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Objective: The risk of falling increases in diabetic peripheral neuropathy (DPN)

patients. As a central part, Basal ganglia play an important role in motor and

balance control, but whether its involvement in DPN is unclear.

Methods: TenpatientswithconfirmedDPN, tendiabetespatientswithoutDPN,and

ten healthy age-matched controls(HC) were recruited to undergo magnetic

resonance imaging(MRI) to assess brain structure and zone adaptability. Multiscale

entropy and small-world network analysis were then used to assess the complexity

of thehemodynamic response signal, reflecting theadaptability of thebasal ganglia.

Results: There was no significant difference in brain structure among the three

groups, except the duration of diabetes in DPN patients was longer (p < 0.05).

The complexity of basal ganglia was significantly decreased in the DPN group

compared with the non-DPN and HC group (p < 0.05), which suggested their

poor adaptability.

Conclusion: In the sensorimotor loop, peripheral and early central nervous lesions

exist simultaneously in DPN patients. Multiscale Entropy and Small-world Network

Analysis could detect basal ganglia dysfunction prior to structural changes in MRI,

potentially valuable tools for early non-invasive screening and follow-up.

KEYWORDS

basal ganglia, diabetic peripheral neuropathy (DPN), rs-fMRI (resting state fMRI),
multiscale entropy (MSE), small-world network, early diagnostic marker,
early dysfunction
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Introduction

Diabetic peripheral neuropathy (DPN) is the most common

complications of diabetes mellitus, in relation to the degree and

duration of diabetes, from 13% to 58% of patients with diabetes

(1, 2). Previous studies have shown that patients with DPN are

15 times more likely to fall than healthy subjects, increasing the

risk of fractures and other injuries, leading to high mortality in

patients with DPN (3, 4). the central nervous system plays a

critical role in balance control (5). Previous studies have mainly

explored the issue of motor and balance impairments in DPN

patients from the perspective of the behavioral and peripheral

nervous system (PNS). However, the influence of the central

nervous system(CNS) is unclear.

Although diabetic neuropathy has long been considered a

disease of the PNS only, the involvement of the CNS in DPN is

also gradually being realized (6–11). Recently, Magnetic Resonance

Imaging (MRI) studies showed thalamus dysfunction in DPN

patients (7–9, 12). Selvarajah et al. found that the volume of

peripheral gray matter in DPN patients was significantly less than

in patients with diabetes without DPN and in healthy participants;

the decrease of gray matter was mainly concentrated in the primary

somatosensory cortex, supramarginal gyrus, and cingulate cortex

(6). These studies suggested that peripheral neuropathy was closely

related to CNS disorders as a complete sensorymotor control closed

loop. Therefore, both CNS dysfunction and peripheral neuropathy

may reduce balance control and increase the risk of falls in

diabetic patients.

As a safe, non-invasive technique with high temporal and

spatial resolution, functional magnetic resonance imaging

(fMRI) is widely used to diagnose, predict and classify

different stages of the disease (13, 14). Among these, resting-

state functional magnetic resonance imaging (rs-fMRI) can

reflect the degree of brain activity in the whole brain, making

a breakthrough in exploring brain activity and brain functional

connectivity (15–19). Particularly when gauging the progression

of the disease, complex networks and complex systems analysis

methods based on the resting blood oxygen level dependent

(BOLD) signals are sensitive to subtle changes in functional

connectivity and can be used to assess the early dysfunction of

the cerebral cortex (20–26).

Basal ganglia, including globus pallidus, putamen, and caudate,

is an essential hub in sensory and motor processing and plays a hub

role in motor and balance performance (27–30). The putamen

works in conjunction with the somatosensory cortex, external

globus pallidus (GPe), internal globus pallidus (GPi), substantia

nigra compacta (SNc) and substantia nigra reticulata (SNr) to

control many types of motor skills. These include controlling

motor learning, motor performance and tasks, motor preparation,

specifying amplitudes of movement and movement sequences (30).

