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Comprehensive assessment, 
review, and comparison of AI 
models for solar irradiance 
prediction based on different time/
estimation intervals
Olusola Bamisile1, Dongsheng Cai1*, Ariyo Oluwasanmi2, Chukwuebuka Ejiyi2, 
Chiagoziem C. Ukwuoma2, Oluwasegun Ojo3,4, Mustapha Mukhtar5 & Qi Huang1

Solar energy-based technologies have developed rapidly in recent years, however, the inability to 
appropriately estimate solar energy resources is still a major drawback for these technologies. In this 
study, eight different artificial intelligence (AI) models namely; convolutional neural network (CNN), 
artificial neural network (ANN), long short-term memory recurrent model (LSTM), eXtreme gradient 
boost algorithm (XG Boost), multiple linear regression (MLR), polynomial regression (PLR), decision 
tree regression (DTR), and random forest regression (RFR) are designed and compared for solar 
irradiance prediction. Additionally, two hybrid deep neural network models (ANN-CNN and CNN-
LSTM-ANN) are developed in this study for the same task. This study is novel as each of the AI models 
developed was used to estimate solar irradiance considering different timesteps (hourly, every minute, 
and daily average). Also, different solar irradiance datasets (from six countries in Africa) measured 
with various instruments were used to train/test the AI models. With the aim to check if there is a 
universal AI model for solar irradiance estimation in developing countries, the results of this study 
show that various AI models are suitable for different solar irradiance estimation tasks. However, 
XG boost has a consistently high performance for all the case studies and is the best model for 10 of 
the 13 case studies considered in this paper. The result of this study also shows that the prediction of 
hourly solar irradiance is more accurate for the models when compared to daily average and minutes 
timestep. The specific performance of each model for all the case studies is explicated in the paper.
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y(x)  CNN-ANN prediction
L(.)  CNN-ANN hidden transfer function
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Nowadays, the world is almost impossible to envisage without its interrelationship and dependence on  electricity1. 
This electricity is mainly produced with fossil fuels and based on statistics, the global primary energy demand 
will increase by over 59% between 2002 and 2030 2. However, the evidential environmental impact of the current 
(fossil fuels) energy resources, as well as the need to reduce its climate change effect, led to the development of 
renewable energy sources (RES) 3. These RES have experienced significant growth in recent decades and they are 
projected to have as much as 39% share in global electricity generation by 2050 4. Solar energy is a sustainable, 
clean, and extremely abundant RES 5 that poses a very low risk to its immediate environment and the world 
at large. The critical investigation into the accessibility and availability of renewable energy (RE) resources has 
witnessed a continuous evolvement, especially in developing countries. There is a rapid and consistent escalation 
in electricity demand in many developing countries as they strive toward advanced technological implementa-
tion and globalization 6. Therefore, it is imperative to initiate and encourage RES development in these regions.

Solar radiation influences agricultural production, atmospheric circulation, hydrological processes, public 
health as well as ecological services, and the comprehensive knowledge of this parameter at any location is 
important to its environmental sustainability and economic potential 7. Moreover, solar radiation is a crucial and 
decisive parameter for solar energy management and generation. Information about global solar radiation is also 
significant in many applications including; RE-usage, hydrology, and meteorology 8. The recent efforts and push 
for the replacement of fossil fuels with RES have made solar radiation a more important meteorological variable 
used to simulate and measure RE potential in any location. Unlike other meteorological parameters like relative 
humidity, temperature, and sunshine duration, the observation stations for solar radiation measurement are not 
globally available. This is due to the complicated measurement techniques and relatively high cost. Therefore, 
developing an accurate method or model to predict solar radiation is very important 9.

Typically, the models for solar radiation prediction or estimation can be classified into empirical, statistical, 
physical, and machine learning models 9. While physical models such as sky-image-based models explore the 
mechanism between solar radiation and other meteorological parameters 10, empirical models are aimed at devel-
oping a linear or non-linear regression equation for solar radiation estimation 11. Statistical models such as the 
autoregressive moving-average model (ARIMA), are developed based on statistical correlation 12. In recent years, 
artificial intelligence (AI) models have been used for better solar radiation prediction. The ability of these models 
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to simulate nonlinear and complex relationship mapping as well as the capability to learn and extract meaning 
features from the input data via backpropagation and parameter update make it more desirable for this task 13.

The adoption of AI (machine learning and deep learning) models for the prediction or estimation of solar 
radiation have proven in literature to have a wider application and higher accuracy in comparison to other 
models. These models can accurately moderate the long-term, medium-term, and short-term prediction of solar 
radiation 14. Gurel et al. 15 presented the assessment of time series (Holt-Winters), machine learning (feed-forward 
neural network), empirical models (3 Angstrom-type models), and response surface methodology (RSM) for 
global solar radiation. Meteorological data obtained between 2008 and 2018 for four provinces in Turkey were 
used to train, validate, and test the models. Based on the performance evaluation of their models, the  R2 varied 
between 0.952 and 0.993 while the artificial neural network was concluded to present the best results 15. Fur-
thermore, a review of some of the most recent literatures on solar radiation prediction with different models and 
methods is summarized in Table 1. This table highlights the type of model, case study, the aim of the study, and 
the performance summary of the models in different works of literature. Based on the articles reviewed in this 
table, the use of both unsupervised (machine) learning and supervised learning algorithms has been proposed for 
the forecast of solar irradiance. Therefore, the comparison of these models is one of the aims of this present study. 
Also, none of the proposed models were able to give a 100% accurate prediction/forecast of solar radiation in all 
the various locations. Hence the consistent recommendation stated in most of these research articles that future 
studies are required in this research domain to develop more accurate models for solar radiation forecasting.

The expansion of solar energy-based technologies and applications will continue 40. Therefore, the reliable esti-
mation of solar radiation including its hourly, daily average, monthly average, annual, 41 and seasonal variability 
is of paramount importance for the estimation of solar energy capacity and potential 42. As mentioned earlier, the 
high cost and technological complexity attached to the measurement of solar radiation makes it a more difficult 
task in many meteorological stations. For example, there are 1798 meteorological stations in Turkey in the year 
2020 and only 129 of the stations are capable of measuring solar radiation 43. Also, out of the 756 meteorological 
stations in China, only 122 of them have the capability to measure solar radiation 44. These further stresses the 
importance of solar radiation estimation. In most existing works of literature on solar radiation prediction, the 
prediction was done with different models. However, these models were compared based on the similarity of 
the class. Also, most models are used to predict a particular type of data type with a specific timestep. This has 
raised research questions about the adoption of different models for the various dataset, timesteps, and loca-
tions. Furthermore, developing countries (especially Africa) have enormous solar energy potential, however, the 
development of solar-based technologies has been very slow due to many reasons. One of which is inadequacies 
in the measurements of solar radiation.

Therefore, in this paper, we seek to further the knowledge of literature in this field by comparing different 
artificial intelligence (AI) models for solar radiation estimations. Eight different AI models namely; convolutional 
neural network (CNN), artificial neural network (ANN), long short-term memory recurrent model (LSTM), 
eXtreme gradient boost algorithm (XG Boost), multiple linear regression (MLR), polynomial regression (PLR), 
decision tree regression (DTR), and random forest regression (RFR) are compared for solar irradiance forecast. 
Additionally, two hybrid deep neural network models are developed in this study for this task. These models 
are a combination of two or more deep neural network models namely; ANN-CNN and CNN-LSTM-ANN. 
In comparison to existing techniques where a specific timestep is adopted, in this study, the models developed 
will be used to estimate the hourly, every minute, and daily average solar radiation. Also, different datasets such 
as typical meteorological year (TMY), surface radiation data set for heliostats (SARAH), and The World Bank 
solar radiation measurement data (WB-ESMAP) dataset are used to test the models developed in this paper. In 
comparison to literature where a specific solar irradiance data set is used, the research further contributes to 
literature by considering different measured solar irradiance datasets. These datasets include; global beam direct 
solar irradiance (GSR), diffused solar irradiance (DSR), daily average solar radiation flux at the surface normal 
to the direction of the sun (DNI), global horizontal irradiance measured from silicon pyranometer  (GHISil), dif-
fused horizontal irradiance from rotating shadowband irradiometer  (DHIRSI), and global horizontal irradiance 
measured from thermopile pyranometer  (GHIpyr). These are useful for solar photovoltaics, solar thermal, solar 
heliostat, solar rooftop, and other solar technology applications.

