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Underwater snake robots have received attention because of their unique

mechanics and locomotion patterns. Given their highly redundant degrees

of freedom, designing an energy-efficient gait has been amain challenge for the

long-term autonomy of underwater snake robots. We propose a gait design

method for an underwater snake robot based on deep reinforcement learning

and curriculum learning. For comparison, we consider the gait generated by a

conventional parametric gait equation controller as the baseline. Furthermore,

inspired by the joints of living organisms, we consider elasticity (stiffness) in the

joints of the snake robot to verify whether it contributes to the generation of

energy efficiency in the underwater gait. We first demonstrate that the deep

reinforcement learning controller can produce a more energy-efficient gait

than the gait equation controller in underwater locomotion, by finding the

control patterns which maximize the effect of energy efficiency through the

exploitation of joint elasticity. In addition, appropriate joint elasticity can

increase the maximum velocity achievable by a snake robot. Finally,

simulation results in different liquid environments confirm that the deep

reinforcement learning controller is superior to the gait equation controller,

and it can find adaptive energy-efficient motion even when the liquid

environment is changed. The video can be viewed at https://youtu.be/

wpwQihhntEY.
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1 Introduction

With the development of robotics technology, numerous underwater mobile robots

have been recently conceived and prototyped for underwater oil and gas exploration,

ocean observation, rescue work, and ocean science research (Chutia et al. (2017); Khatib

et al. (2016)). Without carrying human drivers, these robots can greatly reduce the risk of

accident and the cost, thereby improving their performance with longer time of

exploration in the water.
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The use of a snake robot as a typical mobile robot has

attracted the attention of researchers, owing to its unique

undulatory locomotion. In addition, the flexible body of snake

robots allows them to easily move underwater. In Kelasidi et al.

(2015), a simulation study was performed to compare the total

energy consumption and cost of transportation between

underwater snake robots and remotely operated vehicles. The

simulation results showed that, regarding the cost of

transportation and total energy consumption, the underwater

snake robots are more energy-efficient for all the evaluated

motion modes compared with the remotely operated vehicles.

The first snake robot was introduced by Hirose in the 1970s

(Hirose (1993). Since then, researchers have developed a large

variety of snake robots. A review of land-based snake robots

shows that most studies have been focused on locomotion over

flat surfaces, but a growing trend has emerged toward locomotion

in more challenging environments (Liljebäck et al. (2012)).

Unlike land-based snake robots, only a few swimming snake

robots have been developed, including the eel robot REEL

(Melsaac and Ostrowski (1999); McIsaac and Ostrowski

(2002)), lamprey robot AmphiBot (Crespi et al. (2005); Crespi

and Ijspeert (2006); Porez et al. (2014)), amphibious snake robot

ACM 5 (Ye et al. (2004); Yamada (2005)), and an underwater

snake robot with thrusters (Kelasidi et al. (2016)).

Despite existing developments, it remains challenging to

generate robust and efficient gaits for snake robots, owing to

their special mechanical structure and redundant degrees of

freedom. The model-based method is a common control

architecture method for snake robots based on either

kinematic or dynamic models for control (Ostrowski and

Burdick (1996)). Although the model-based method can

quickly generate the best gait in simulations for a given robot,

its approximate analytical solution presents limitations. First, the

control performance deteriorates when the model becomes less

accurate. As the control of a snake robot depends on the

operation frequency, small frequency fluctuations can lead to

large changes in the gait, especially in real underwater

environments. Second, model-based controllers are not always

suited for interactive modulation under unknown and varying

environments Crespi and Ijspeert (2008).

Previous studies on swimming snake robots have been

focused on two motion patterns: lateral undulation and eel-

like motion Kelasidi et al. (2015). The gait equation that

describes the joint angles over time is generally used to define

the motion patterns of the snake robots. Complex and different

motion patterns can be obtained by setting just a few parameters.

However, this parameterized gait may be limited by speed to find

the best combination of parameters for a given situation. One

possible approach is to find the best parameters by searching a

grid of gait parameters with fixed intervals through simulations.

However, the difference between simulated and real

environments can lead to biases, being difficult for the grid

search method to provide the best combination of parameters

in practice. In Kelasidi et al. (2015), empirical rules were used to

choose the gait parameters considering both the desired forward

velocity and power consumption of the robot. However,

optimizing gait parametrically is limited to the selection of a

few specific parameters, limiting the optimization scope.