Globus pallidus plays an important role in modulating involuntary

movement, including standing, walking and speaking (29). Damage

to the globus pallidus would result in movement disorder, and the
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modulation effects of the globus pallidus would also be weakened.

In motor control, the globus pallidus could balance cerebellum

excitability by reducing the excitability itself. Previous studies have

observed basal ganglia lesions in diabetic uremic patients (31, 32).

Moreover, we hypothesize that early CNS dysfunction (especially

basal ganglia) appears in DPN patients. In the present study,

multiscale entropy and small-world network analysis were

performed to explore the complexity of the basal ganglia in DPN

patients to assess the early CNS dysfunction.
Materials and methods

Participants

The diabetic patients in this study were all from the

Department of Endocrinology, Peking University First

Hospital. All patients were selected according to the following

criteria (33): 1) type 2 diabetes, aged between 40 to 80 years, with

no history of atherosclerotic cardiovascular disease (ASCVD)

and stable glycemic control without therapy of DPN; 2) right-

handed as determined by the Edinburgh Handedness Inventory;

3) ability to stand and walk normally determined by Berg

Balance Scale(BBS) and Timed Up and Go test(TUG); 4)

normal cognitive ability without antidepressant drugs

determined by the Montreal Cognitive Assessment (MoCA);

5) no history of stroke, coronary disease, nephritis, tumors,

gastrointestinal disease, psychiatric illness or peripheral

neuropathy caused by excessive alcohol consumption,

exposure to toxic substances and neurotoxicity; and 6) ability

to meet the physical demands of the imaging procedure.

According to the 2010 Toronto Diabetic Neuropathy Expert

Group consensus panel (34), 11 patients with DPN (DPN group)

confirmed by symptoms, physical examination, and nerve

conduction velocity (NCV) test, and 11 diabetic patients

without DPN (non-DPN group) were recruited. We also

recruited 10 age- and gender-matched, right-handed,

nondiabetic healthy controls (HC group). All control

participants were free of CNS and PNS disorders. Then, all

participants underwent MRI to assess the differences in brain

structure, brain connectivity, and basal ganglia function. All

participants were provided written informed consent for the

protocol as approved by the Institutional Review Board of

Peking University First Hospital, Beijing (2015[866]). A flow

chart of this study design is shown in Figure 1.
Cognitive ability test

All participants were subjected to a cognitive ability test that

assessed their general mental status and other cognitive domains

such as memory, attention, spatial processing, executive

function, and language abilities. General mental status was
frontiersin.org
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assessed with the MoCA, and scores less than 26 were a reason

for exclusion because participants with such low scores were

considered to have possible dementia.
Magnetic resonance image acquisition

The MRIs were acquired at the Peking University First

Hospital using a GE 3T (Discovery MR750; GE Medical

System) whole-body scanner with an eight-channel receive-

only head coil. BOLD data were acquired using a standard

echo-planar imaging sequence with the following parameters:

repetition time/echo time, 2000/30ms; flip angle, 90°; image

matrix, 64×64; thickness/spacing, 4mm/1mm; field of view,

230×230mm2; and 33 axial sections (35). We acquired 245

image volumes in each participant with their eyes open on a

specific fixation point. High-resolution structural images were

acquired by using a three-dimensional fast spoiled gradient echo

sequence for anatomical localization (repetition time/echo time,

7.8/3.0ms; flip angles, 20°; inversion time, 450ms; field of view,
Frontiers in Endocrinology 03
240×240mm2; slice thickness, 2mm with 1mm overlap; in-plane

resolution, 1×1mm2).
Data processing and analysis

One-way analysis of variances (ANOVAs) were used to

assess the between-group differences (DPN, non-DPN, HC

groups) in sex, age, height, weight, BMI, and MoCA score. A

two-sample two-tailed t-test was carried out to test for

significant differences in the HbA1c and duration of diabetes

between the DPN group and the non-DPN group. All statistical

analyses were performed using SPSS version 24.0 for

Windows software.