This study seeks to determine the AI model that has a consistent accurate predictive performance for solar 
irradiance measured with various methods in different locations. Therefore, the datasets used in this study have 
been collected from 13 specific locations across six African countries. The viability of different AI models, when 
used for solar radiation prediction in different locations and considering various datasets as well as timesteps, is 
analysed in this study. One of the research questions that this study seeks to address is the possible sovereignty 
of an AI model for solar radiation estimation tasks considering differences in location, timestep, and dataset. 
While developing (African) countries has been used as the case study for the implementation of the AI algo-
rithms developed in this study, the applicability of this models is not limited to developing countries only. They 
can be use in developed countries also however, some of the training parameters may require adjustments for 
the supervised AI algorithm. The rest of the article is organized as follows; a brief introduction to all the models 
considered in this study as well as the model development are explained in “Machine learning and deep learn-
ing algorithms” and “Data acquisition and preparation” sections. The performances of the models are presented 
in “Results” section and a brief discussion of these performances is stated in “Brief summary and discussion” 
section. The entire article is concluded in “Conclusions” section.



4

Vol:.(1234567890)

Scientific Reports |         (2022) 12:9644  | https://doi.org/10.1038/s41598-022-13652-w

www.nature.com/scientificreports/

Author/References Case study Research objective Models used Performance of models

Sun et al.16 Beijing China
Improvement of the performance of 
solar radiation forecasting and compari-
son with other models

Decomposition-clustering-ensemble 
learning

NRSME = 2.96%
MAPE = 2.83%
Directional forcast = 88.24%

Belmahdi et al.17 Tetouan city Morocco Building models that can forecast 
monthly mean daily global radiation Time series (ARMA and ARIMA)

ARIMA (0.2,1) gave a better perfor-
mance than ARMA (2,1) with 64.05% 
and 24.32% improvement respectively

Blal et al.18 Adrar Algeria

Statistically comparing the predictive 
models used for daily average global 
radiation estimation and hourly global 
solar radiation study on the horizontal 
surface under different weather condi-
tions (Studying solar radiation under 
various conditions of climate)

Six Ambient temperature models
Model (M4) gave  R2 of 0.8753 being best
M1 = 0.7099
M5 = 0.8193

Heng et al. 19 United States
The model used for forecasting with 
accuracy and stability objective for 
global monthly average radiation

nondominated sorting-based multiob-
jective bat algorithm (NSMOBA) Gave satisfactory accuracy and stability

Kisi et al. 20 Turkey Connectionist system evolution for daily 
scale prediction of solar radiation

Dynamic evolving neural-fuzzy infer-
ence system (DENFIS)

Provided better accuracy in monthly SR 
prediction than the benchmark models

Ghimire et al. 21 Australia Integration of CNN and LSTM for short-
term GSR prediction

hybrid model based on a convolution 
network CLSTM

Performed better than other DL models 
and the benchmark models

Rodríguez-Benítez et al. 22 Spain

Extension of a temporal horizon 
of ASI-based nowcast to match the 
satellite-based prediction. Increasing the 
temporal latency and resolution of the 
satellite-based nowcasting to match that 
of ASI-based prediction

all-sky imager (ASI) model
ASIs are preferable to other models since 
it overcomes most challenges that other 
models encounter

Peng et al. 23 Alabama USA

Construction and evaluation of the 
performance of DL models based on 
biLSTM, SCA, and CEEMDAN for 
hourly solar radiation prediction over 
multi-step horizons

deep learning model based on Bi-
directional long short-term memory 
(BiLSTM), sine cosine algorithm (SCA), 
and complete ensemble empirical mode 
decomposition with adaptive noise 
(CEEMDAN) which can be called CEN-
SCA-BiLSTM model

CEN-SCA-BiLSTMmodel gave the 
smallest RMSE, MAE, MASE, and 
largest R when compared with other 
competitors

Campo-Ávila et al. 24 Spain Prediction of one day ahead hourly 
global solar radiation

A model that combines clustering, 
regression, and classification RMSE less than 20%

Lai et al. 25 Brazil
Hourly solar forecasting with Feature 
Attention-based Deep Forecasting 
(FADF)

A deep learning-based hybrid method
RMSE 11.88% on Itupiranga dataset and 
12.65% on Ocala dataset when compared 
with smart persistence

Guermoui et al. 26 Algeria
multi-step ahead forecasting of daily 
global and direct horizontal solar radia-
tion components in the Saharan climate

Weighted Gaussian Process Regression 
(WGPR),

RMSE = 3.18 and  R2 = 85.85% for  10th 
daily global horizontal radiation and 
RMSE = 5.23 and  R2

Gürel et al. 15 Turkey Using four different models to predict 
monthly average daily global SR data ML algorithm-based models R2 = 0.952 ~ 0.993

RMSE and MAPE less than 10%

Zhuo et al. 27 China
To simultaneously predict the multi-time 
scale (daily and monthly mean daily) 
and multi-component (global and dif-
fuse) solar radiation

combined multi-task learning and 
Gaussian process regression (MTGPR) 
model

Average  R2 ranges 0.19 ~ 0.48%, RMSE 
improved 0.57 ~ 0.65% and rRMSE 
improved 0.51% ~ 0.52% for daily 
prediction. For monthly prediction the 
range is 2.62 ~ 2.65%, 5.50 ~ 12.07% and 
5.21 ~ 12.08% respectively for  R2, RMSE 
and rRMSE

Makade et al. 28 India

Developing a comprehensive review of 
the works done by Indian researchers in 
solar radiation modeling and carrying 
out a statistical analysis of the developed 
solar radiation model

GSR Model M-78
MPE varies between -8.1186% and 
6.9383% and the coefficient of determi-
nation between 0.6345 and 0.9616

Prasad et al. 29 Australia

Development of a hybrid model that 
handles issues with nonstationarity in 
multiple predictor inputs utilizing a self-
adaptive approach while giving a good 
accuracy of the forecast of short-term

multivariate empirical mode decomposi-
tion method (MEMD) – Singular Value 
Decomposition (SVD)- Random Forest 
(RF) model (hybrid MEMD-SVD-RF 
model)

Generated a better and more reliable 
forecast
Average  R2 of 0.98 and RMSE of 1.05

Z. Pung et al. 30 Alabama US
To study the performances of DL 
algorithms for the prediction of solar 
radiation

An ANN model and a recurrent neural 
network (RNN) model

RNN model improved by 47% in NMBE 
and 26% in RMSE

Puah et al. 31 Malaysia
Producing a comparable forecast perfor-
mance in relation with the Supervised 
Learning

Regression Enhanced
Incremental Self-organising Neural 
Network (RE-SOINN)

Achieved higher accuracy when com-
pared to others
MASE = 0.65755
RMSE = 73.945

Narvaez et al. 32 Colombia
Develo[ping accurate site-adaptation as 
well as solar radiation model using ML 
and DL

ML-based model 38% better performance than the tradi-
tional methods

Karaman et al. 33 Karaman Turkey
Using different activation functions to 
obtain the best response from ELM and 
ANN after their performance has been 
compared

extreme learning machines (ELM) and 
Artificial Neural Network (ANN)

ELM has better performance with 
RMSE = 0.0297 and Performance of 95%

Continued
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Machine learning and deep learning algorithms
Recent research have focused on forecasting renewable energy resources 45–47, because of the growth in global 
RES and the integration of such sources into the electrical grid throughout the world. Recently, the projection 
of renewable energy production, notably wind and solar energy, has received considerable attention due to its 
considerable influence on operating and managing power management choices. Precise forecasts for the produc-
tion of renewable energy-based systems are essential to ensure the continued dependability of the grid and to 
decrease energy market and energy systems risks/costs. Due to nature, the energy generated by solar and wind 
energies will always be unstable. Hence, the need to adopt sophisticated methodologies for the forecast of energy 
systems’ production. The methods adopted and compared in this study for solar energy resources forecast may 
be divided into 4 categories: physical methods, statistical models, techniques, and hybrid ways of artificial intel-
ligence 48. These are introduced in the following subsection.

Random forest regression. One of the most common machine learning methods is a random forest (RF) 
algorithm 49. This is a controlled approach that employs a regression method for learning. The learning approach 
integrates various machine learning algorithms in order to generate predictions that are more accurate than a 
single model. In the course of training and determining the mean class of the classes, a random forest operates 
by building many decision trees as a forecast for all the trees 50,51. Creating several trees for different subsets of 
the data points balances the prevalent overfitting problem, minimizes variance, and ensures improved accuracy. 
The RF algorithm is shown in Algorithm 1 while a sample of the RF tree is illustrated in Fig. 1.

