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SUMMARY

The circadian clock is a ubiquitous timekeeping sys-
tem that organizes the behavior and physiology of or-
ganisms over the day and night. Current models rely
on transcriptional networks that coordinate circadian
gene expression of thousands of transcripts. How-
ever, recent studies have uncovered phylogeneti-
cally conserved redox rhythms that can occur inde-
pendently of transcriptional cycles. Here we identify
the pentose phosphate pathway (PPP), a critical
source of the redox cofactor NADPH, as an important
regulator of redox and transcriptional oscillations.
Our results show that genetic and pharmacological
inhibition of the PPP prolongs the period of circadian
rhythms in human cells, mouse tissues, and fruit flies.
These metabolic manipulations also cause a remod-
eling of circadian gene expression programs that in-
volves the circadian transcription factors BMAL1 and
CLOCK, and the redox-sensitive transcription factor
NRF2. Thus, the PPP regulates circadian rhythms via
NADPH metabolism, suggesting a pivotal role for
NADPH availability in circadian timekeeping.

INTRODUCTION

Mammalian models of the circadian clock center on transcrip-

tion-translation feedback loop mechanisms, involving the core

transcription factors BMAL1 and CLOCK (Bass, 2012). However,

recent evidence has uncovered the existence of transcription-in-

dependent mechanisms of circadian timekeeping (Cho et al.,

2014; Nakajima et al., 2005; O’Neill and Reddy, 2011; O’Neill

et al., 2011). These likely preceded the existence of transcrip-

tional oscillations during evolution, as highlighted by rhythms in

the oxidation and reduction of peroxiredoxin proteins in a range

of phylogenetically disparate organisms ranging from bacteria to

humans (Edgar et al., 2012). In a simple model of non-transcrip-

tional circadian oscillations, the red blood cell, oxidation cycles

occur in association with robust circadian oscillations of the

core cellular reductants NADH and NADPH (O’Neill and Reddy,

2011).
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In central carbon metabolism, glycolysis and the pentose

phosphate pathway (PPP) oxidize glucose to produce NADH

and NADPH, respectively (Figure 1A). These pathways are com-

mon to most aerobic organisms and produce an important frac-

tion of the cellular pool of NAD(P)H (Fan et al., 2014). Since the

peroxiredoxin oxidation cycle is directly influenced by the avail-

ability of NADPH (Wood et al., 2003), we hypothesized that these

cellular reduction pathways might regulate redox and transcrip-

tional oscillations in nucleated cells.

Using a combination of pharmacologic and genetic ap-

proaches, we found that inhibition of the PPP altered circa-

dian rhythms in human cells. We observed similar effects in

mouse tissues, and we also found that PPP inhibition affected

the pattern of rhythmic behavior in Drosophila. Our study indi-

cates that the interplay between redox and transcriptional cy-

cles relies on the circadian transcription factors BMAL1/

CLOCK and the redox-sensitive transcription factor NRF2.

Moreover, we identify the histone acetyltransferase P300 as a

redox-dependent modulator of BMAL1/CLOCK transactivation

ability.
RESULTS

Inhibition of the PPP Alters Circadian Redox and
Transcriptional Oscillations
In red blood cells, peroxiredoxin oxidation rhythms resonate

with NADPH oscillations (O’Neill and Reddy, 2011). NADPH

powers intracellular redox defense and is used by the peroxir-

edoxin system during its catalytic cycle to remove harmful

reactive oxygen species (Wood et al., 2003). We therefore

measured NADPH accumulation in human osteosarcoma

(U2OS) cells, an established and robust cellular clock model

(Liu et al., 2008), and found similar redox oscillations to those

seen in red blood cells previously (O’Neill and Reddy, 2011)

(Figure 1B).

Given that the PPP is a major source of NADPH in the cell (Fan

et al., 2014), we hypothesized that inhibiting its metabolic flux

would affect redox oscillations. To disrupt NADPH production,

we used 6-aminonicotinamide (6AN). This compound is metab-

olized into an analog of NADP+, thus competitively inhibiting

the critical NADPH-producing enzymes 6-phosphogluconate

dehydrogenase (PGD) and glucose 6-phosphate dehydroge-

nase (G6PD) (Köhler et al., 1970). Consistent with our hypothesis,
uthors. Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. The PPP Regulates Redox and

Transcriptional Oscillations in Human Cells

(A) Schematic of glucose metabolism showing

glycolysis, the pentose phosphate pathway (PPP),

and oxidative phosphorylation in mitochondria.

(B) NADPH levels in Bmal1:luc U2OS cells treated

with 5 mM 6-aminonicotinamide (6AN) versus

control (DMSO) for 2 consecutive days (mean ±

SEM, n = 3–4).

(C) Representative immunoblots showing over-

oxidized peroxiredoxin (PRDX-SO2/3) monomers

with loading controls (b-actin, ACTB) for Bmal1:luc

U2OS cells treated with 5 mM 6AN versus control

(DMSO). Molecular weights (kDa) shown on right

side of blots.

(D) Quantification by densitometry of immunoblots

from (C). Values were normalized to the average for

each blot (mean ± SEM, n = 3).

(E) NADP+:NADPH ratio of cells treated with 6AN

(mean ± SEM, n = 3–4; two-tailed Student’s t test;

***p < 0.001).

(F) Bioluminescence traces for Bmal1:luc U2OS

cells treated with 5 mM 6AN versus control

(DMSO), followed by wash off after 96 hr. (mean

values shown, n = 3–6).

(G) Quantifications of the period length from (F)

before and after wash off (mean ± SEM, n = 3–6;

two-tailed Student’s t test; ***p < 0.001, *p < 0.05).

(H and I) Heatmaps showing bioluminescence

traces for Per2:luc U2OS cells treated at the indi-

cated time points with 5 mM 6AN (I) or control

(DMSO) (H) until the end of the experiment. Each

row represents a different time of treatment.