All brain structural images were processed to quantify and

compare the difference in brain morphology between the DPN

and non-DPN groups using the voxel-based morphometry

(VBM) toolbox implemented in MATLAB (MathWorks, Inc.,

Sherborn, MA, U.S.A.), widely applied model in this field. First,

the structure images were estimated and affine-transformed by
FIGURE 1

A flow chart of the study design.
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VBM, and then a Gaussian kernel with FWHM (Full Width at

Half Maximum) of 8 mm was used for spatial smoothing.

Finally, A two-sample two-tailed t-test was conducted to test

for significant structural differences between the two groups. The

false discovery rate (FDR) approach was applied to correct

multiple comparisons problem across space. P values <0.05,

FDR corrected were considered significant.

Resting-state fMRI data were first preprocessed with

Statistical Parametric Mapping software (SPM8, Wellcome

Department of Imaging Neuroscience, University College

London, UK) implemented in MATLAB. For each participant,

images were realigned to the first scan to correct potential head

movement within scans, generating six-parameter head motion

curves. Each time-series was corrected to compensate for delays

associated with acquisition time differences across slices.

Functional images were co-registered to the corresponding

structural T1 image and normalized to a 2-mm isovoxel

Montreal Neurological Institute template. The first 5 data

points were discarded because of the instability of initial MRI

scanning, leaving 240 data points in the final data.
Multiscale entropy and small-world
network analysis

After preprocessing, Multiscale entropy (MSE) and small-

world network analysis were used to assess the complexity of the

hemodynamic response signal and network metrics of the region

of interest (ROI) of the brain (related to sensorimotor

processing, including PreCG: precentral gyrus; SMA:

supplementary motor area; INS: insula; PoCG: postcentral

gyrus; SPG: superior parietal gyrus; IPL: inferior parietal

lobule; PCL: paracentral lobule; PUT: putamen; PAL: globus

pallidum; THA: Thalamus).

MSE analysis is based on sample entropy (SampEn) that

calculates SampEn on variable scales (36, 37). In this study, The

registered fMRI data were segmented into 90 brain regions

using the automated anatomical labeling (AAL) template. MSE

of each AAL region were calculated with parameters of pattern
Frontiers in Endocrinology 04
length m = 2, distance threshold r = 0.3 and time scale t = 4

(24, 38).

A small-world network is a network between the regular and

random network (39). This study calculated network metrics

using the GRETNA toolbox implemented in MATLAB. By

traversing the connection threshold from 0.05 to 0.4 in

increments of 0.01, the network parameters of the whole brain

and local brain regions were calculated for each participant.

Finally, One-way ANOVAs were used to assess the between-

group differences in MSE values, brain network parameters, and

brain region connections. Tukey’s post hoc testing was used to

analyze group differences within significant models.
Results

Baseline clinical characteristics

During the rs-fMRI testing, one participant in the DPN

group and one in the non-DPN group were excluded because of

involuntary excessive head motion. All information for 30

subjects (10 DPN, 10 non-DPN,10 HC) is shown in Table 1.

The age in the DPN and non-DPN groups were 57.0 ± 9.8 and

56.6 ± 7.9 years(p<0.05) respectively. And the duration of DPN

patients and non-DPN were 13.3 ± 6.8 and 7.8 ± 4.2 years

(p<0.05),. The duration of diabetes in the DPN group was longer

(p = 0.04). The HbA1c, MoCA score, age, and BMI were no

differences among the three groups.
MSE analysis results

The MSE values of each brain region were obtained on

4 scales, as shown in Figure 2. One-way ANOVAs showed

that on a large scale, there were significant differences

among groups in the left putamen, precentral gyrus,

postcentral gyrus, superior parietal gyrus, paracentral

lobule, right SMA, inferior parietal lobule, putamen,

globus pallidum. Tukey’s post hoc testing showed that
TABLE 1 Baseline information and characteristics of the all patients.