Diverse problems in robotics can be naturally formulated as

reinforcement learning problems. Reinforcement learning offers

a framework and a set of tools for designing sophisticated, hard-

to-engineer behaviors (Kober et al. (2013)). In particular, deep

reinforcement learning (DRL) has been studied to control snake

robots. In Bing et al. (2020b), target-tracking tasks for a snake

robot were solved using a reinforcement learning algorithm. In

Bing et al. (2020a), DRL was applied to improve the energy

consumption of snake robot motion using a slithering gait for the

ground locomotion. In terms of natural animal-like motor

learning, synergetic motion in redundancy could be generated

through DRL along with the increase in the energy efficiency

during legged locomotion (Chai and Hayashibe, 2020). In this

study, we apply DRL to investigate the impact of joint elasticity

on improving the energy efficiency of underwater snake

locomotion. In designing the reward function, we introduce

the concept underlying curriculum learning (Bengio et al.

(2009): humans and animals learn much better when the

examples are not randomly presented but organized in a

meaningful order and gradually presenting with more

concepts with increasing complexity. At the beginning, the

reward function is relatively simple. After a certain number of

training epochs, the reward function changes to a more complex

target task.

First, we demonstrate that DRL can be used for a snake robot

to move underwater with more efficiency than when using a

conventional gait equation controller based on grid search to

determine the optimal parameters. The DRL controller is trained

by proximal policy optimization, which is a typical model-free

DRL approach. We also evaluate the relation between the average

velocity and output power of different types of gaits generated by

the DRL and gait equation controllers. The result shows that the

DRL controller achieves the highest performance for an

underwater locomotion.

Second, we change the joint elastic attributes of a snake robot

considering the structure of different organisms. It is verified if

the locomotion in different environments requires different joint

stiffnesses for energy efficiency, e.g., in walking Farley et al.

(1998); Xiong et al. (2015). For a human jump motion, joint

elasticity induced by the collaboration of muscles and tendons

enables high-power movement as the elastic element can store

the potential energy (Otani et al., 2018). Similarly, we consider

the elasticity in the joints of a snake robot to resemble the joints

of real animals. We evaluate an underwater locomotion with

different joint elasticities considering the average velocity and the

energy efficiency. The results show that an appropriate joint

elasticity allows moving with higher energy efficiency, but for the

control solution to take advantage of it, it should be well explored.
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Finally, we report experiments in different liquid

environments. In addition to water, snake robots can be

deployed to extreme environments such as a marine oil-spill

scenario. The simulation results demonstrate that the DRL

controller retains its superiority even when the fluid

environment changes and that an appropriate joint elasticity

can still improve the energy efficiency of swimming.

The remainder of this article is organized as follows. The

simulation models of the snake robots are introduced in Section

2. The gait equation controller and DRL controller used to generate

the gait for snake robots are described in Section 3. Section 4

compares and analyzes the energy efficiency of snake robots with

different gaits. Section 5 presents the conclusions of this study.

2 Simulation method and energy
efficiency

2.1 Simulation method

We used the MuJoCo physics simulation engine to model

and simulate our underwater snake robot. MuJoCo provides

fast and accurate dynamic simulations for robotics,

biomechanics, and medicine (Todorov et al. (2012)). In the

previous study by Li et al., (2021), we proposed a simulation

framework for soft-bodied robot underwater locomotion in

MuJoCo. In this work, we focus on the rigid-bodied

underwater snake robot with different joint elasticity levels

to reveal the impact on energy efficiency. The main simulation

environment is in water with a density of 1,000 kg/m3 and

dynamic viscosity of 0.0009 Pa· s. We also carried out

experiments in different liquid environments, with

reference to propylene (density of 514 kg/m3 and dynamic

viscosity of 0.0001 Pa· s) and ethylene glycol (density of

1097 kg/m3 and dynamic viscosity of 0.016 Pa· s).As shown

in Figure 1, the snake robot in the simulation environment has

seven links connected by six rotational joints with one degree

of freedom per joint. Each link has a length of 0.1 m and

diameter of 0.02 m, and the total mass of the robot is 0.25 kg.

To eliminate the effects of buoyancy, a uniform density of

1,000 kg/m3, which is the same as the liquid environment, is

set for all components of the model.