(J) Phase-response curve showing the phase shifts

caused by treatment with 6AN compared to control

(DMSO) at different time of the day (mean ± SEM,

n = 3–6).
6AN treatment prolonged the period of NADPH oscillation to

�30 hr (Figure 1B). We next measured peroxiredoxin oxidation

in U2OS cells and found that these rhythms were similarly

affected by inhibition of the PPP (Figures 1C, 1D, S1A, and

S1B, available online), indicating that the availability of NADPH

regulates circadian redox oscillations. 6AN treatment indeed

drove the NADP+:NADPH redox poise in favor of oxidation by

decreasing NADPH by �50%, consistent with its expected ef-

fect (Figure 1E). In contrast, NAD+:NADH ratio remained un-
Cell Metabo
changed (Figure S1C) and treatment with

6AN did not acutely affect glycolysis or

mitochondrial respiration rates (Figures

S1D and S1E).

We then investigated the effect of

PPP inhibition on transcriptional oscilla-

tions using U2OS cells stably expressing

the Bmal1:luciferase (Bmal1:luc) reporter

construct (Liu et al., 2008). Treatment of

Bmal1:luc cells with 6AN caused a strong

and reversible effect on transcriptional os-

cillations. Oscillation period was length-

ened by 3 hr (Figures 1F, 1G, and S1F;

5 mM 6AN, 28.48 ± 0.16 hr versus control,

25.50 ± 0.05 hr), and after 96 hr of treat-
ment, removal of the drug restored almost normal oscillations

(5 mM 6AN, 25.65 ± 0.10 hr versus control, 24.97 ± 0.21 hr).

We further validated this effect by using a genetic approach to

repress PPP activity. We used RNA interference to knock

down expression of the NADPH-producing enzymes G6PD

and PGD in Bmal1:luc cells (Figures S2A–S2F). In agreement

with pharmacological manipulations, we observed an increase

in the NADP+:NADPH redox ratio (Figure S2D) and a significant

period lengthening for both genes (Figure S2E).
lism 24, 462–473, September 13, 2016 463
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Figure 2. Manipulation of the PPP Affects

Circadian Oscillations through NADPH

(A) Bioluminescence traces for Bmal1:luc U2OS

cells treated with 50 mM dehydroepiandrosterone

(DHEA) versus control (DMSO), followed by wash

off after 96 hr. (mean values shown, n = 3–6)

(B) Quantifications of the period length from (A)

before and after wash off (mean ± SEM, n = 3–6;

two-tailed Student’s t test; ***p < 0.001).

(C) NADP+:NADPH ratio of cells treated with DHEA

(mean ± SEM, n = 3–4; two-tailed Student’s t test;

**p < 0.01).

(D) Treatment of Bmal1:luc U2OS cells with 5 mM

6AN decreases the levels of total NAD, while in-

cubation with 50 mM DHEA has no effect. NAD

levels in presence of 6AN can be restored by

addition of 500 mM NMN (control [DMSO] versus

treated cells; mean ± SEM, n = 3–4; two-tailed

Student’s t test; ***p < 0.001, **p < 0.01).

(E) Treatment with 500 mM NMN does not

restore NADP+:NADPH ratio to normal levels (two-

tailed Student’s t test, control [DMSO] versus

treated cells; mean ± SEM, n = 3–4, ***p < 0.001,

**p < 0.01).

(F) Bioluminescence traces for Bmal1:luc U2OS

cells treated with 6AN, or 6AN and NMN, versus

control (DMSO) (mean values shown, n = 8).

(G) Quantifications of the period length from (F)

(two-tailed Student’s t test; mean ± SEM, n = 8,

***p < 0.001, *p < 0.05).
Having shown that tonic inhibition of the PPP modulated the

period of redox and transcriptional oscillations, we tested

whether such metabolic perturbation could also reset the phase

of circadian oscillations in a time-of-day-dependent manner. To

this end, we administered 6AN treatment around the clock and

assessed the phase of oscillations following treatment, gener-

ating a ‘‘phase-response curve.’’ Inhibiting the PPP had a strong

resetting effect, inducing large phase advances or delays in

rhythms depending on the time of day when the treatment

started (Figures 1H–1J). Together, these results implicate the

PPP as a regulator of two key facets of circadian pacemaker

function (period and phase of oscillation).

The PPP Affects Circadian Oscillations via NADPH
Metabolism
Since there is cellular interconversion of NAD+ and its phosphor-

ylated form (NADP+), we next investigated if the effects of PPP

perturbation could involve this pathway. This is important

because NAD+ metabolism forms a feedback loop with the

core circuitry of the circadian transcriptional network (Nakahata

et al., 2009; Ramsey et al., 2009), and therefore changes in NAD+
464 Cell Metabolism 24, 462–473, September 13, 2016
might potentially contribute to the period

phenotype seen with PPP inhibition.

Therefore, we tested the effect of

dehydroepiandrosterone (DHEA), a non-

competitive inhibitor of G6PD (Raineri

and Levy, 1970), and again found a

reversible period lengthening (Figures

2A, 2B, and S3A–S3D) and an increase

in the NADP+:NADPH redox ratio (Fig-
ure 2C). In contrast to 6AN treatment, DHEA did not affect the

accumulation of total NAD (Figure 2D), showing that the effect

on period does not depend on NAD levels and is specific to

the change in NADP+:NADPH redox ratio. Importantly, we also

determined conditions under whichwe could rescue NAD+ levels

in 6AN-treated cells, using nicotinamide mononucleotide (NMN),

a precursor of NAD+ (Figures 2D and 2E). When NAD levels were

restored close to normal with NMN in the presence of 6AN, there

was a rescue of the amplitude of oscillations, but the effect on

period was not abolished (Figures 2F, 2G, and S3E). This there-

fore suggested that inhibition of the PPP differentially affects

circadian oscillations through direct and indirect redox mecha-

nisms, and that the prolonged period is specific to NADPH

metabolism.