Characteristics DPN (n=10) Non-DPN (n=10) HC (n=10) p value

M/F 7/3 5/5 5/5 0.61

Age (years) 57.0 ± 9.8 56.6 ± 7.9 55.5 ± 5.5 0.91

Height (cm) 170.0 ± 6.2 169.9 ± 5.3 167.3 ± 6.4 0.53

Weight (kg) 72.6 ± 13.3 72.3 ± 10.0 62.0 ± 9.3 0.07

BMI 25.1 ± 4.7 25.1 ± 3.5 22.1 ± 2.9 0.15

MoCA score 27.8 ± 1.5 27.4 ± 1.4 27.9 ± 1.7 0.76

HbA1c (%) 8.7 ± 1.7 8.9 ± 2.1 — 0.80

Duration of diabetes (years) 13.3 ± 6.8 7.8 ± 4.2 — 0.04
fronti
Values are given as mean ± SD, unless otherwise indicated.
ersin.org

https://doi.org/10.3389/fendo.2022.974254
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Yuan et al. 10.3389/fendo.2022.974254
the MSE values of the DPN group in the left precentral

gyrus, right supplementary motor area, left postcentral

gyrus, left superior parietal gyrus, right inferior parietal

lobule, left paracentral lobule, left putamen, and right

globus pallidum was significantly lower than that of HC

group (p<0.05). The MSE values of the DPN group in left

and right putamen, left precentral gyrus and right globus

pallidum were significantly lower than that of the non-

DPN group (p<0.05). There was no significant difference

between the non-DPN and HC groups in the brain regions

mentioned above. No brain region in the DPN group

showed a significant increase in complexity compared

with the non-DPN group and HC group.
Small-world network analysis results

By calculating the brain network metrics, we found that,

compared with the non-DPN group and healthy control group,

the nodal importance in the bilateral paracentral lobule, left

putamen, globus pallidum, superior parietal lobule, postcentral

gyrus, right precentral gyrus was decreased (p<0.05), as shown in
Frontiers in Endocrinology 05
Figure 3. The brain connection matrix of the DPN group, non-

DPN group, and HC group and the weakened connections of the

DPN group are shown in Figure 4. Weakened connections

between basal ganglia and sensorimotor cortex and between

basal ganglia and thalamus were observed in the DPN group

compared with the non-DPN and HC group (p<0.05).
Brain structural analysis results

No significant changes in brain structure were found among

the DPN group, non-DPN group, and HC group (FDR

corrected, p>0.05).
Discussion

This study explored the motor and balance impairments in

patients with DPN from the perspective of CNS. The main

finding of this study are as follows: (i) the basal ganglia

adaptability was reducted without structural changes in DPN

compared with in diabetic patients without DPN and healthy
FIGURE 2

Group average SampEn over multiple time scales of left precentral gyrus, right supplementary motor area(SMA), left postcentral gyrus, left
superior parietal gyrus, right inferior parietal lobule, left paracentral lobule, left and right putamen, right globus pallidum in the DPN group
compared with the non-DPN group. (*, p<0.05; **, p<0.01).
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controls. (ii) Multiscale Entropy and Small-world Network

Analysis could be valuable tools to evaluate early basal

ganglia dysfunction.

As a nonlinear dynamics method, MSE analysis has several

advantages. First, compared with SampEn, since some random

fluctuations are removed, the entropy of random noise is lower

in a large scale. Second, MSE reflects the scale irregularity of time

series. If entropy decreases in scale, the sequence shows simple

structures and randomness; if entropy increases in scale, the

sequence shows high complexity. In 2013, Yang et al. used MSE

for the first time to analyze resting-state BOLD signals (38). The

results showed that MSE values were significantly lower in the

left olfactory cortex, right posterior cingulate gyrus, right

hippocampus, right parahippocampal gyrus, left superior

occipital middle gyrus, left caudate nucleus, and left thalamus

in older adults compared to younger adults. The human brain is

a highly complex system that can be represented as a structurally

or functionally interconnected network that assures rapid

segregation and integration of information processing.