The snake robot can move forward underwater by controlling

each joint, which can rotate in the range of [−90°, 90°]. The force of

each motor is limited within the range [-1 N, 1 N], and its gear ratio

is 0.1. Therefore, the actuator torque range is [−0.1 N· m, 0.1 N· m]

obtained by multiplying the actuator force by the gear ratio. For the

gait equation controller, the servo motor is used because it outputs

the joint angle directly. On the other hand, theDRL controllermakes

exploration directly for the motor torque space. The physical

parameters of the joint may affect the gait performance.

In order to explore the effect of joint stiffness on the energy

efficiency of the snake robot, we verify the effect of the joint

elasticity by varying the stiffness parameter with different

settings. For both the gait equation controller and DRL

controller, the simulation frequency was 100 Hz, and the

control frequency was 25 Hz.

2.2 Power efficiency

For a snake robot with N joints, instantaneous power

consumption P is calculated as

P � ∑N
j�1

|τj _ϕj|, (1)

where τj is the torque of the actuator j, and _ϕj is the angular

velocity of the joint j. Average power consumption �P during a run

with k steps is calculated as

�P � 1
k
∑k
1

∑N
j�1

|τj _ϕj|. (2)

Since

τj � fjhj, (3)

where fj is the applied force, hj is the gear constant (i.e., gear ratio

of actuator) of the joint j, and force fj applied by the actuator is

limited to a maximum of fmax. Normalized power consumption P̂

at each time step is calculated as

P̂ � 1
N

∑N
j�1

|fjhj _ϕj|
fmaxhj _ϕmax

� 1
N

∑N
j�1

|fj
_ϕj|

fmax
_ϕmax

. (4)

We use P̂ for defining the reward in DRL.

3 Controller design

In this section, we introduce the gait equation and DRL

controllers. The gait equation controller is a model-basedmethod

FIGURE 1
Snake robot in the simulation environment (MuJoCo). Red
numbers show the joint index.
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with a fixed equation and various adjustable parameters. The

DRL controller is a model-free method that enables a robot to

autonomously discover the optimal behavior through trial-and-

error interactions with its environment (Kober et al., 2013). A

DRL controller can overcome the limitations to the conventional

gait equation and allows exploring various types of gaits.

3.1 Gait equation controller

The gait equation controller is formulated as

ϕ i, t( ) � g i, y( )A sin ωt + λi( ) + γ, (5)
where

g i, y( ) � i

N
1 − y( ) + y. (6)

ϕ(i, t) represents the joint angle at time t, with i being the joint

index and N being the number of joints, g(i, y) is a scaling

function for the amplitude of joint i that allows function (5) to

describe a general class of sinusoidal functions and their

corresponding snake motion patterns (Kelasidi et al., 2014).

Setting y = 1 provides lateral undulation, in which the

amplitudes of each point of the snake robot are of the same

magnitude. Setting y = 0 provides an eel-like motion, in which the

amplitudes of each point of the snake robot increase from the

head to tail.

Moreover, A is the serpentine amplitude, ω is the temporal

frequencies of the movement, λ determines the phase shift

between the joints, and γ is a parameter that controls the

steering of the snake robot.

By adjusting y, A, λ, and ω, the gait of the snake robot can be

changed, and the optimal gait parameters can be found by using a

method called grid search. The parameters and ranges for grid

search are listed in Table 1, resulting in 32,400 parameter sets. We

tested each motion parameter set by running 1,000 steps in the

simulations. For each run, we ignored the first 200 steps that were

considered as the warm-up time for the snake robot to accelerate

and stabilize its swimming gait. The remaining 800 steps were used

for calculating the average velocity and energy efficiency.

3.2 DRL controller

DRL combines reinforcement learning and deep learning.

Reinforcement learning allows robots to learn from their

interactions with the environment and autonomously discover

and explore the best behavior for a given goal. Deep learning

expands reinforcement learning to decision-making problems

that were previously intractable, that is, to settings with high-

dimensional states and action spaces Arulkumaran et al. (2017).

Figure 2 shows the perception–action-–learning loop of the DRL

controller.

3.2.1 Algorithm
The leading common policy gradient algorithms are Soft

Actor-Critic (SAC) (Haarnoja et al. (2018)), Trust Region Policy

Optimization (TRPO) (Schulman et al. (2015)), and Proximal

Policy Optimization (PPO) (Schulman et al. (2017)). TRPO is

relatively complicated and is not compatible with architectures

that include noise or parameter sharing. The PPO algorithm uses

a penal to ameliorate the excessively large optimization to obtain

better sampling complexity at the basis of the TRPO methods.