Author/References Case study Research objective Models used Performance of models

A˘gbulut et al. 34 Turkey
Prediction of daily global solar radiation 
from 4 different provinces having diverse 
solar radiation distribution

support vector machine (SVM), artificial 
neural network (ANN), kernel and 
nearest-neighbor (k-NN), and deep 
learning (DL) models

R2 ranges from 85.5%—93.6%
MAPE 15.92%—30.24%
rRMSE 14.10%—25.19%

Al-Rousan et al. 35 Jordan Reviewing different prediction methods 
employed in predicting solar radiation

Multi-layer perceptron (MLP), Support 
Vector Machine Regression (SVMR), 
and Linear regression (LR)

R2 = 0.9513, 0.8477 and 0.8477 respec-
tively for MLP, SVMR and LR while
MAPE = 0.0001, 0.0418 and 0.0434

Sunhra Das 36 India To carry out short term solar forecasting 
for different days of the year

A model for prediction of solar radiation 
on tilted surface

RMSE = 8.9, 6.7, and 8.3 for Jan 29th, 
Apr 1st, and Oct 6th respectively

Bounoua et al. 37 Morocco
Evaluation of the potential of three 
ensemble methods based on regression 
trees (Bagging, Boosting, and Random-
Forest) in estimating the daily GHI

empirical and machine-learning 
methods

Random Forest method with the fol-
lowing result R: 87.53–96.20%; nMAE: 
5.84–11.81%; nRMSE: 7.85–15.33% 
outperformed others

Shadab et al. 38 India

extending the ARIMA models for spatial 
forecasting of monthly average insola-
tion as well as finding the most suitable 
location for solar power projects based 
on the forecasts

Seasonal ARIMA (SARIMA) model
R2 = 0.9293, Root Mean Square 
Error = 0.3529, Mean Absolute 
Error = 0.2659 and Mean Absolute 
Percentage Error = 6.556

Srivastava et al. 39 India
forecasting of the 1-day-ahead to 6-day-
ahead solar radiation levels using four 
ML models

MARS, CART, M5 and random forest 
models

Random Forest provided the best result 
while the Cart has the worst result. From 
best to worst we have Random For-
est > M5 > MARS > CART 

Table 1.  Summary of recent literature on solar radiation forecast/prediction.

Figure 1.  Sample of a random forest tree.
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Algorithm 1 Random Forest Algorithm

Start

      Select from the training set a random k data point

      Construct a decision tree for the k data points

      Select N of the trees you would want to construct

      Repeat

                  Steps 1 and 2

      Make a prediction of the values of y for the data point for each of your N-trees and assign the new data point to the average across the 
whole number of y-values anticipated

End

The RF algorithm’s predictive value is provided by the mathematical equation 52;

where Y  ’s mean values are from n,N , andTn(x). Input parameters in X indicate the number of random forest 
decision trees in N. The equation specifies the average number of Tn, n = 1, 2, ...,N decision trees given the input 
X in order to provide a solid forecast.

With the RF-Method, forecasts can be obtained and forecasting parameters identified (which are related to 
the response) via RF’s integrated measurement of variable importance. This may also be taken into consideration 
and enhanced prognostics can be produced. Specifically, RF is adopted in this study for solar radiation forecast 
due to its use in existing works of literatures 53. For instance, in three distinct sites with varied API conditions in 
China, Sun et al. 54 utilize the random forest to estimate solar radiation given a single, accessible meteorological 
variable and air pollution index.

Polynomial regression. Polynomial regression is a specialized linear regression in which the data (having 
a curvilinear connection between the goal and the independent variables) are multinomially equated. Polyno-
mial ensures a proper approximation of dependent and independent variables across a wide range of curvatures. 
The value of the target variable does not vary uniformly with regard to the predictor in a curvilinear relationship 
(s). The linear regression equation (Eq. (2)) with one predictor is transformed to polynomial equation of degree 
n in polynomial regression as Eq. (3).

where Y  is the goal, x is the predictor, θ0 is the bias, and θ1 is the weight of the equation of regression.

Here θ0 is the bias, θ0, θ1, . . . .θn are the weight of the polynomial regression equation and n is the polynomial 
degree. Since hourly solar radiation profile follows a polynomial path, this AI algorithm is modelled in this study 
for the forecast of solar irradiance in accordance with the literature 55.

Multi-linear regression. This AI algorithm employs numerous explanatory factors to predict the result of 
the response variable. The objective of multiple linear regression (MLR) model is to describe the linear connec-
tion between the (independent) explanatory and the (dependent) responsive variables. The connection of many 
independent variables (x1, x2, x3, x4) and a dependent variable  

(

ŷ
)

 is explored and the first order of regression 
function employed in this investigation is presumed to be;

where b0 is the y-axis cut-off point for the adjusted regression curve, b1 is the first variable of guess x1 , and b2 is 
the first variable of guessing x2 . The independent variables; wind speed, temperature, humidity, and pressure ( x1 , 
x2 , x3 and x4 ) and dependency variable ( ̂y ) solar radiation are correspondingly used as a in this study.

Decision tree regression. Decision trees are hierarchical non-parametric structures, which  build both 
regression and classification models in a tree shape. A decision tree operates recursively and splits the original 
input space constantly into sub-sets to accumulate instances in smaller areas 56. The decision-making tree is 
gradually created during the breaking process, and a final decision-making tree with leaf nodes is generated. 
A blade node shows a choice on a discreet or ongoing objective. The ID3 and C4.5 decision tree algorithms, 
invented by Ross Quinlan, are frequently utilized in literature 57. A novel application of decision tree classifier in 
solar irradiance prediction was presented by Singh et al. 58. In this work, the technique of the C4.5 decision tree 
regression is used because of the continuous nature of the sun irradiance values 59. In the form of a model regres-
sion tree, a predictor space is divided into j regions 

(

R1,R2,R3 . . . ..RJ
)

 is depicted as Fig. 2. For all instances in 
the same region, the same prediction is made by the means of answers (for all training examples in the region). 
The basic goal throughout the construction of a decision tree regression model is to locate regions 

(

R1, . . . ..RJ
)

 
which minimize the remaining square sum.

(1)Ŷ =
1

N

N
∑

n=1

Tn(X)

(2)Y = θ0 + θ1x

(3)Y = θ0 + θ1x + θ2x
2
+ θ3x

3
+ . . .+ θnx

n

(4)ŷ = b0 + b1x1 + b2x2 + b3x3 + b4x4
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XG BOOST. eXtreme Gradient Boosting (XG-Boost or XGB) is one of the most recent machine learning 
algorithms that is very good for 1D dataset. In terms of precision and speed, it has the best performance for most 
tasks 60. It runs in parallel and distributed computing, thereby achieving a higher learning rate in comparison 
with other set algorithms. XG-boost is a modified algorithm for generalized gradient boosting and it creates a 
distinct type of tree from the boost algorithm for gradients. The split may be found using a similarity score and 
gain in XG-boost. The regulating parameter is used to prevent the split from overfitting. When the parameter 
regularization is nil it falls into the standard technique for gradient boosting. Two more approaches avoid over-
fitting together with regularization. One is the retraction scales that change the weight by a factor η at each step. 
Its goal is to decrease an individual tree’s effect on the model. The second method is to employ subsampling of 
columns, which similarly improves training time. Another essential step is that an approximation method is 
used to identify the optimum division 61.

Long short-term memory (LSTM). For the resolution of the disappearing and exploding gradient prob-
lem, LSTM offers memory blocks instead of traditional recurrent neural network (RNN) units 62. It then adds a 

Figure 2.  Schematic representation of regression tree.

Figure 3.  The internal structure of long short-term memory.
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cell state to stored long-term states (Fig. 3) which is the main difference between LSTM and the vanilla RNN. An 
LSTM network can recall and link prior data to current data 63. Three gates are integrated, including the input 
gate, "forgetful" gate, and output gate where xt references the current input; new and predecessor cell states are 
referred by Ct and Ct−1 , respectively; and ht and ht−1 respectively the current and preceding cell outputs. The 
LSTM input gate principle is expressed in the following forms:

where Eq. (5) is utilized to employ a Sigmoid layer to pass hi−1 and xt to determine the required information. 
Then hi−1 and xt passing through the tanh layer in Eq. (6) is used to obtain fresh information. In Eq. (7) Wi refers 
to a sigmoid output and 

⌣

Ct = a tanh output, the present moment information ( 
⌣

Ct−1 ) and the LSTM Information 
( 
⌣

Ct ) is merged into 
⌣

Ct . Here, Wi indicates weight matrices and bi is the LSTM gate bias.
The forgetful gate of the LSTM then permits selective information transmission through a sigmoid layer and 

a dot product. The choice of forgetting the associated information of an earlier cell with some likelihood, with 
Wf  referring to the weight matrix,  bf the offset and σ is the sigmoid function, is done using Eq. (8).