Considerable progress has recently been made in describing

the topological organization of the whole human brain’s

networks using neuroimaging data and graph-theoretical

approaches (20, 40). Liu et al. found that the small-world

properties of the prefrontal, parietal and temporal lobes were

significantly altered in schizophrenia patients compared to

healthy subjects, and these changes correlate with illness

duration in schizophrenia (41).

Multiscale entropy (MSE) and small-world network analysis

were used to assess the complexity of hemodynamic response

signal and network metrics of brain regions among diabetic

patients with and without DPN and healthy elderly. The results

showed that the DPN group significantly reduces the complexity

of the left putamen, right putamen, and right globus pallidum.

Complexity reflects the system’s adaptability, so the complexity

reduction of the left putamen, right putamen, and right globus
Frontiers in Endocrinology 06
pallidum is probably closely related to their reduced adaptability.

Moreover, the local network efficiency of the left putamen and

globus pallidum and the cluster coefficient of the left globus

pallidum showed remarkably reduced, indicating that their

information transmission capacity decreased and connection

with neighboring nodes weakened in the DPN group. Also,

this study suggested that the connection between the thalamus

and globus pallidum was weakened in the DPN group. It is well

known that the decreased complexity and reduced network

robustness are closely associated with declined adaptability of

the cerebral cortex (20, 36, 40, 42, 43). Therefore, basal ganglia

adaptability was reduced in patients with diabetic peripheral

neuropathy. There was no significant difference in brain

structure among the three groups in our study. Because the

age and duration of diabetes in our study were relatively shorter

than in previous studies, we speculate that the functional

changes appear earlier than structural changes. This finding is

consistent with recent findings that AD is not only associated

with the gray and white matter atrophy but also with changes in

the connectivity of brain regions prior to any structural changes

(14, 26). Thus basal ganglia dysfunction could be used as an early

diagnostic marker, which is essential for early screening in

DPN patients.

The main finding of this study is reduced basal ganglia

adaptability in DPN patients, but the underlying etiology for

reduced adaptability of the basal ganglia is not clear. In this

study, DPN patients, age-matched non-DPN patients, and

healthy controls were recruited to eliminate the effects of age.

Therefore, peripheral neuropathy and the increasing duration of

diabetes might be the primary etiology of the reduced

adaptability of the basal ganglia in DPN patients. These

findings and recent studies demonstrate that peripheral and

central nervous lesions exist simultaneously in DPN patients.

However, the temporal involvement relationship between PNS

and CNS is challenging to elucidate. One possibility is that loss
FIGURE 3

The weakened nodal network metrics in the DPN group compared with the non-DPN group and healthy control group. (PreCG, precentral
gyrus; PoCG, postcentral gyrus; SPG, superior parietal gyrus; PCL, paracentral lobule; PUT, putamen; PAL, globus pallidum; Eloc, local efficiency;
Cp, cluster coefficient; Eg, global efficiency; Lp, shortest path length; ↑ or ↓: the values of nodal network metrics in the DPN group are greater/
smaller than those in the non-DPN group and the healthy control group).
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of the afferent input, resulting from peripheral nerve damage,

subsequently causes changes at progressively higher levels in the

CNS, especially in the basal ganglia, the important

somatosensory and motor processing hub. The other is also

possible that the long-term metabolic abnormalities result in

reduced adaptability of the basal ganglia. The basal ganglia

changes could be occurring with changes in the PNS

previously or concomitantly. The coupling of PNS and CNS

builds up the sensorimotor loop, and both possibilities suggest

the sensorimotor ‘dying-back’ mechanism in DPN. Further

longitudinal studies will be needed to explore the temporal

relationship between PNS and CNS involvement in DPN.