PPO is an on-policy algorithm, i.e., PPO faces serious sample

inefficiency and requires a huge amount of sampling to learn,

which is unacceptable for real robot training. But for simulations,

PPO shows its superiority compared to SAC. In Xu et al. (2021),

the authors defined a 3D environment in Unity to train cart

racing agents. They tested the PPO and SAC algorithms in

different environments. The authors have experimentally

verified that the PPO algorithm has a better performance in

the convergence rate and practical results (the average speed of

agent) than SAC. So in this work, we trained the neural network

using PPO-Clip.

PPO-Clip is one of the primary variants of PPO. PPO-Clip

relies on specialized clipping in the objective function to remove

incentives for the new policy to get far from the old policy.

Algorithm 1 shows the pseudo-code of PPO-Clip.

Algorithm 1. PPO-Clip.

3.2.2 Reward function
In Bing et al. (2020a), an effective and reliable reward

function was proposed to simultaneously control the velocity

of a snake robot and optimize its energy efficiency. First, a

normalized reward allows the robot to maintain its target

velocity. The objective is to reach and maintain target velocity

TABLE 1 Parameters used for the grid search.

Parameter Description Values Step length

A Amplitude [10°, 180°] 10°

Ω Temporal frequency [0.05, 1] 0.05

Λ Phase [10°, 180°] 10°

Y Linear reduction [0.2, 1] 0.2
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vt by comparing it with the average velocity �v of the center of

mass of the snake robot. The velocity reward is given by

rv � 1 − |vt − �v|
a1

( )
a2

. (9)

Parameter a1 = 0.2 influences the spread of the reward curve by

defining the x-axis intersections with x = vt ± a1, while a2 = 5

affects the curve gradient. If |vt − �v| � 0, velocity reward rv has a

maximum value of 1.

Second, the normalized value of the average power efficiency

P̂ in function (4) is used to determine the power efficiency reward

rP as follows:

rP � |1 − P̂|b. (10)

The parameter b = 3 affects the curve gradient.

Finally, the rewards from the velocity (rv) and power

efficiency (rP) are combined into the overall reward r1:

r1 � 1 − |vt − �v|
a1

( )
a2

|1 − P̂|b. (11)

3.2.3 Observation space
The DRL controller obtains information about the robot and

environment from the observational space at each step. Only

with suitable and sufficient information, the DRL controller can

develop adequate control strategies. The observation space O

used to train the snake robots is given by

O � Ah, A1, A2, A3, A4, A5, A6,[
θh, θ1, θ2, θ3, θ4, θ5, θ6,

Velhx, Velhy],
(12)

where Ah is the angular velocity of the head, A1–A6 represent the

angular velocity of the corresponding joints, θh is the rotation

angle of the robot head, θ1–θ6 represent the rotation angle of the

corresponding joints, andVelhx andVelhy are the velocities of the

robot head on the x and y axes, respectively.

3.2.4 Action space
Action spaceA has the same dimensions (six in this study) as

the number of actuators in the snake robot because each element

in the action space corresponds to each actuator’s torque.

3.2.5 Training configuration
We deployed model training in OpenAI Spinning Up, a

DRL framework that can allocate computing resources

conveniently. We used a two-layer fully connected network

with 256 ReLU (rectified linear unit) functions per layer as the

hidden layer of the policy network. The input layer of the

policy network has the same dimension as the observation

space O, and the output layer has the same dimension as the

action space A.

Owing to the complexity of reward function r1, it is difficult

to find the optimal solution directly, as demonstrated as follows.

Therefore, we adopted a curriculum learning strategy.

Specifically, in the first 2000 epochs, the reward function r2
was set as

r2 � cvh − P̂, (13)

where vh is the velocity of the forward motion of the robot

head. The parameter c = 200 influences the weights of vh and

P̂. The velocity considered in this study is that of the robot

head and not that of the center of mass. After 2,000 epochs, the

robot moves forward steadily with high speed, and we change

the reward function to r1, and the target velocity decreases by

0.02 every 1,000 epochs, starting from the velocity obtained at

epoch 2,000 and decreases until 0.02 m/s. We decrease the

target velocity over time instead of increasing it because at the

end of 2,000 epochs, the action policy output by the neural

FIGURE 2
Perception–action–learning loop of the DRL controller. At time t, the agent receives the state st from the environment. The agent uses its policy
to choose an action at. Once the action is executed, the environment transitions a step, providing the next state, st+1, as well as feedback in the form
of a reward, rt+1. The agent uses knowledge of state transitions, of the form (st, at, st+1, rt+1), to learn and improve its policy.
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network is moving forward at a maximum velocity. If the

target velocity in the reward function after 2,000 epochs is

small, it is actually a large change for the training target. For

curriculum learning, it is important that the task difficulty is

gradual, i.e., that the gap between two consecutive tasks is as

small as possible.