In addition to its redox role, the PPP is a key contributor to

biosynthetic function, especially for nucleic acid synthesis. In or-

der to globally assess the effect of inhibition by 6AN or DHEA, we

performedmetabolomics profiling of U2OS cells treated with the

PPP inhibitors (Figure S3F; Table S3). We observed only mild

perturbations in the levels of 90 metabolites, and the changes

correlated between the 6AN and DHEA treatments (Figure S3G).
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Figure 3. PPP Inhibition Remodels Circa-

dian Gene Expression

(A) Time course of mRNA expression determined

by RNA-seq in Bmal1:luc U2OS cells incubated

with 5 mM 6AN or control (DMSO). The heatmap

shows the Pearson’s correlation coefficient be-

tween time points for log-transformed fragments

per kilobase of transcript per million (FPKM) of the

14,686 expressed transcripts.Bmal1:luc cells were

synchronized with a dexamethasone shock and

total RNA was collected at the indicated time

points.

(B) Heatmap representation of the temporal accu-

mulation of mRNA for circadian transcripts in the

6AN (453) and control (414) conditions. The RAIN

algorithm (Thaben and Westermark, 2014) was

used to detect circadian transcripts (p % 0.01) in

each dataset.

(C) Overlap between the rhythmic transcripts de-

tected in the 6AN and control conditions (Fisher

test on contingency table, p = 0.002).

(D) Phase histogram of rhythmic transcripts shown

in (B).

(E) Boxplot representation of period length for 6AN

and control mRNA profiles for circadian transcripts

(RAIN algorithm, p % 0.01) and clock gene tran-

scripts (list of 20 well-described circadian genes;

Table S4) (Wilcoxon rank-sum test, with p values as

shown).

(F) Boxplot representation of phase differences

between 6AN and control mRNA profiles for

circadian transcripts (detected in the 6AN or con-

trol condition with RAIN algorithm, p % 0.01) and

clock gene transcripts (Kuiper’s one-sample test of

uniformity; **p < 0.01).

(G) Profiles of mRNA accumulations for the six

clock genes that are detected as circadian in both

conditions.

(H) mRNA accumulation of clock gene transcripts

in Bmal1:luc U2OS cells following siRNA knock-

down with 50 nM G6PD or control siRNA (negative

control #1) (mean ± SEM, n = 3; two-tailed Stu-

dent’s t test; ***p < 0.001, **p < 0.01).
Although the levels of ribose-5-phosphate (R5P), which is impor-

tant for nucleotide synthesis, were slightly decreased in the both

conditions, the levels of nucleotides and nucleosides were

largely unchanged, indicating that the non-oxidative branch of

the PPP, downstream of the NADPH-producing enzymes, was

sufficient to provide substrates for synthetic pathways. Thus,

the effects of both 6AN and DHEA appear specific to the oxida-

tive (NADPH-producing) branch of the PPP, without a significant

impact on its biosynthetic functions.
Cell Metabo
Remodeling of Circadian Gene
Expression by NADPH Metabolism
How are perturbations in redox oscilla-

tions transduced into alterations in circa-

dian gene expression and, ultimately, to

organism behavior? To probe this, we

performed time course analyses of

U2OS cells and determined their gene

expression profiles by RNA sequencing

(RNA-seq) (Figures 3A and S4A). 6AN
treatment did not globally affect the transcriptome, as we

observed high correlation between control and 6AN-treated

samples (Pearson correlation coefficient >0.94 between all

time points; Figure 3A). However, perturbation of NADPH meta-

bolism caused a profound change in circadian gene expression

(Figures 3B–3D). Using the RAIN algorithm (Thaben and Wester-

mark, 2014), we detected 414 and 453 circadian transcripts in

the control and 6AN condition, respectively (Figure 3B), with 26

common transcripts (Figure 3C). We validated these analyses
lism 24, 462–473, September 13, 2016 465



using two other algorithms, Fisher test (Rey et al., 2011) and

ARSER (Yang and Su, 2010), and found a considerable overlap,

as 147 and 169 genes were detected by the three methods in the

control and 6AN condition, respectively (Figure S4B). Gene

ontology (GO) analysis of rhythmic transcripts revealed that

genes involved in metabolic processes were enriched in both

conditions, while GO annotations related to circadian rhythms

were highly enriched in the 6AN condition (Figure S4C). Our

results thus indicate that perturbation of the PPP was able

to extensively remodel circadian gene expression, as high-

lighted by the altered phase distribution of mRNA expression

(Figure 3D).

This led us to investigate further how the period and phase of

circadian transcripts were changed following PPP inhibition. We

found that the median period of oscillations was increased by

treatment with 6AN (Figure 3E; control versus 6AN, 23.2 hr

versus 24.1 hr). Interestingly, the effect on clock genes was

especially pronounced (control versus 6AN, 21.8 hr versus

27.2 hr) but only marginally contributed to the shift in the period

distributions of all circadian transcripts (Figure S4D). Similarly,

we computed the distribution of phase differences between

6AN and control conditions. We observed a phase delay for

both circadian and clock gene sets (Figures 3F and S4E), again

with a stronger effect on clock genes. Accordingly, NR1D1,

NR1D2, TEF, DBP, BMAL1, and PER3, the six clock genes that

are rhythmic in both conditions, displayed prolonged periods

and phase delays in their mRNA accumulation profiles (Fig-

ure 3G). Most other clock genes (Table S4) had similar effects

on circadian gene expression, even if they were not necessarily

detected as statistically rhythmic (Figure S4F). In order to vali-

date the effect of PPP inhibition on circadian gene expression,

we silenced the expression of the enzyme G6PD by small inter-

fering RNA (siRNA) knockdown. In agreement with treatment

with 6AN, we observed a perturbation of the circadian gene

network, since the expression of clock genes was severely dis-

rupted (Figure 3H). Therefore, inhibition of the PPP remodels

circadian expression by changing the period and phase of circa-

dian transcripts, with an effect especially prominent on clock

genes.