The output gate of the LSTM determines the state of the following inputs: ht−1 and xt in Eq. (9) and Eq. (13) 
respectively. The final result is acquired and multiplied through the vectors for state decisions which transmit 
through the tanh layer new information,  Ct,

where W0 and b0 are the weighted matrices of the output gate and LSTM bias respectively.

Artificial neural network (ANN). The ANN is an information processing model that imitates biological 
neural network activities and structures found in human brains 64. This AI model is used to solve linear and 
nonlinear regression tasks. Figure 4 illustrates a basic neural network, with 2 input neurons, X and Y, 3 neurons, 
and 1 neuron. For the desired offset, the threshold component is utilized. The weights wi,j where the indexes of 

(5)it = σ(Wi ∗ [hi−1, xt]+ bi)

(6)
⌣

Ct = tanh(Wi ∗ [hi−1, xt]+ bi)

(7)Ct = ftCt−1 + it
⌣

Ct

(8)fi = σ
(

Wf ∗ [ht−1, xt]+ bf
)

(9)Ot = σ(W0 ∗ [ht−1, xt]+ b0)

(10)ht = Ot tanh (Ct)

Figure 4.  Artificial neural network architecture.
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the neurons are iandj are aiandbi . To compute the weighted amount, first X and Y are multiplied by their weights. 
The result is then added to a partial function and supplied into an activation. Every neuron computed in the 

hidden layer, hj , is calculated with hj = s

(

∑

i
wi.j ∗ hi

)

 , where S is the activation function. The ReLU Rectified 

Linear Unit (ReLU) function, S(x) = max(0, x) is used for hidden layer activation and nonlinear activation while 
the Sigmoid function S(x) = 1

1
+ e−x is applied on the output layer to model the network’s probability distribu-

tion. ANN is one of the most predominant supervised learning AI algorithm for solar radiation forecast in lit-
erature 65–67, hence, its adaptation to the dataset in this study.

Convolutional neural network (CNN). This model is a special kind of multilayer perceptron, however, 
unlike other deep learning architecture, the basic neural network is unable to learn complicated characteristics. 
In several applications 68, CNN algorithms have shown great performance in the categorization of images, object 
recognition, and analysis of medical images. However, it has also been used for solar irradiance prediction tasks 
in the existing works of literature 69,70. The basic principle behind a CNN is that local features are obtained from 
high layer entrances and transferred for more complicated features to lower layers (as shown in Fig. 5). CNN 
converts the input data from the input layer into a collection of class scores for the output layer across all linked 
layers. A CNN includes the full connecting layers, the pooling, and the convolutional layers.

A collection of kernels 71 is used to determine the feature mappings tensor in the convolutional layer. These 
kernels converge a whole input with ’stride(s)’ to make a volume in its dimensions 72. After the convolutional layer 
is employed for the processing, the dimensions of an input volume shrink. Therefore, zero-padding 73 is necessary 
for padding input volumes with zeros and maintaining low-level dimensions of an input volume. The function-
ing of the convolutional layer is:

I refers to an input matrix, K  is a 2D filter of size mton, and F is a 2D feature map output. I ∗ K  indicates the 
functioning of the convolutionary layer. The rectified linear unit (ReLU) layer is used to increase nonlinearity 
on feature maps 74. By maintaining the threshold input at zero, ReLU calculates the activation. The following is 
expressed mathematically:

Downsampling of a particular dimension is performed by the pooling layer 75, in order to minimize param-
eters. The most frequent way of max-pooling in the input region generates the maximum value. The FC layer 76 
is utilized as a classifier that decides on the characteristics derived from the convolutions and pooling layers. A 
CNN aims to learn more about data by use of convolutions. For CNN predictive models it is necessary to collect 
data from convolutional layers while regression work is carried out in the last fully connected layer 77. In this 
study, the Convolution-1D (Conv1D) which is most suitable for text input data is implemented to convolve the 
input data points over temporal or single spatial dimensional tensors.

Hybrid CNN-ANN architecture. The network CNN-ANN combines both networks with the extraction 
of functionalities. CNN uses kernel technology to upgrade filter weights to understand how the training data 
are represented. The model contains a single CNN layer with 5 * 2 * 2-stride filters that complement the input 
data. The model of CNN contains hidden neuronal layers depending on the model for a specific dataset. The 
output of the CNN layer is flattened so that the complimentary ANN model may be supplied. The ANN network 

(11)F
(

i, j
)

= (I ∗ K)
(

i, y
)

=
∑∑

I
(

i +m, j + n
)

K(m, n)

(12)f (x) = max(0, x)

Figure 5.  Convolutional neural network architecture.
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also  consists of hidden layers of neurons and a one-node output layer. Both models are formed to compute the 
relevant derivatives as a single end-to-end network with a loss function as a cross-entropy. Adam optimizer, a 
learning rate of 0.001, and a training lot size of 512 were used for different epochs. Figure 6 illustrates the archi-
tecture of the model. The neurons in this hybrid system can be summed up as a result of the secret layers.

Every layer in a 1-D convolutional neural network mathematically extracts patterns in Gi , as it pertains to 
other input variables using Eq. (13) 21.

Wk is the kernel weight associated with the  kth feature map, f represents the activation feature, and * is the opera-
tor. Equation (13), where c is the output hkÿ ., can be rewritten under Eq. (14).

A flattened layer is utilized in the hybrid model to transform the matrix into a unique vector (Eq. (15)), so 
that the matrix may be adapted to the ANN model input.

ANN model is used as input for the output of the flattened layer (Z) (Eq. (16)).

where y(x)  has been predicted Gi is the weight which links neurons to the input layer wj

(

p
)

 , the variable Zj
(

p
)

 
is the discrete input variable t  and the neuronal bias c , of the input variable, L(.)  is the hidden transfer function.

Hybrid CNN-LSTM-ANN architecture. The threefold hybrid model has been created to compare the 
effectiveness of the model in extracting the data by complementing each other in order to understand short and 
long-term relationships. As shown in Fig. 7, a recurrent neural network is added for this hybrid model which is 
running in cycles and is extremely proficient in sequence analysis. The combined LSTM helps to maintain the 
required data from earlier concealed countries compared to the CNN-ANN model. The input data are supplied 
with neurons to the hidden layer(s) 1D CNN, and then sent to the LSTM network in hidden states and ultimately 
the densely linked network that generates the overall model forecast. For this hybrid, the ANN model consists of 
different layers of neurons depending on the data set. The architecture of CNN and ANN is similar to the hybrid 

(13)hkÿ = f

(

(

Wk
∗ x

)

ij
+ bk

)

(14)q = f

(

(

Wk
∗ x

)

ij
+ bk

)

(15)Z = f
(

q
)

(16)y(x) = L





N
�

j=1
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�
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�
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�
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�
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Figure 6.  Hybrid CNN-ANN Architecture.
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CNN-ANN concept mentioned above. This model contains fundamental computations integrated with the syn-
thesis of neurons in the hidden layers of a hybrid model. This is described in four different phases 78.

Phase One: The LSTM model determines the information that is thrown away from the ft forgotten gate in 
Eq. (16), according to the hidden state  ht-1, and the new input  qt is modeled with Eq. (20).

where  Wf is the matrix weight, the logistic sigmoid function is σ(. . .)  and the bias function is bf .
Phase Two: The information stored in the cell state is chosen in this step. There is also a new cell candidate 

( ̃Ct ) created by the ’input gate’ it is likewise scaled.

The hyperbolic tangent function in Eq. (18) is Tanh (…).
Phase Three: A combination of the earlier cell state Ct-1 and C̃t . will update the new cell Ct. ft is affected and 

is also scalable by it. in the previous cell.

Phase Four: The final step is to divide the output into two stages and define the resulting cell state by creating an 
ot"output gate." The tanh function triggered Ct is filtered by ot . The outcome is the desired output ht

The flattening layer transforms the matrix (Eq. (22)) into a single vector for this hybrid model.

ANN model is used as input for the output of the flattened layer (Z) (Eq. (16)).