Main parameters of PPO: the discount factor γ is 0.99,

the clip ratio is 0.2, the learning rate for the policy optimizer

is 0.003, the learning rate for the value function optimizer is

0.001, the GAE parameter λ is 0.97, and the KL target is 0.01.

4 Results and analysis

In this section, we compare the differences in energy

efficiency between the gait equation controller and DRL

controller. Using the gait equation controller, we obtained

32,400 points with different velocities and energy efficiencies

in each joint stiffness condition. Using the DRL controller, we

obtained several points of different velocities in the range of

0.02 m/s to maximum velocity with a step interval of 0.02 m/s.

As shown in Figure 3, when the joint stiffness is 2 Nm/rad and

4 Nm/rad, the DRL controller produces a more efficient gait

than the gait equation controller, especially at higher

velocities.

4.1 Result of the gait equation controller

Utilizing the grid search, the gait equation controller

generates 32,400 different gaits in each joint stiffness condition.

In Figure 4, six given velocities are chosen to compare the

energy efficiency of snake robots with different joint stiffnesses

using the gait equation controller. As shown in Figure 4, when the

velocity is small (0.04 m/s), the increase in joint stiffness results

in an increase in energy consumption. However, when the

velocity becomes larger, the snake robot with an appropriate

joint stiffness (e.g., 0.5 Nm/rad) is more energy-efficient than the

snake robot with no joint stiffness (joint stiffness is 0).

Figure 5 shows the maximum velocity that can be achieved

by a snake robot with different joint stiffnesses using the gait

equation controller or DRL controller. As shown in Figure 5,

within a certain range, the maximum velocity that can be

achieved by the snake robot is increased as the joint stiffness

increases. However, after a certain range, increasing the joint

stiffness will increase the energy consumption and decrease

the maximum velocity of the snake robot. The snake robot

using the gait equation controller has the best energy

efficiency when the joint stiffness is 0.5 Nm/rad. The

maximum velocity that can be achieved by the snake robot

using the gait equation controller is largest when the joint

stiffness is 3 Nm/rad.

FIGURE 3
This plot shows the results generated by the gait equation controller and DRL controller when the joint stiffnesses are 2 Nm/rad and 4 Nm/rad.
The coordinate of each point represents the velocity and its corresponding average power consumption.
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4.2 Result of the DRL controller

The reward curve of the DRL controller is shown in Figure 6.

As we mentioned in the previous section, in the first

2,000 episodes, the reward is set as function r2. After

2,000 episodes, the reward changes to function r1, and the

target velocity decreases by 0.02 m/s every 1,000 episodes,

starting from 0.14 m/s and decreasing to 0.02 m/s. To

demonstrate that curriculum learning is necessary, Figure 6 also

shows the result without curriculum learning. The blue dashed line

represents the training results using the reward function r1 directly

in the first 2,000 episodes, in which the target velocity was set to

0.1 m/s. The other colored lines show the results of curriculum

learning. It can be seen that the final reward curve converges as the

number of training iterations increases, regardless of the reward

function used. However, by comparing the two cases (blue and

purple) with the same target velocity of 0.1 m/s (where the reward

functions are identical in both cases), it can be seen that if the robot

is trained directly with a more complex function r1, although the

reward curve converges, the final reward is much lower than that

using curriculum learning.

For each stiffness condition, we obtained results for multiple

target velocities ranging from 0.02 m/s to the maximum velocity

with a step of 0.02 m/s. In Figure 7, six velocities are chosen to

compare the energy efficiency of snake robots with different joint

stiffnesses with DRL.

As can be seen in Figure 5 and Figure 7, the overall global

trend is similar to that of the gait equation controller; as the

joint stiffness increases over a range, the energy efficiency and

the maximum velocity of the snake robot are improved.