The Circadian Transcription Factors BMAL1 and CLOCK
Are Activated by a Change in Redox Environment
Since the core circadian transcription factors BMAL1 and

CLOCK regulate the expression of most of the clock genes, we

hypothesized that perturbation in circadian gene expression

may involve a change in BMAL1/CLOCK DNA-binding activity.

This response could indeed result from an altered NADP+:

NADPH (or NAD+:NADH) ratio, since these dinucleotides have

been reported to affect the binding affinity of several circadian

PAS-domain transcription factors in vitro (Rutter et al., 2001).

We therefore performed chromatin immunoprecipitation fol-

lowed by sequencing (ChIP-seq) in Bmal1:luc U2OS cells to

delineate genome-wide binding patterns of these transcription

factors. We found that the number of shared BMAL1/CLOCK

genomic binding sites increased from 147 to 439 (3-fold in-

crease) following 6AN treatment (Figures 4A and 4B). CLOCK

was mostly affected, since we observed a more than 4-fold

rise in genomic binding peaks (Figure 4C). Moreover, BMAL1

and CLOCK binding strengths significantly increased at 439
466 Cell Metabolism 24, 462–473, September 13, 2016
shared peaks following PPP inhibition (Figure 4D), indicating

enhanced DNA-binding activity that is consistent with elevated

expression of several BMAL1/CLOCK targets upon 6AN treat-

ment (Figures 3G and S4F).

Increased DNA-binding activity of BMAL1/CLOCK was

accompanied by changes in chromatin state at their genomic

binding sites (Figures S5A and S5B). We measured two epige-

netic marks of transcriptionally active chromatin by ChIP-seq:

histone H3 lysine 9 acetylation (H3K9ac) and histone H3 lysine 4

trimethylation (H3K4me3) (Figures 4E and 4F). While H3K4me3

profiles remained unchanged, H3K9 showed a local increase

around BMAL1/CLOCK sites (Figure 4E). This effect was not

due to a widespread increase in H3K9 acetylation near active

promoters, as H3K9ac profiles around transcription start sites

(TSSs) of expressed genes were not affected (Figure 4F). More-

over, elevated H3K9 acetylation was specific to 6AN peaks, as

we did not observe similar effects at BMAL1/CLOCK peaks

from the control condition (Figure S5C). Notably, BMAL1/

CLOCK binding and H3K9 acetylation were associated with

rhythmic expression of nearby transcripts. Indeed, we found

that the fraction of rhythmic transcripts increased with the fold

change in BMAL1/CLOCK binding and H3K9 acetylation

following 6AN treatment (Figures S5D and S5E).

We next investigated the mechanism by which redox imbal-

ance could affect chromatin states. First, we excluded the

NAD+-dependent deacetylase SIRT1 as a mechanism driving

this change, since SIRT1–/– mouse embryonic fibroblasts

exposed to 6AN still exhibited alterations in clock gene mRNA

patterning (Figure S5F). Moreover, rescue of NAD+ levels with

NMN did not restore normal DNA-binding activity of BMAL1/

CLOCK or levels of H3K9ac (Figure S5G). These results indicate

that SIRT1 and other NAD+-dependent deacetylases, including

SIRT6, are not likely to significantly contribute to the chromatin

state changeswe sawwith redox perturbation. Therefore, we hy-

pothesized that the archetypal histone acetyltransferase P300

might mediate these effects, since it is able to form disulphide

bridges with the FOXO transcription factors by a redox-depen-

dent mechanism (Dansen et al., 2009) and has been shown to

interact with clock proteins (Etchegaray et al., 2003). We

measured P300 protein accumulation in the nucleus and

observed increased levels following 6AN treatment (Figures 4G

and 4H). Furthermore, ChIP analyses revealed that clock gene

loci exhibited elevated P300 binding upon PPP inhibition (Fig-

ure 4I), strongly implicating redox-dependent acetylation by

P300 at these genomic regions. Interestingly, increased P300

binding and H3K9ac were specific to direct BMAL1/CLOCK tar-

gets—those with mRNA expression in phase with DNA-binding

activity (Rey et al., 2011) (Figures 4I and 4J; Table S4). Further-

more, we investigated ifP300 knockdown by siRNA could antag-

onize the effect of 6AN on circadian oscillations. Consistent with

its role in activating circadian transcription, P300 knockdown

caused a strong decrease of the amplitude of circadian oscilla-

tions (Figure S5H). However, at low siRNA concentrations, we

found that P300 knockdown was able to partially reverse the

strong period lengthening effect of 6AN, as it reduced the period

difference to only 1 hr compared to control (Figure S5I). These

results thus indicate that PPP inhibition leads to a redox-depen-

dent activation of BMAL1/CLOCK that is mediated by the his-

tone acetyltransferase P300.
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Figure 4. BMAL1/CLOCK Are Activated by Inhibition of the PPP

(A and B) BMAL1 and CLOCK ChIP-seq binding profiles around the 147 and 439 BMAL1/CLOCK peaks bound, respectively, in the control (A) and 6AN

conditions (B). Bmal1:luc U2OS cells were treated with 5 mM 6AN or control (DMSO) and chromatin was extracted after 24 hr of incubation.

(C) Venn diagram showing the overlap of ChIP-seq peaks for BMAL1 and CLOCK. The total number of peaks for each set is given.

(D) Distributions of number of tags per peak in the 439 peaks shared between 6AN BMAL1 and CLOCK ChIP-seq for BMAL1 (top) and CLOCK (bottom)

(Kolmogorov-Smirnov test performed between the indicated distributions, with p values as shown).