Data Acquisition and Preparation
The solar radiation dataset for this research is collected from three different databases namely;  TMY79, SARAH 
80, and WB-ESMAP81. These datasets have been measured for different and nine various specific locations within 
these countries. The specifics (including longitude, elevation, and latitude) of the locations from which these 

(17)ft = σ
(

Wf ×
[

ht−1, qt
]

+ bf
)

(18)C̃t = tanh
(

WC ×
[

ht−1, qt
]

+ bC
)

(19)it = σ
(

Wi ×
[

ht−1, qt
]

+ bi
)

(20)Ct = ft ∗ Ct−1 + it ∗ C̃t

(21)ot = σ
(

Wo ×
[

ht−1, qt
]

+ bo
)

(22)ht = ot × tanh(Ct)

(23)Z = f (ht)

Figure 7.  Schematics of the Hybrid CNN-LSTM-ANN Architecture.
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datasets were measured are summarized in Table 2. Since various solar irradiance types are considered in this 
study, the data timestep for the datasets also varies.

Training and testing of the models. The proposed and compared artificial intelligence (AI) models 
can be trained using different data sizes. While the hourly solar radiation prediction based on TMY considers 
12 years of hourly data, 34 years of data is used for daily solar irradiance prediction. For the WB-ESMAP data 
which considers the prediction of solar irradiance with the timestep being minutes, 2 years of data were used for 
training/testing and the dataset summary is presented in Table 3. Also, for all the case studies, 90% of the data 
are used for training while the remaining 10% are the test dataset. The countries considered for the GSR task 
include Algeria, the Central African Republic (CAR), South Africa (SA), and Egypt. While Nigeria is considered 
for the daily average DNI task and hourly DSR task, Senegal is the only country considered for  DHIRSI,  GHISil, 
and  GHIpyr tasks (Table 2).

Since the dataset varies based on the database it was extracted from, the input layers of the dataset also dif-
fer. For the datasets from all the databases, three input nodes namely year, month, and day are constant. All 
the AI models designed for the TMY dataset use an input layer of 7 nodes and these nodes represent the input 
parameters. In addition to the 3 constant nodes for all the datasets, the other TMY input nodes are hour, ambient 
temperature, wind speed, and sun elevation. Also, the input layer of the models designed for solar irradiance 
prediction with the SARAH dataset has (1 node in addition to the aforementioned 3 nodes) a total of 4 nodes. 
The additional node is the daily sunshine duration. Furthermore, the AI models based on the WB-ESMAP 
dataset consider an input layer with 10 nodes. These nodes (input parameters) are wind speed, wind direction, 
precipitation, wind speed, air temperature, relative humidity, barometric pressure, and the other constant 3 
nodes (Table 3).

Model implementation and evaluation metrics. Since these AI models are designed for African 
(developing) countries, the selection of the number of hidden layers and their corresponding neurons were 
strategically optimized to ensure fast computation, and optimal convergence, and to avoid model over-fitting. 
All the AI regression models have been built using the Tensorflow and Keras Application Programming Interface 
(API) and the mean square error (MSE) in Eq. (24) has been adopted as the loss function while (ReLU) is used 
as the (nonlinear) activation function. For the deep learning models, the feedforward computation is completed, 

Table 2.  Location details of research dataset.

Country Area Longitude (decimal degree) Latitude (decimal degree) Elevation (m) Timestep_prediction task

Algeria Tamarasset 4.679 24.072 874 hourly_GSR

Nigeria Borno 13.427 11.908 308 hourly_DSR

Central African Republic (CAR) Vakaga 22.508 9.826 494 hourly_GSR

Nigeria Abuja 7.4913 9.0723 476 daily_DNI

Senegal Touba  − 15.9196 14.773 37 minutes_  DHIRSI, minutes_  GHISil, minutes_ 
 GHIpyr

Nigeria Akure 5.19 7.25 396 daily_DNI

Egypt Mut 28.466 24.475 332 hourly_GSR

Senegal Fatick  − 16.4135 14.3675 8 minutes_  DHIRSI, minutes_  GHISil, minutes_ 
 GHIpyr

South Africa (SA) Northern Cape 20.464  − 29.186 874 hourly_GSR

Table 3.  Data training and test set summary.

Database TMY SARAH WB-ESMAP

Type of Solar Irradiance GSR (global beam direct solar irradiance in W/
m2), DSR (Diffused solar irradiance in W/m2)

DNI (daily average solar radiation flux at the sur-
face normal to the direction of the sun Wh/m2)

DHIRSI (Diffused Horizontal Irradiance in W/m2), 
 GHISil (Global Horizontal Irradiance from silicon 
pyranometer in W/m2),  GHIpyr (Global Horizontal 
Irradiance from thermopile pyranometer in W/
m2)

Data timestep Hourly Daily average Minutes

Data size 12 years 34 years 2 years

Data size (100%) 105,192 × 7 12,670 × 4 566,251 × 13

Training dataset (90%) 94,672 × 7 11,401 × 4 509,624 × 13

Test dataset (10%) 10,517 × 7 1266 × 4 56,624 × 13

Input parameters Year, month, day, hour, sun elevation, ambient 
temperature, wind speed at 10 m Year, month, day, sunshine duration

Year, month, day, hour, minute, air temperature, 
relative humidity, wind speed, wind direction, 
calculated wind speed, sensor cleaning, precipita-
tion, Barometric pressure
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resulting in the model’s predicted value. This value is compared to the ground truth value or label and the loss 
is computed. Backpropagation is employed to find the derivative of the model parameters and the cost function 
is minimized using the “Adam” optimizer. All the AI models were implemented in a Python environment (via 
Jupyter notebook) which runs with a Core i7, 2.20 GHz system with 16 GB RAM, and GTX1060 6 GB Graphics 
card.

To have the same basis for comparison, the three most common evaluation metrics for numerical AI tasks 
are adopted in this study to evaluate the performance of all the models. These include root mean square error 
(RMSE), mean absolute error (MAE), and correlation coefficient (r). These metrics were chosen based on their 
adoption in (solar radiation prediction) existing works of literature (in developing countries) 6,30,82. The math-
ematical models of the following metrics are:

where Gm
i  is the measured value and Gp

i  represents the predicted value, and < Gm
i >/< G

p
i > are the average 

values of Gm
i  and Gp

i  respectively.

Results
In this study, the performance of 10 different artificial intelligence models has been compared for various solar 
irradiance prediction tasks in some selected developing (African countries). While most studies in existing 
literature have only focused on the hourly forecast of various solar radiation parameters, this study furthers 
the knowledge in literature by considering different timesteps namely minutes, hourly, and daily. Various solar 
irradiance parameters (from different measurement techniques) were also considered to highlight the intrinsic 
attention to detail of the AI models. Considering the technological developmental status of these countries, the 
models were built to be as simple as possible. In this section performance of all the AI models is discussed. The 
discussion is presented in three subsections following the timesteps of the solar irradiance parameters.

Daily average direct normal irradiance prediction. The average daily solar irradiance prediction task 
considers two locations (namely Akure and Abuja) in Nigeria. Also, the specific solar parameter considered is 
direct normal solar irradiance (DNI) and this is integral to the performance/ development of many solar-based 
technologies. The number of hidden layers (as well as the number of neurons in each hidden layer) in each AI 
model is summarized in Table 4. Also, the optimal number of training epochs and training batch size for each of 
the models are presented in the same table. This highlights the simplicity of these models and their adaptability 
to the targeted developing countries.
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Table 4.  Optimal AI training parameters for daily DNI task. The number of neurons in the hidden layers of 
the ANN models are written in bold italic; LSTM models in bold; CNN models in italics.

Location Model No. of hidden layers, [No. of neurons in each hidden layer] Batch size Epoch

Nigeria_Abuja Daily DNI

ANN 3, [200, 200, 50] 128 100

CNN-ANN 5, [150, 150 (), 150, 150] 512 50

CNN-LSTM-ANN 3, [100, 100, 100] 512 100

CNN 2, [150, 100] 512 200

LSTM 2, [100, 100] 512 100

Nigeria_Akure Daily DNI

ANN 3, [200, 200, 100] 128 100

CNN-ANN 5, [100, 32 (), 100, 32] 512 50

CNN-LSTM-ANN 3, [100, 100, 100] 512 100

CNN 2, [150, 100] 512 100

LSTM 2, [150, 100] 512 50
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Furthermore, the performance of all the models based on the three evaluation metrics used in this study is 
tabulated in Table 5. Specifically, for Abuja_DNI prediction, two models (DTR and MLR) were found unsuit-
able for this AI task. This is due to the high RMSE and MAE as well as the low r-value (Table 5). In this study, 
the models were tasked to forecast the daily average DNI for 3.4 years and the forecasted results in comparison 
to the real data are compared in Fig. 8a. However, a more detailed pictorial representation (in Fig. 8b) of the 
forecasted result showed the inadequacies of MLR and DTR. While the performances of ANN, CNN-ANN, and 
LSTM are quite similar, the most suitable AI models for the Abuja_DNI prediction tasks are CNN-LSTM-ANN 
and XGB. However, XGB is preferable due to its unsupervised learning characteristics and its fast computational 
time when compared with CNN-LSTM-ANN.