However, beyond a threshold, the increase of joint stiffness

has an opposite effect, and the snake robot becomes more and

FIGURE 4
This plot indicates the minimum power consumption for the given velocities for snake robots with different joint stiffnesses using the gait
equation controller. There are some cases of joint stiffness for which there are no sample points when the velocity is large because the maximum
velocity of the snake robot is smaller than the given velocity.
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more energy-intensive. For the DRL controller, when the joint

stiffness is 2 Nm/rad, the snake robot is the most energy-

efficient and can reach the largest maximum velocity of nearly

0.3 m/s.

Figure 8 plots the energy results generated by the gait

equation and DRL controller with different joint stiffnesses in

a water environment. It can be seen that in almost all cases, the

results of the DRL controller are better than those of the gait

equation controller.

4.3 Adaptation to different liquid
environments

Sometimes, snake robots do not just work in water, but in

extreme situations, such as when there is a marine oil spill, where

snake robots need to work in different liquid environments, it is

necessary that the control methods can be adapted to these

extreme situations. So we have also carried out experiments in

different liquid environments. We are primarily concerned with

viscosity. Because the densities of common liquids vary but are of

the same order of magnitude, they do not have a significant effect

on the motion of the snake robot. Viscosity, however, can vary by

orders of magnitude, for example, in the case of gas-free crude oil,

which can have a viscosity over 1 Pa· s Beal (1946). As shown in

Figure 9, in different liquid environments, similar results were

obtained as in water. The DRL controller demonstrates its

adaptability and superiority compared with the gait equation

controller in various environments.

5 Discussion

5.1 Comparison of the gait equation and
DRL controller

As we mentioned in the previous section, either the gait

equation controller or the DRL controller can improve the

robot’s energy efficiency within a certain threshold range as

long as the joint stiffness is increased. However, we notice

FIGURE 5
This plot shows maximum velocities that can be achieved by
snake robots with different joint stiffnesses using the gait equation
controller or DRL controller.

FIGURE 6
Deep reinforcement learning training rewards with or without curriculum learning when joint stiffness is 0.
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some differences between the gait equation and DRL results. DRL

succeeds to find more performant control solutions in terms of

energy efficiency and also maximum speed. The optimal stiffness

setting found was 2 Nm/rad in contrast to 0.5 Nm/rad of the gait

equation. This optimal stiffness difference would come from the

difference of the spatio-temporal pattern of the control input.

The GE controller employs the traveling sine wave signals; there

are still assumptions for the waves which can be considered. For

example, the neighboring joint oscillation frequency is assumed

to be same. The GE controller approach is used for its simplicity,

but its solution space is on the traveling sine waves. In turn, DRL

control can potentially apply out of this solution space. Then, it

indicates that DRL must succeed in finding a better way to

actively use the joint elasticity and taking advantage of spring-

stored energy for optimizing the total swimming energy. This

result can be interpreted from a mechanic’s point of view as

follows. A certain degree of joint stiffness can realize a type of

swimming that stores potential energy so that the stiffness works

positively in terms of total energy to the extent that the stored

energy can be well utilized. However, if the body is too stiff, the

total energy can be too high because the energy is wasted for

bending the body joints itself. Therefore, it was quantitatively

demonstrated that there is a trade-off relationship between the

energy efficiency of swimming and the body stiffness.

Figure 10 shows the gaits of the snake robot with the gait

equation controller or DRL controller. As shown in Figure 10, the

four gaits will be abbreviated in the following as GE0, DRL0, GE2,

and DRL2. “GE” and “DRL” mean that the gait is generated by

the gait equation controller or the DRL controller. “0” and “2”

mean that the robot has a joint stiffness of 0 or 2 Nm/rad. As

shown in Figure 11, in order to better compare the differences

between these gaits, we plot the variation of the CoM velocity of

the snake robot and the energy consumption of each joint for

these four gaits.

When the joint stiffness is 0 Nm/rad, as shown in Figure 11A,

the amplitude of the variation of the CoM velocity of the

DRL0 gait is slightly greater than that of the GE0 gait, but the

frequency is less than that of the gait generated by the gait

FIGURE 7
This plot indicates the minimum power consumption for the given velocities for snake robots with different joint stiffnesses using the DRL
controller. There are some cases of joint stiffness for which there are no sample points when the velocity is large because the maximum velocity of
the snake robot is smaller than the given velocity.
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equation controller (between 16 and 24 s, the DRL0 gait has

8 peaks in velocity, while the GE0 gait has 12 peaks in velocity). In

terms of the energy consumption of the actuator, the GE0 gait is

more like an eel-like motion gait, i.e., the energy consumption

becomes progressively greater from the head to tail. The energy

consumption of the DRL0 gait is mainly distributed in the front

FIGURE 8
Comparison of the results generated by the gait equation controller and DRL controller with different joint stiffnesses in the water environment.