(E and F) Genomic profiles of H3K9ac (top) and H3K4me3 (bottom) densities around BMAL1/CLOCK 6AN peaks (E) and transcription start sites (TSSs) of the

14,686 expressed transcripts (F).

(G) Immunoblot showing P300 nuclear accumulation in cells treated with 6AN or control (DMSO). U2AF65 is shown as loading control. Molecular weights (kDa)

shown on right side of blots.

(H) Densitometric quantification of blots from (G) (two-tailed Student’s t test, *p < 0.05).

(I) ChIP followed by quantitative real-time PCR of P300 following 6AN treatment or control (DMSO) (mean ± SEM, n = 3; two-tailed Student’s t test, *p < 0.05).

(J) Distribution of fold changes in H3K9ac density (6AN versus control) for direct and indirect BMAL1/CLOCK target genes (Wilcoxon rank-sum test, with p values

as shown).
NRF2 Signaling Links Changes in Redox Balance to
Circadian Gene Expression
Overlap between circadian and BMAL1/CLOCK-bound genes

was significant for the control, but not the 6AN, condition

(Fisher test; control, p < 1 3 10�3; 6AN, p = 0.05; Figure S6A),

suggesting that additional transcription factors were likely to

contribute to the remodeling of circadian gene expression.
Consistent with this observation, we found enriched DNA

motifs for other transcription factors in the 6AN condition (Fig-

ure 5A) and, in particular, a motif corresponding to the redox-

sensitive transcription factor NRF2 (Chorley et al., 2012)

(Figure S6B). NRF2-like motifs showed a positional correlation

with the canonical BMAL1/CLOCK binding motif (E-box) when

6AN-treated cells were assessed (Figure 5B). Importantly, we
Cell Metabolism 24, 462–473, September 13, 2016 467
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Figure 5. NRF2 Mediates the Effect of Redox Perturbation on Circadian Oscillations

(A) De novo HOMER motif analysis of the indicated sets of BMAL1/CLOCK peaks.

(B) Histogram of E-box and NRF2-like motif positions around BMAL1/CLOCK peaks bound only the 6AN condition.

(C) Immunoblot showing NRF2 nuclear accumulation in cells treated with 6AN or control (DMSO). U2AF65 is shown as loading control. Molecular weights (kDa)

shown on right side of blots.

(D) Densitometric quantification of blots from (C) (mean ± SEM, n = 3; two-tailed Student’s t test, **p < 0.01).

(E) ChIP followed by quantitative real-time PCR of NRF2 following 6AN treatment or control (DMSO) (mean ± SEM, n = 3; one-tailed Student’s t test, *p < 0.05).

HMOX1, heme oxygenase 1.

(F) mRNA accumulation of clock gene transcripts in Bmal1:luc U2OS cells following knockdown with 20 nM NRF2 siRNA or control (non-targeting siRNA #1).

Bmal1:luc cells were synchronized 72 hr after transfection with a dexamethasone shock, and total RNA was collected after 24 hr incubation with 5 mM 6AN or

control (DMSO) (mean ± SEM, n = 3; two-tailed Student’s t test; ***p < 0.001, **p < 0.01). NS, not statistically significant by t test.

(G and H) Bioluminescence recordings of Bmal1:luc U2OS cells transfected with 20 nM NRF2 siRNA or control (non-targeting siRNA #1) combined with 6AN

treatment at 1.25 mM (G) or control (DMSO) (H) (left; mean, n = 8). Quantifications of circadian period length of bioluminescence traces (right; mean ± SEM, n = 8;

two-tailed Student’s t test; **p < 0.01).
observed a significant increase in NRF2 nuclear accumulation

following 6AN treatment (Figures 5C and 5D), indicating that

PPP inhibition leads to the activation of NRF2. H3K9ac

genomic profiles around NRF2 ChIP-seq peaks (Chorley et al.,

2012) were not altered by 6AN treatment, indicating that

NRF2 activation is not associated with H3K9 acetylation

(Figure S6C).

We next investigated whether NRF2 could mediate the inter-

action between redox balance and circadian oscillations. First,

we observed that a significant fraction of circadian transcripts

in the control and 6AN conditions were NRF2 targets (44 and
468 Cell Metabolism 24, 462–473, September 13, 2016
48 genes, respectively), implicating this redox transcription fac-

tor in the control of circadian gene expression (Figures S6D and

S6E). Two important NRF2 targets, glutathione reductase (GSR)

and thioredoxin reductase 1 (TXNRD1), which both use NADPH

as reducing agent for cellular redox defense, also displayed

rhythmic mRNA accumulation, even though they were not

statistically detected as circadian (Figure S6F). Importantly, the

circadian transcriptional repressor NR1D1 was among NRF2

targets, with inducible binding sites at its promoter and in its

first intron (Figure S6G) (Chorley et al., 2012). Accordingly, we

found that perturbation of the PPP caused an increase in NRF2
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Figure 6. PPP Perturbation Disrupts Circa-

dian Oscillations in Mouse Tissues

(A and B) Bioluminescence recordings of supra-

chiasmatic nuclei (SCN) (A) and liver slices (B) from

mPer2Luciferase (mPer2Luc) mice treated with the

indicated concentration of 6AN or control (DMSO)

(left), followed by wash off (right) with control

medium.

(C and D) Quantifications of the period length from

SCN (C) and liver (D) slices treated with 6AN or

control (DMSO) before and after wash off (mean ±

SEM, n = 3–7; two-tailed Student’s t test; 500 mM

versus control; ***p < 0.001, **p < 0.01). NS, not

statistically significant by t test.

(E) Single-cell bioluminescence traces of SCN

slices from mPer2Luc mice incubated either with

500 mM 6AN or control (DMSO) (n > 100).