It is also noteworthy that XGB has the least MAE and RMSE (40.78282 W/m2 and 53.73310 W/m2 respec-
tively) as well as the least r-value (0.800087) as highlighted in Table 5. The new hybrid deep learning CNN-
LSTM-ANN model presented in this study is a viable alternative to XGB as the performance of this model 
differs slightly. While the CNN-LSTM-ANN r-value is 0.79643, the RMSE and MAE are 41.48851 W/m2 and 
24.68782 W/m2 respectively. The close proximity of this model results (forecasted DNIs) to that of the real data 
in Fig. 8b further highlights its potency.

The AI models’ performance for the same task considering another location (Akure_DNI) has a similar 
pattern to its corresponding Abuja_DNI AI models. Although the only AI model that seems unsuitable for this 
task is DTR, its performance based on the evaluation metrics is still higher when compared to the Abuja_DNI 
task (Table 5). The difference in model performance between Abuja_DNI and Akure_DNI prediction tasks 
can be attributed to the solar distribution in these locations. Akure as a location has a more distributed daily 
average DNI when compared with Abuja (as seen in Fig. 9a as compared to Fig. 8a), hence the high predictive 
performance by all the AI models.

While all the models (with the exception of DTR) recorded a good performance for the Akure_DNI predic-
tion task, the best models for this particular task are ANN and XGB. The r-value, RMSE and MAE for these 
models respectively are 0.948073, 25.14591 W/m2, and 19.10983 W/m2 for ANN; 0.949997, 24.68782 W/m2, 
and 18.52771 W/m2 for XGB. The supervised learning feature of ANN creates room for further improvement 
of the model (especially when applied in other locations), however, the ANN model overfitting problem should 
be avoided. As seen in Fig. 9b, the forecasted Akure_DNI with XGB has the closest proximity to the real data. 
Therefore, it can be inferred that XGB models are most suitable for DNI daily average DNI forecasting.

Hourly solar radiation forecast. The hourly solar radiation prediction task in this study considers both 
diffused solar radiation (DSR) and global solar radiation (GSR). The AI models developed for this prediction 
task are adapted to five locations across Algeria, Nigeria, CAR, Egypt, and South Africa (Table 2). Due to the 
variation in location, the training parameters for the deep (supervised) learning AI models are optimized to 
achieve the best predictive performance in each location. Hence, the optimal batch size, number of epochs, 
number of hidden layers as well as the number of neurons in each hidden layer for all the deep learning models 
used are highlighted in Table 6.

Table 5.  Daily DNI task evaluation metric summary. Significant values are in [bold].

Location Model MAE RMSE r

Nigeria_Abuja Daily DNI

ANN 42.69876 55.93012 0.781095

CNN-ANN 42.37361 55.36583 0.78609

CNN-LSTM-ANN 41.48851 54.16726 0.79643

CNN 43.09315 56.52858 0.775707

DTR 57.92812 75.50730 0.537954

LSTM 41.90963 55.64409 0.783637

MLR 56.83012 70.92199 0.610802

PLR 41.69277 54.27466 0.795517

RFR 44.44913 58.24596 0.759706

XGB 40.78282 53.73310 0.800087

Nigeria_Akure Daily DNI

ANN 19.10983 25.14591 0.948073

CNN-ANN 20.09575 26.03551 0.944224

CNN-LSTM-ANN 19.91106 25.81706 0.945184

CNN 20.33343 26.26212 0.94322

DTR 26.03864 34.80059 0.897917

LSTM 19.78511 25.75553 0.945452

MLR 21.94447 27.60164 0.937081

PLR 19.87342 26.03768 0.944214

RFR 20.42996 26.92031 0.940247

XGB 18.52771 24.68782 0.949997
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Out of all the 10 AI models presented in this study, six models have a very good predictive performance on 
the evaluation metrics results (Table 7). These models are ANN, CNN-ANN, CNN-LSTM-ANN, CNN, PLR, 
and XGB. The predictive output data (results) in comparison to the real data for all the models over the total test 
period (for all the location that considers hourly solar radiation forecast) is illustrated (in Fig. A) in the appendix 
section of this study. From the results of this study, it can also be deduced that the MLR model is not suitable 
for this specific task (Fig. 10a).

The hybrid CNN-LSTM-ANN AI model proposed in this study recorded the best predictive performance for 
the Algeria_GSR task with an r-value, RMSE, and MAE of 0.977527, 81.101 W/m2, and 30.8785 W/m2. However, 
the close proximity of ANN, XGB, and CNN-ANN are evident in their predictive performance over a period 
of 72 h (Fig. 10a). The performance of the models presented in this study further strengthens existing works of 
literature in this field as the accuracies are higher than some of the reported results in literature.

Unlike Algeria, the hourly solar radiation prediction task for the location in Nigeria considers diffused solar 
radiation (DSR). While the r-values of the AI models developed for this task are comparatively smaller than 
that of the GSR task for other countries, the RMSE and MAE are also smaller. This is due to the statistical and 
meteorological distribution (as seen in Fig. 10b) of DSR when compared with GSR.

It is also noteworthy that most of the existing works of literature in the domain of solar radiation prediction 
worked on GSR hourly prediction. Therefore, this study further contributes to the literature as these AI models 
have been optimized for DSR prediction. While six AI models had high predictive performance when used for 
the Nigeria_DSR task, XGB is the most superior of all the models. As highlighted in Table 7, the RMSE, MAE, 
and r-value for the XGB model, when used for the Nigeria_DSR task, are 49.1553 W/m2, 17.0214 W/m2, and 
0.904992. The predicted data for all the AI models are compared with the real data over a period of 72 h and 
highlighted in Fig. 10b.

The other three countries considered for the solar radiation task in this study are CAR, Egypt, and South 
Africa. The AI models were developed for GSR hourly prediction tasks in this study and the performance 
of each of these models is highlighted in Table 7. The models that are suitable for the CAR_GSR task are 
ANN, CNN-ANN, XGB, and PLR. Considering the evaluation metrics (r = 0.965303, MAE = 45.5573 W/m2, 

a. 3-year ahead AI models’ predictive plot of Nigeria_Abuja_Daily DNI task

b. Nigeria_Abuja_Daily_DNI task day-ahead AI models’ predictive plot for 100 

Figure 8.  (a) 3-year ahead AI models’ predictive plot of Nigeria_Abuja_Daily DNI task. (b) Nigeria_Abuja_
Daily_DNI task day-ahead AI models’ predictive plot for 100.
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RMSE = 95.9444 W/m2 in Table 7) and the predictive output data plotted in Fig. 10c, ANN is the most suitable 
AI model for CAR_GSR forecast task.

It is noteworthy that the high MAE and RMSE values reported in this study for hourly solar radiation are due 
to the GSR unit. While the unit of GSR in this study is W/m2, in most literatures, kW/m2 is the unit adopted for 
GSR, hence the lower MAE and RMSE reported in these studies.

The performance of the AI models for the Egypt_GSR prediction task is the best in this entire study and this 
is due to the high solar intensity and good solar radiation distribution in the location chosen for this country. 
As seen in Fig. 10d. and Table 7, the most accurate model for GSR prediction in this location is the proposed 
CNN-LSTM-ANN model in this study. The r-value, RMSE, and MAE of the model are 0.987936, 60.49804 W/
m2, and 22.31752 W/m2 respectively and these are the best evaluation metrics considering all the AI models for 
this particular location. Although the performance of XGB is quite similar to the CNN-LSTM-ANN model, the 
supervised learning nature of the model resulted in a better performance when compared to the XGB model. 
It is also worth noting that all the deep (supervised) learning models in this study have the capacity to give an 
accurate prediction of hourly solar radiation.

The last location considered for the GSR prediction (in a developing country context) is in South Africa. The 
performance (considering the r-value) of all the models (except DTR) is very similar for this location. However, 
as illustrated in Fig. 10e, the GSR forecast using the XGB model is the closest to the real data. This model had the 
least RMSE and MAE (91.15934 W/m2 and 32.59973 W/m2 respectively) as well as the highest r-value (0.968881) 
as highlighted in Table 7. The locations selected for the hourly solar radiation tasks in this study have been chosen 
considering data availability and good solar radiation potential. The fast computation speed for all the AI models 
in this study based on the models’ parameters further showcases their potency in application.

