the basis for 
detecting bacteremia without using expensive and labile 
biorecognition elements. Signals are obtained by exciting 
the fluorophores with a handheld UV lamp and recording 
signals with a smartphone. It was shown that the sensor 
could diagnose septicemia when analyzing samples from 
40 underage patients. This approach could be a real game 
changer for sepsis management if it proved to be specific 
enough to identify septic patients even in the presence of 
confounding factors (i.e., comorbidities).

Conclusions and future directions

Robust methods for the rapid detection of biomarkers are 
needed to manage severe infections. To minimize the time-
to-diagnosis, this requires decentralized approaches suit-
able for biomarker detection at all the points where sepsis 
care is provided, from the ambulance to the emergency 
room and the ICU. Detecting multiple analytes simulta-
neously improves the diagnostic power of the analysis, as 
long as this can be performed in a timely manner. In order 
to produce diagnostic tools with real impact in patient 
care, analytical chemists must change focus from achiev-
ing the lowest limit of detection possible to measuring 
biomarker variations in the relevant clinical range with 
minimal effort and as rapidly as possible.

Magnetic particles are one of the most utilized micro-
structured materials for facilitating the rapid capture of 
biomarkers. Their large surface area and facile manipu-
lation with a magnet has made them ideal components 
of fully automated systems for detecting sepsis biomark-
ers. They also enable capturing analytes in raw samples, 
which is important to reduce the time-to-diagnosis. With 
regard to multiplexing, most approaches have relied in 
using arrays of electrochemical transducers. Graphene 
is the most common nanostructured material used thus 
far to boost the sensitivity of these assays. Colorimetric 
approaches, which can leverage unmodified smartphones 
as signal readers, are advantageous for widespread decen-
tralized measurements. Plasmonic nanoparticles are the 
most common nanosensors used in these approaches, 
although fluorimetric sensors using quantum dots have 
also been proposed.

Wearable biosensors could revolutionize sepsis care with 
a new paradigm for continuous patient monitoring. However, 
most wearable biosensors proposed so far are based on non-
invasive measurements in body fluids such as saliva or sweat. 
Whereas these body fluids contain potential sepsis biomark-
ers such as cytokines and lactate, their predictive value in 
the context of sepsis care has not been validated as of yet. 
For example, IL-6 has been found in sweat but there is no 
proof that variations in sweat IL-6 correlate with variations 
of serum IL-6. Sweat also contains lactate, but this could 
originate from muscle strain or from osmotic interchange 
with blood. Thus, new studies validating these biomarkers 

Fig. 5  Examples of smartphone-
based detection using gold 
nanoparticles as colorimetric 
probes and augmented reality. A 
Use of the aggregation of gold 
nanoparticles in the presence 
of CRP to generate a positive 
signal (showed with a “CRP” 
message). Adapted with permis-
sion from ref. [49] (Elsevier 
2018). B The same concept 
applied to the detection of PCT. 
In this case, three levels of PCT 
concentrations are stablished by 
a traffic light signal. Adapted 
with permission from ref. [48] 
(American Chemical Society 
2018)
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with large cohorts of patients should be performed. Inva-
sive implanted biosensors could detect biomarker variations 
in blood, but they would require an exquisite performance 
to detect biomarkers in a single step and in such complex 
biological matrix. Advanced antifouling methods will be 
required to avoid non-specific signals in this scenario.

The recent COVID-19 pandemic has brought to light 
the social and economic relevance of severe infections 
and sepsis. The relentless advance of mechanisms of anti-
microbial resistance is increasing the incidence of sepsis 
every year. New tools are required in order to improve 
patient care and reduce the enormous social and economic 
impact of this syndrome. Micro- and nanostructured mate-
rials can make this healthcare revolution possible by ena-
bling new analytical platforms capable of rapid and decen-
tralized sepsis diagnostics.
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