(F) Violin plot representing the difference in the

distribution of circadian period lengths in the 6AN

and control (DMSO) conditions (n > 100; two-tailed

Student’s t test, p < 1 3 10�16).
DNA binding toNR1D1 and its known target gene heme oxygen-

ase 1 (HMOX1) (Figure 5E), suggesting that the PPP-dependent

activation of NRF2 could relay redox signals to the circadian

network through NR1D1.

In order to functionally validate the role of NRF2 in mediating

the effect of 6AN on circadian gene expression, we silenced

NRF2 expression using siRNA and measured the mRNA expres-

sion of several clock genes (Figures 5F and S6H). We found that

both NR1D1 and PER3 lost their responsiveness to 6AN

treatment whenNRF2was silenced, indicating thatNRF2 knock-

down can reverse the effects caused by inhibition of the PPP.

Bioluminescence recordings of Bmal1:luc U2OS cells confirmed

this hypothesis, since NRF2 silencing in 6AN-treated cells

reduced the period by 2 hr compared to control siRNA (Fig-

ure 5G; siCTRL, 30.6 ± 0.5 hr; siNRF2, 28.0 ± 0.2 hr). In contrast,

NRF2 silencing in control cells did not affect the period of oscil-

lations (Figure 5H; siCTRL, 26.6 ± 0.1 hr; siNRF2, 27.1 ± 0.2 hr).

We further validated this effect using DHEA and found again that

NRF2 silencing reversed the period lengthening caused by

inhibition of the PPP (Figures S6I and S6J). Our results thus iden-

tify NRF2 as a key connection between redox and circadian

oscillations.
Cell Metabo
Inhibition of the PPP Modulates
Circadian Oscillations in Mouse
Tissues
Having explored how inhibition of the PPP

leads to altered circadian gene expres-

sion, we set out to study the effect of

these metabolic perturbations on circa-

dian behavior, an important output of the

clockwork. Destruction of erythrocytes

(hemolysis) when the 6AN target G6PD is

deficient (Cappellini and Fiorelli, 2008)

indicated that an in vivo approach in live

mice would not yield meaningful results.

We therefore next analyzed the effects of

PPP inhibition on circadian rhythmicity in

primary tissues ex vivo. Treatment of or-
ganotypic slice cultures of the suprachiasmatic nucleus (SCN)

and a key metabolic tissue, the liver, from mPer2Luciferase

(mPer2Luc) mice (Yoo et al., 2004) with 6AN elicited a period

lengthening at the highest concentration (500 mM 6AN; SCN,

26.6 ± 0.2 hr; liver, 26.0 ± 0.5 hr versus control SCN, 24.9 ±

0.2 hr and liver, 23.4 ± 0.4 hr), similar to the effect in human cells

(Figures 6A–6D, S7A, and S7B). Importantly, removal of 6AN

after 4 days of incubation restored a normal period length in

both tissues, illustrating the reversible nature of the redox

perturbations.

Given that an ensemble of oscillators may exhibit comparable

behavior due to dispersion in the phase of individual oscillators

within the tissue, we performed single-cell imaging of mPer2Luc

SCN slices to investigate the effect on period length in individual

cells. Similar to the effects at the population level, single cells ex-

hibited a period lengthening of >2 hr when treated with 6AN

(500 mM 6AN, 27.5 ± 0.2 hr versus control, 25.0 ± 0.1 hr) (Figures

6E and S7C), together with a higher damping rate (Figure S7D).

Notably, we obtained similar results when measuring single-

cell oscillations in Per2:luc U2OS cells treated with 6AN (Figures

S7E–S7G), and we did not observe deleterious changes in cell

morphology upon exposure to 6AN or DHEA for several days
lism 24, 462–473, September 13, 2016 469
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Figure 7. PPP Inhibition Affects Behavioral Rhythms in Flies

(A) Median activity plots ofDrosophila melanogaster (Canton-S strain) behavioral activity with concentrations of 6AN ranging from 1 to 15mM in their usual growth

medium. As a control, DMSO was used at the specified concentration to directly match the concentration experienced with the 6AN dose.

(legend continued on next page)
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(Figure S7H). This highlights the significant and specific effect

that perturbing central cellular metabolism has on cell-autono-

mous circadian oscillations.

Fly Behavioral Rhythms Respond to Redox Perturbation
Similarly to Mammals
In order to circumvent the systemic effects associated with 6AN

in mice, we measured the effect of PPP inhibition on Drosophila

melanogaster locomotor activity. Flies are ideal organisms to

study the effect of metabolic inhibitors because they lack red

blood cells, which are sensitive to such treatment when admin-

istered to rodents. In addition, their transcriptional clockwork is

largely similar in architecture to mammals, with orthologs of

BMAL1 and CLOCK driving gene expression of repressors

(Young and Kay, 2001). We therefore recorded locomotor

behavior of flies using a video recording system (Figure S7I).

Behavioral recordings of flies fed 1–15 mM 6AN in their agar

growth medium revealed a dose-dependent effect on behavioral

rhythms (Figure 7A). PPP inhibition caused only a mild reduction

in the amplitude of activity rhythms at all concentrations,

enabling us to measure their behavioral rhythms over the course

of several days. Treatment with 6AN lengthened the period up to

2.3 hr at the highest dose (15mM) (Figure 7B), and this effect was

visible in the locomotor activity of individual flies (Figures 7C and

S7J). These results thus show that inhibition of the PPP not only

affects cell-autonomous circadian oscillations but also complex

behavioral rhythms controlled by the circadian clock.