Solar irradiance prediction based on minutes timestep. One of the outstanding contributions of 
this present study is the development of AI models to forecast solar irradiance based on minutes timestep. Exist-
ing works of literature have majorly focused on the hourly solar irradiance prediction, however, the knowledge 

a . 3-year ahead AI models’ predictive plot of Nigeria_Akure_Daily DNI task

b. Nigeria_Akure_Daily_DNI task day-ahead AI models’ predictive plot for 100

Figure 9.  (a) 3-year ahead AI models’ predictive plot of Nigeria_Akure_Daily DNI task. (b) Nigeria_Akure_
Daily_DNI task day-ahead AI models’ predictive plot for 100.
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of solar irradiance minute by minute will further enhance the estimation of energy production from solar-based 
technology. Two locations in Senegal have been considered and three different measurement techniques for each 
location. The optimized training parameters for the deep learning models applied for each task are summarized 
in Table 8.

One of the things noticed for the preliminary training of all the datasets in this category with the AI models 
is that the PLR cannot perform this prediction task. Therefore, nine AI models are considered in this section for 
the solar irradiance prediction task. Generally, the predictive performance of the models (based on the evaluation 
metrics) shows that it is more difficult for the AI models to accurately forecast solar irradiance minute-by-minute 
when compared with its corresponding hourly or daily AI models. The nine AI models were tested by using it to 
forecast the diffused and global horizontal irradiance  (DHIRSI,  GHIpyr, and  GHISil) for 39 days in the two loca-
tions in Senegal. The forecasted results for Senegal_Toubal are plotted against the actual data and illustrated (in 
Fig. B) in the Appendix section. However, a day-ahead forecast is also conducted for Senegal_Toubal with the 
AI models and the results are illustrated in Fig. 11a and b.

Unlike other solar parameters prediction tasks or scenarios in this study (where various models are most 
suitable for different locations/solar parameters), the training/testing of the solar irradiance in this section 
showed that the XGB model is the most suitable in all the locations. As seen in Table 8, the AI models have 
a better performance for  DHIRSI and  GHIpyr in Senegal_Touba when compared to Senegal_Fatick. While the 
XGB model performance for  DHIRSI forecast task in Sengeal_Touba are r = 0.778685, RMSE = 104.911 W/m2, 
and MAE = 69.41538 W/m2, the corresponding best model (XGB) for Senegal_Fatick location are r = 0.727731, 
RMSE = 118.5533 W/m2, and MAE = 82.44148 W/m2 (Table 9). As seen in Fig. 11a, while the CNN-LSTM-ANN, 
LSTM, and ANN models can learn the data part, the proximity of the forecasted data based on the XGB model 
is better for most of the minutes in the day-ahead task. The plotted results in Fig. 11b and c further confirm the 
superiority of the XGB model as it follows the real data pattern.

Brief summary and discussion
Ten AI models have been used as the basis for developing specific algorithms to forecast solar irradiance param-
eters in this study. Considering the under-development and economic status of many developing countries, the AI 
models in this study have been adapted for this solar radiation forecast task in six developing (African) countries. 
It is worth noting that the applicability and the usefulness of the models are beyond developing countries. While 
two locations in Nigeria were considered for the daily average DNI task, another location in the same country is 
considered for the hourly average DSR estimation task. Similarly, two locations in Senegal were considered for 

Table 6.  Optimal AI training parameters for hourly SR task. Significant values are in [bold, italics and bold 
Italic].

Location Model
No. of hidden layers, [No. of neurons in each hidden 
layer] Batch size Epoch

Algeria GSR

ANN 3, [100, 100, 50] 512 100

CNN-ANN 7, [64, 64, 32, (), 100, 100, 50] 512 100

CNN-LSTM-ANN 6, [32, 32, 32, 50, 50, 25] 512 100

CNN 2, [150, 100] 512 100

LSTM 2, [150, 100] 512 15

Nigeria DSR

ANN 2, [100, 50] 512 50

CNN-ANN 3, [64, (), 50] 512 30

CNN-LSTM-ANN 3, [32, 32, 50] 512 30

CNN 2, [150, 100] 512 50

LSTM 1, [100] 512 20

Central African Republic GSR

ANN 3, [200, 200, 100] 512 30

CNN-ANN 7, [32, 64, 32, (), 32, 100, 32] 512 10

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 10

CNN 2, [150, 100] 512 30

LSTM 1, [150] 512 10

Egypt GSR

ANN 3, [200, 200, 100] 128 7

CNN-ANN 7, [32, 64, 32, (), 32, 100, 32] 512 10

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 10

CNN 2, [150, 100] 512 30

LSTM 2, [150, 100] 512 50

South Africa GSR

ANN 2, [100, 50] 512 20

CNN-ANN 3, [64 (), 32] 512 20

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 10

CNN 2, [150, 100] 512 20

LSTM 2, [50, 50] 512 50
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Table 7.  Hourly SR task evaluation metric summary. Significant values are in [bold].

Location Model MAE RMSE r

Algeria GSR

ANN 27.5867 81.9586 0.977041

CNN-ANN 28.7015 82.2420 0.976883

CNN-LSTM-ANN 30.8785 81.1008 0.977527

CNN 44.2957 85.7817 0.974823

DTR 42.5385 119.0289 0.950931

LSTM 41.6829 94.3707 0.969448

MLR 84.9961 126.1137 0.944743

PLR 38.4655 84.0446 0.975843

RFR 35.9412 94.7744 0.96918

XGB 29.7205 82.0912 0.97697

Nigeria DSR

ANN 19.4431 49.3460 0.904212

CNN-ANN 18.8024 49.7114 0.902713

CNN-LSTM-ANN 17.8306 49.8887 0.901976

CNN 19.0929 49.3699 0.904113

DTR 25.6896 65.0833 0.826257

LSTM 18.1817 50.3286 0.900144

MLR 28.3934 54.5166 0.881686

PLR 22.9588 51.2770 0.896125

RFR 19.4016 51.9683 0.893141

XGB 17.0214 49.1553 0.904992

Central African Republic GSR

ANN 45.5573 95.9444 0.965303

CNN-ANN 40.5545 97.6806 0.964012

CNN-LSTM-ANN 44.7466 100.1698 0.962119

CNN 70.8167 123.9785 0.94135

DTR 50.0522 133.0457 0.932132

LSTM 58.4278 118.1977 0.946842

MLR 90.5368 145.9554 0.917715

PLR 46.0691 96.4027 0.964966

RFR 39.9447 100.0757 0.96219

XGB 40.6753 97.3543 0.964256

Egypt GSR

ANN 26.13274 63.6241 0.986649

CNN-ANN 62.8158 62.8158 0.986988

CNN-LSTM-ANN 22.31752 60.49804 0.987936

CNN 41.16630 72.51108 0.982624

DTR 24.54221 80.89737 0.978325

LSTM 28.45273 67.50909 0.984956

MLR 79.57360 118.2226 0.953111

PLR 28.32741 63.60174 0.986659

RFR 20.45168 64.86330 0.98612

XGB 19.78768 61.42671 0.987561

South Africa GSR

ANN 34.67406 93.49844 0.967236

CNN-ANN 34.55688 93.20957 0.967441

CNN-LSTM-ANN 30.73122 92.44526 0.967982

CNN 33.74673 93.20357 0.967446

DTR 41.61991 124.9466 0.940689

LSTM 32.51657 93.07633 0.967536

MLR 38.40439 95.37698 0.965883

PLR 48.50556 97.67873 0.964185

RFR 37.60696 99.28082 0.962978

XGB 32.59973 91.15934 0.968881
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a. Algeria GSR hourly prediction performance plot for three days

b. Nigeria_Borno DSR hourly prediction performance plot for three days

c. CAR GSR hourly prediction performance plot for three days

Figure 10.  (a) Algeria GSR hourly prediction performance plot for three days. (b) Nigeria_Borno DSR hourly 
prediction performance plot for three days. (c) CAR GSR hourly prediction performance plot for three days. (d) 
Egypt GSR hourly prediction performance plot for three days. (e) SA GSR hourly prediction performance plot 
for three days.
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the estimation of solar irradiance  (DHIRSI,  GHIpyr, and  GHISil) estimation task based on minutes timestep. Also, 
four locations in different countries have been used for GSR estimation. In summary, a total of 13 solar irradiance 
estimation tasks were carried out in this study considering 10 AI models for each task.