Resting-state functional magnetic resonance imaging (rs-

fMRI) can reflect the degree of brain neuron activity and has

been widely used in the field of the central nervous system.

Previous studies have focused on brain morphology and central

responses to specific stimuli based on rs-fMRI in DPN patients

(17, 18, 44). As mentioned above, MSE and small-world network

analysis based on resting BOLD signals are sensitive to assessing
Frontiers in Endocrinology 07
the cerebral cortex’s adaptability by analyzing the complexity of

the resting BOLD signal, brain network characteristics, and

brain function connections (20–26). For example, small-world

network analysis has reported AD-induced changes in global

brain functional connectivity in early Alzheimer’s disease(AD)

(26). Thus, the brain dysfunction of DPN patients from the

complex network and complex system perspectives should be

explored. This study showed that the basal ganglia adaptability

was reduced in patients with diabetic peripheral neuropathy by

MSE and small-world network analysis based on the rs-fMRI.

These tools are potentially a non-invasive marker for early

diagnosis and long-term follow-up in diabetics by assessing

the early basal ganglia dysfunction.

Further studies could provide early screening for basal

ganglia adaptability in patients with long-standing diabetes

and thus indicate whether they need targeted diagnostic and

treatment strategies. Deep-Brain Stimulation (DBS) has become

an accepted treatment for basal ganglia disorders (45, 46).

Therefore, we think that brain stimulations, including DBS,
A B

D E

C

FIGURE 4

Connection matrix and weakened connections of brain region related to sensorimotor processing. (A) Brain connection matrix of the DPN
group. (B) Brain connection matrix of the non-DPN group. (C) Weakened connections in regions related to sensorimotor processing in the DPN
group compared with the non-DPN group. Warm color (non-DPN>DPN). (D) Weakened connections in regions related to sensorimotor
processing in the DPN group compared with the non-DPN group. Warm color (non DPN>DPN). (E) Weakened connections in regions related to
sensorimotor processing in the DPN group compared with the HC group. (PreCG, precentral gyrus; SMA, supplementary motor area; INS, insula;
PoCG, postcentral gyrus; SPG, superior parietal gyrus; IPL, inferior parietal lobule; PCL, paracentral lobule; PUT, putamen; PAL, globus pallidum;
THA, thalamus).
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transcranial magnetic stimulation (TMS), and transcranial direct

current stimulation(tDCS), targeting basal ganglia, may help to

improve the motor balance control by enhancing the

adaptability of basal ganglia in patients with diabetes,

especially for DPN patients. Except for tight glucose control,

physical therapy, such as transcutaneous electrical nerve

stimulation (TENS), gait training, and exercise programs can

reduce pain, maintain strength, and improve motor and balance

function in DPN patients (47, 48). Moreover, recent studies

showed that liraglutide, as a small molecule, could directly affect

neurons in the brain to prevent both motor dysfunction in the

substantia nigra and basal ganglia (49, 50). Therefore, it might be

helpful in future research and clinical treatment to improve

motor and balance control and reverse the changes of diabetic

neuropathy in DPN patients by combining physical therapy,

drugs and brain stimulations targeting basal ganglia.
Conclusion

In this study, we demonstrate that the adaptability of basal

ganglia is reduced, and the stability of the sensorimotor loop is

decreased in DPN patients compared with diabetic patients

without DPN. These findings demonstrate that peripheral and

central nervous lesions co-exist as an early CNS disorder in DPN

patients. Prior to structural changes, the basal ganglia

dysfunction in DPN patients could be evaluated early by

multiscale entropy and small-world network analysis. Thus,

the study has the potential to provide a non-invasive practical

tool for early diagnosis and long-term follow-up in diabetics by

assessing the early basal ganglia dysfunction.
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