DISCUSSION

Models for circadian timekeeping in all species currently incor-

porate similar transcriptional mechanisms. However, each spe-

cies’ clock relies on a different set of clock genes in its timing

system, given that these are not evolutionarily conserved be-

tween kingdoms (Young and Kay, 2001). Recently, an alternative

type of circadian oscillation, the oxidation of peroxiredoxins, has

been reported in a diverse range of species (Edgar et al., 2012),

implying that redox oscillations could be a more fundamental

timekeeping mechanism. We set out to investigate how such

non-transcriptional oscillations may be connected to circadian

transcriptional rhythms. Our results demonstrate that manipula-

tion of the PPP, a key pathway in NADPH metabolism, affects

circadian oscillations in human cells, mouse tissues, and living

flies. Identification of the PPP as a modulator of redox oscilla-

tions indicates that the overoxidation pattern of peroxiredoxin

may be a reporter of more fundamental oscillations in the

formof NADPH rhythms (Figure 7D). It also suggests that NADPH

metabolism may be an important parameter in the generation of

circadian redox oscillations, in light of previous findings showing

similar NADPH rhythmicity in non-transcriptional models (O’Neill

and Reddy, 2011). Moreover, these redox rhythms may have

physiological importance, since several studies have described

rhythms in NADP+:NADPH ratio in rodents (Reddy and Rey,

2014).
(B) Mean autocorrelation of activity plots highlights the period difference between

as a shaded gray area and autocorrelation values outside these boxes are signifi

(C) Representative actograms of individual flies following treatment with the indi

(D) Schematic showing how perturbation of the PPP regulates circadian redox a
We found that redox perturbations increased the DNA-binding

activity of BMAL1/CLOCK, which in turn led to profound qualita-

tive and quantitative changes in circadian gene expression. The

effects were especially prominent for clock genes, but inhibition

of the PPP also caused a switch in the set of output circadian

genes. Indeed, the sets of genes being rhythmic with or without

PPP inhibition diverged considerably. Perturbation of NADPH

metabolism also led to an increased density of histone H3K9

acetylation near BMAL1/CLOCK sites, indicating redox-depen-

dent chromatin remodeling. We showed that the redox-sensitive

histone acetyltransferase P300 accumulated in the nucleus after

PPP inhibition and subsequently displayed increased binding at

BMAL1/CLOCK sites. Interestingly, this effect was more pro-

nounced at direct BMAL1/CLOCK target genes—those with

mRNA expression corresponding to BMAL1/CLOCK binding in

mouse liver (Rey et al., 2011)—suggesting that P300 is mainly

associated with transcriptionally active BMAL1/CLOCK com-

plexes. This is consistent with the fact that the genome-wide

bindingof P300 is inphasewithBMAL1/CLOCKbinding inmouse

liver (Koike et al., 2012). Thus, our study indicates that P300 links

redox rhythms to circadian transcription by modulating BMAL1/

CLOCK transactivation ability in a redox-dependent fashion.

Our study also revealed the important role ofNRF2 in the inter-

play between redox and circadian oscillations. Previous studies

have shown clock-controlled activity of Nrf2 in the mouse lung

(Pekovic-Vaughan et al., 2014) and proposed that Nr1d1 may

respond to oxidative stress signals through an NRF2 binding

site in its promoter (Yang et al., 2014). Here we find that NRF2

and BMAL1/CLOCK have overlapping transcriptional regulatory

programs, likely through cooperative binding to common

genomic sites, and may therefore contribute to circadian tran-

scription, as suggested by the number of NRF2 target genes

rhythmically expressed. Moreover, our data strengthen the

notion that NR1D1 could integrate circadian and redox signals,

but most importantly reveal the role ofNRF2 as an important reg-

ulatory node between redox rhythms and circadian transcrip-

tional oscillations in nucleated cells. Indeed, we found that

NRF2 is necessary for relaying redox perturbation caused by in-

hibition of the PPP to the circadian clockwork. These findings will

be of great importance in building an integrated model of the

circadian clock that encompasses its transcriptional and meta-

bolic components. In addition, these results also provide a novel

molecular mechanism by which redox imbalance, as experi-

enced in cancer, cardiovascular disease, and neurodegenera-

tive disease, could lead to circadian disruption.

In conclusion, we show that the PPP is an important regulator

of circadian redox and transcriptional oscillations. We also iden-

tify P300 and NRF2 as two parallel mechanisms that connect

redox oscillations to BMAL1/CLOCK-mediated transcriptional

oscillations in nucleated cells. In a physiological context, the

PPP is a fundamental player in anabolic cellular processes and

is emerging as a determinant in cancer because of its role in

curbing oxidative stress (Masri et al., 2015; Patra and Hay,

2014; Tsouko et al., 2014). Since the circadian transcriptional
6AN and DMSO conditions. The 95%confidence interval (white noise) is shown

cant at p < 0.05 (n = 24 male flies per group).

cated concentration of 6AN or control (DMSO).

nd transcriptional oscillations.
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network rhythmically regulates over 40% of all protein-coding

genes in the body (Zhang et al., 2014), an implication of our re-

sults is that disruption of metabolic pathways as occurs in

many metabolic disorders and cancers could impact signifi-

cantly on tissue gene expression programs and associated

organ physiology via its effect on the clockwork.

EXPERIMENTAL PROCEDURES

Cell Culture and Bioluminescence Assays

Bmal1:lucU2OS and Per2:lucU2OS cells were a gift from Dr. Andrew Liu, Uni-

versity of Memphis (Liu et al., 2008). U2OS cells were cultured in standard con-

ditions. For bioluminescence recordings, U2OS cells were synchronized by

changing medium to ‘‘Air Medium’’ (Hastings et al., 2005). Bioluminescence

assays were performed at 37�C using 12-well and 96-well plates in custom-

made bioluminescence recording systems (Cairn Research Ltd) composed

of a charge-coupled device (CCD) camera (Andor iKon-M 934) mounted on

the top of an Eppendorf Galaxy 170R CO2 incubator. Bioluminescence data

traces were analyzed using a modified version of the R script ‘‘CellulaRhythm’’

(Hirota et al., 2008).