With the aim to check if there is a universal model for solar parameter estimation in developing countries, the 
results of this study show that various AI models are suitable for different solar irradiance estimations. However, 
the deep learning models (ANN, LSTM, and CNN), the hybrid deep learning models (CNN-ANN, and CNN-
LSTM-ANN) as well as the XGB model has better predictive performance when compared to other models in 
most location. The results for the prediction of solar irradiance in minutes showed that XGB is the best model 
for this task in all the locations considered. Also, despite the change in solar measurement parameters in minutes 
timestep, the performance of the XGB model was relatively suitable for the task. It is, however, noteworthy that 
the AI models had the least predictive accuracy when considering the minutes’ timesteps.

Similarly, the XGB model is the most suitable model for daily average DNI estimation. While PLR and CNN-
LSTM-ANN models had a comparatively good performance for this task, the prediction errors recorded by the 
XGB models are significantly lower. The daily average DNI estimation further shows the novelty of this study 
as the performance of the models for the Nigeria_Akure_DNI task is better in comparison to existing works of 
literature. The evaluation metrics for this specific task are r = 0.949997, RMSE = 24.68782, and MAE = 18.52771.

Deep learning models and XGB models are most suited for the hourly solar radiation task. While the innova-
tive hybrid deep learning model (CNN-LSTM-ANN) proposed in this study is most suitable for GSR prediction 
in Northern African countries, the XGB model reported the best performance for Nigeria and South Africa. Also, 
the hourly solar radiation estimation accuracy is very high, hence it dominant in existing solar radiation research.

From this study, it can also be deduced that some AI models are not applicable for some specific solar irra-
diance tasks. PLR model could not learn any of the minute timestep tasks while DTR models also had a bad 
predictive performance for daily average DNI task. Therefore, these models can be excluded from these specific 
tasks in the future as they are machine (unsupervised) learning algorithms.

d. Egypt GSR hourly prediction performance plot for three days

e. SA GSR hourly prediction performance plot for three days

Figure 10.  (continued)
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Conclusions
Based on the results of this study, all the models presented in this study showed their suitability for various solar 
irradiance prediction tasks. However, the XGB model can be concluded as the best model for solar irradiance 
prediction tasks out of all the developed AI algorithms considered that was considered within the scope of 
this research. This is due to its consistently high performance in all the tasks in the study. Despite the change 
in location and solar parameters, the XGB model had a relatively high performance/accuracy for all the tasks. 
While the results of the models in the study are better than some existing works of literature, the accuracy of the 
forecasted solar irradiance shows that more researches on the use of other AI models (such as reinforcement 
learning models and the developments of new hybrid AI models) are required.

In the future, more research will focus on the accurate prediction of solar irradiance considering the minutes’ 
timestep. While this is the first study to present this (to the best knowledge of the authors), the estimation of 
solar irradiance in minutes will further help in forecasting solar technology’s production accurately. Thereby, 
improving the overall development of the solar energy sector.

Table 8.  Optimal AI training parameters for minute-ahead solar irradiance task. Significant values are in 
[bold, italics and bold Italic].

Location Model No. of hidden layers, [No. of neurons in each hidden layer] Batch size Epoch

Sengal_Touba_DHIRSI

ANN 2, [50 (0.25), 50 (0.25)] 128 20

CNN-ANN 2, [100, (), 100] 512 10

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 10

CNN 2, [50 (0.25), 100 (0.25), 50 (0.25)] 512 10

LSTM 2, [100, 100] 512 10

Sengal_Touba_GHIpyr

ANN 2, [100 (0.25), 200 (0.25)] 128 40

CNN-ANN 2, [64, (), 64] 512 50

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 10

CNN 3, [50, 150, 50] 512 30

LSTM 2, [100, 50] 512 15

Sengal_Touba_GHISil

ANN 2, [100, 50] 128 30

CNN-ANN 2, [100, (), 100] 512 50

CNN-LSTM-ANN 3, [64, 32, 50] 512 15

CNN 2, [100, 100] 512 100

LSTM 2, [100, 50] 512 25

Sengal_Fatick_DHIRSI

ANN 2, [100 (0.25), 50 (0.25)] 128 20

CNN-ANN 2, [100, (), 50] 512 15

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 20

CNN 2, [150, (0.25) , 100, (0.25)] 512 10

LSTM 2, [50, 50] 512 10

Sengal_Fatick  _GHIpyr

ANN 2, [100, 50 (0.25)] 128 50

CNN-ANN 2, [64, (), 64] 512 50

CNN-LSTM-ANN 6, [32, 16, 32, 25, 50, 25] 512 20

CNN 3, [50, 50, 50] 512 35

LSTM 1, [150] 512 10

Sengal_Fatick_GHISil

ANN 2, [50 (0.25), 50 (0.25)] 128 150

CNN-ANN 2, [32, 64, 32, (), 32, 100, 32] 512 10

CNN-LSTM-ANN 3, [32, 16, 32, 25, 50, 25] 512 20

CNN 2, [50, 50] 512 20

LSTM 2, [50, 50] 512 20
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a. AI models’ performance for Sengal_Touba_DHIRSI

b. AI models’ performance for Sengal_Touba_GHIpyr

c. AI models’ performance for Sengal_Touba_ GHISil

Figure 11.  (a) AI models’ performance for  Sengal_Touba_DHIRSI. (b) AI models’ performance for  Sengal_
Touba_GHIpyr. (c) AI models’ performance for Sengal_Touba_  GHISil.
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Table 9.  Minutes timestep SR task evaluation metric summary. Significant values are in [bold].

Location Model MAE RMSE r

Sengal_Touba_DHIRSI

ANN 75.13339 105.4392 0.776129

CNN-ANN 80.79512 115.8425 0.721139

CNN-LSTM-ANN 73.47140 108.9503 0.758587

CNN 79.56680 114.5223 0.728642

DTR 92.30855 146.9156 0.47752

LSTM 71.02970 106.7229 0.769829

MLR 96.01363 123.8949 0.671563

RFR 78.85214 116.3302 0.718326

XGB 69.41538 104.9111 0.778685

Sengal_Fatick_DHIRSI

ANN 86.70663 124.1132 0.696014

CNN-ANN 88.15069 127.3160 0.676376

CNN-LSTM-ANN 84.16451 120.8993 0.714697

CNN 91.46472 127.2874 0.669646

DTR 108.0009 171.3557 0.131339

LSTM 88.8493 123.0459 0.702328

MLR 107.4763 136.7249 0.611829

RFR 88.37136 127.2384 0.676865

XGB 82.44148 118.5533 0.727731

Sengal_Touba_GHIpyr

ANN 124.7351 191.4789 0.818723

CNN-ANN 124.4422 193.0893 0.815315

CNN-LSTM-ANN 123.4759 191.9940 0.817638

CNN 137.6269 199.0598 0.802297

DTR 146.5347 246.9308 0.67041

LSTM 123.6072 192.8609 0.815801

MLR 166.3564 232.1552 0.717882

RFR 123.6086 193.2241 0.815028

XGB 115.2459 176.2756 0.848872

Sengal_Fatick  _GHIpyr

ANN 144.4373 206.8764 0.79105

CNN-ANN 136.5069 201.3097 0.803514

CNN-LSTM-ANN 146.8447 214.7548 0.772475

CNN 164.9992 224.3841 0.748159

DTR 174.1384 288.5589 0.521439

LSTM 154.4912 217.7879 0.765014

MLR 185.4277 255.2237 0.656054

RFR 87.64840 126.4613 0.681721

XGB 82.16708 118.6092 0.727427

Sengal_Fatick_GHISil

ANN 147.8784 203.4149 0.776738

CNN-ANN 139.2311 207.3560 0.772362

CNN-LSTM-ANN 142.4694 206.1089 0.775488

CNN 168.4718 220.0607 0.73864

DTR 176.7949 287.1410 0.484625

LSTM 145.6560 210.7485 0.763697

MLR 178.4968 241.4011 0.673188

PLR - - -

RFR 144.6341 212.2252 0.75985

XGB 128.0217 181.4474 0.831304

Sengal_Touba_GHISil

ANN 124.4958 188.4823 0.801633

CNN-ANN 120.0924 188.7467 0.801006

CNN-LSTM-ANN 119.6005 188.2661 0.802144

CNN 129.8156 188.5900 0.801378

DTR 146.2485 243.1785 0.635061

LSTM 120.0516 188.4371 0.801739

MLR 156.9229 219.7760 0.717001

RFR 119.4386 185.9876 0.807473

XGB 109.5886 167.9214 0.846365
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Data availability
The datasets generated and/or analysed during the current study are available from the corresponding author 
on reasonable request.
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