FIGURE 9
Comparison between the gait equation controller and DRL controller with different joint stiffnesses in different liquid environments. (A) In
propylene (density of 514 kg/m3 and viscosity of 0.0001 Pa· s); (B) in ethylene glycol (density of 1,097 kg/m3 and viscosity of 0.016 Pa· s).
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half of the snake. In this case, the energy efficiency of the

DRL0 gait is marginally better than that of the GE0 gait.

When the joint stiffness is 2 Nm/rad, it can be seen in

Figure 11B that the velocity variation of the GE2 gait is still

large, which is also due to the characteristics of the gait

equation controller itself. In contrast, the velocity of the

DRL2 gait has almost no fluctuations, and the snake robot

can move at a very steady velocity. The energy consumption of

the actuators is higher for each actuator in the GE2 gait, and

the energy consumption of the second half of the snake (motor

index = 4, 5, 6) is slightly higher than the first half (motor

index = 1, 2, 3). In contrast, the energy consumption of the

DRL2 gait was mainly concentrated in the third joint. It

indicates that DRL employed different swimming modes

when it can take advantage of joint elasticity as motor

adaptation to the given body condition.

FIGURE 10
Montages show the swimming posture of the snake-like robot under different conditions. The frames are sorted in four columns from top to
bottom and are recorded at intervals of 0.4s. Please refer to the video associated with the article. (A)Gait GE0: joint stiffness = 0 Nm/rad with the gait
equation controller; velocity = 0.117 m/s; average power = 0.332 W. (B) Gait GE2: joint stiffness = 2 Nm/rad with the gait equation controller;
velocity = 0.201 m/s; average power = 0.856 W. (C)Gait DRL0: joint stiffness = 0 Nm/rad with the DRL controller; velocity = 0.124 m/s; average
power = 0.309 W. (D) Gait DRL2: joint stiffness = 2 Nm/rad with the DRL controller; velocity = 0.199 m/s; average power = 0.455 W.

FIGURE 11
(A) Variation of the CoM velocities and the energy consumption of each joint of gaits GE0 and DRL0 (joint stiffness = 0 Nm/rad). (B) Variation of
the CoM velocities and the energy consumption of each joint of gaits GE2 and DRL2 (joint stiffness = 2 Nm/rad).
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6 Conclusion

We propose a gait design method for an underwater snake

robot based on DRL and curriculum learning, especially for

taking advantage of joint elasticity toward energy efficiency.

We demonstrate that the DRL controller can produce a more

energy-efficient gait than the gait equation controller in most

cases. The results demonstrate that employing appropriate

elasticity to the articulated joints can effectively reduce the

energy consumption during locomotion for both the gait

equation controller and DRL controller. The energy efficiency

itself comes from the body stiffness; however it is another issue if

we can find the spatio-temporal control pattern which can take

advantage of it, even if they have the same body property. The

comparison demonstrates that the DRL controller can manage to

find the pattern of control which maximizes the effect. Moreover,

an appropriate joint elasticity can increase the maximum velocity

achievable by the snake robot underwater. Experiments in

different liquid environments confirm that the DRL

controller’s adaptability is superior to the gait equation

controller.

We believe that joints with some degree of stiffness can

resemble the characteristics of snakes in nature, possibly

increasing the robots’ dynamic performance. This study can

contribute to the design of the energy-efficient gait for

underwater snake robots and the understanding of the joint

elasticity effect. In addition, the energy-efficient gait can help

snake robots to operate for longer periods in underwater

environments with limited energy resources. This article

focused on the aspect of the joint elasticity of rigid body

connections to improve the energy efficiency. It can be

interesting to study some other aspects as well for future

studies as a natural living system is well designed to have

energy efficiency with many other factors such as body

softness, body form, and control system-like spiking neural

networks Naya et al. (2021).

In this study, we only tested forward locomotion. In future

works, we will consider different types of gait behaviors, such as

turning, accelerating, and three-dimensional movements. In

addition, we will explore the influence of joint elasticity on

other types of movements.
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