Gel Electrophoresis and Immunoblotting

Bmal1:lucU2OS cells treated with 5mM6AN or control (DMSO) were synchro-

nized with a dexamethasone shock and lysed in 13 SDS sample buffer at the

indicated time points. NuPAGE Novex 10% Bis-Tris gradient gels were run

according to the manufacturer’s protocol with a nonreducing MES SDS buffer

system. Protein transfer to nitrocellulose for blotting was performed and

membranes were incubated in anti-PRDX-SO3 (LF-PA0004, Thermo Fisher

Scientific) or anti-ACTB (sc-47778, Santa Cruz) overnight at 4�C. Immunoblot

signals were first normalized with loading control (actin) and then normalized to

the average for each replicate.

siRNA Transfections

For bioluminescence experiments, 90 mL cell suspension (0.5–13 105 cells per

mL) were seeded in 96-well plates. Cells were transfected with the indicated

siRNAs (see Table S1 for details) 20–24 hr after seeding using Lipofectamine

RNAiMAX (Life Technologies) according to manufacturer’s instructions. The

mediumof transfectedcellswaschanged to ‘‘AirMedium’’ for bioluminescence

recording 72 hr after transfection. When combined with drug experiments, sol-

vent (DMSO) was kept at a concentration of 0.25% for control and treatment

conditions. For gene expression analyses after siRNA knockdown, siRNA

transfections were performed as described above, except that they were per-

formed in 12-well plates, keeping the ratio between cell number and transfec-

tion reagent constant. Cells were synchronized with dexamethasone and

cultured in DMEM supplemented with 5 mM 6AN or control (DMSO) 72 hr after

transfection. After 24 hr incubation, RNA was extracted with TRI-Reagent in

triplicate and purified with Direct-zol RNA MiniPrep kit (Zymo Research).

RNA-Seq

For mRNA expression time course, Bmal1:luc U2OS cells were synchronized

with dexamethasone (Figure S4A) and cultured in DMEM as described above,

supplementedwith 5mM6AN or amatched amount of DMSO (0.5%) as a con-

trol. At the time points indicated in the main text, RNA was extracted with TRI-

Reagent in triplicate and purified with Direct-zol RNA MiniPrep kit (Zymo

Research). RNA-seq libraries were prepared as described in the detailed pro-

tocol provided in Supplemental Experimental Procedures. Sequencing using a

HiSeq platform with single-end 50 bp reads and subsequent quality filtering of

reads was performed according to manufacturer’s instructions (Illumina).

ChIP-Seq

ChIP was performed on Bmal1:lucU2OS using amodified version of an estab-

lished protocol (Mortazavi et al., 2006) provided in Supplemental Experimental

Procedures. ChIP-seq libraries were prepared as described for RNA-seq sam-

ples, except that fragment size selection was performed after end repair using

AMPure XP Magnetic Beads. Sequencing using a HiSeq platform with paired-

end 101 bp reads and subsequent quality filtering of reads was performed

according to manufacturer’s instructions (Illumina).
472 Cell Metabolism 24, 462–473, September 13, 2016
Nuclear Fractions

Nuclear fractions were prepared from Bmal1:luc U2OS cells treated with 6AN

or control (DMSO) for 24 hr using the NE-PER reagents (Thermo Fisher

Scientific) according to manufacturer instructions. Nuclear lysates were

diluted with denaturing LDS sample buffer (Invitrogen) with 50 mM TCEP

and heated to 70�C for 10 min before loading on gels. Nuclear extracts were

analyzed by immunoblotting as described in the Supplemental Experimental

Procedures, except that NuPAGE Novex 4%–12% Bis-Tris gradient gels

were used. The following antibodies were used: anti-p300 (N-15), sc-584,

Santa Cruz; anti-NFE2L2, Antibody EP1808Y, OriGene Technologies; and

anti-U2AF65 U4758, Sigma.

Organotypic Slice Culture and Bioluminescence

All animal experimentation was licensed by the UK Home Office under the An-

imals (Scientific Procedures) Act 1986, and according to the European Parlia-

ment and Council of the European Union Directive 2010/63/EU. Local Ethical

Review was also conducted by the University of Cambridge. Prior to use in ex-

periments, animals were group housed in individually ventilated cages under a

12:12 light:dark (LD) cycle with food and water available ad libitum. SCN and

liver slices were extracted from 8- to 12-week-old adult mPer2Luc mice (Yoo

et al., 2004). Slices were cultured on a membrane (Merck Millipore,

PICM0RG50) in a sealed dish. Slices were then transferred to custom-imaging

incubators for whole-explant bioluminescence recording, or microscopes for

single-cell bioluminescence imaging. Whole-explant imaging of SCN and liver

slices was performed using an Andor iKon-M 934 cooled CCD camera

mounted CO2 incubator at 37�C. Single-cell images were recorded from

SCN slices placed into an Okolab stage-top heated chamber (37�C) mounted

on an inverted Nikon Eclipse Ti-Emicroscope equippedwith an electron-multi-

plied CCD (EM-CCD) camera (Hamamatsu ImagEM 1K, C9100-14).

Fly Behavioral Assays

Wild-type Canton-S flies were bred and grown on standard yeast cornmeal

agar medium at 25�C in 12 hr:12 hr LD cycles. For behavioral recording exper-

iments, individual flies were placed into wells of a 96-well plate following brief

exposure to CO2 anesthesia. Each well contained an equal volume of assay

medium (5% sucrose, 1% agar), supplemented with 6AN or DMSO (control)

at concentrations indicated in the main text. Although the concentrations of

drug were high in comparison to those used in our cell and tissues studies,

it is important to note that the Drosophila were ingesting agar dosed with the

drug and therefore received a much lower effective concentration. Using a

custom-made infrared video recording system, the locomotor activity of indi-

vidual 4- to 7-day-old flies was recorded in constant darkness (DD) following

2 days of entrainment in LD cycles (which were not recorded). The videos

were processed using Ethovision XT v10 software (Noldus) to quantify the

locomotor activity of the flies.
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