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ABSTRACT: In recent days, the development of sensor-based
medical devices has been found to be very effective for the
prediction and analysis of the onset of diseases. The instigation of
an electronic nose (eNose) device is profound and very useful in
diverse applications. The analysis of exhaled breath biomarkers
using eNose sensors has attained wider attention among
researchers, and the prediction of multiple disease variants using
the same is still an open research problem. In this work, an
enhanced XGBooster classifier-based prediction mechanism was
introduced to identify the disease variants based on the responses
of commercially available metal oxide-based Figaro (Japan) sensors
including TGS826, TGS822, TGS2600, and TGS2602. The
implemented model secured 98.36% prediction accuracy in
multiclass disease prediction and classification. The homemade one-dimensional metal oxide sensing elements such as ZnO, Cr-
doped ZnO, and ZnO/NiO were integrated with the aforementioned sensor array for the specific detection of the three biomarkers
of interest. This model has attained a classification accuracy of 99.77, 94.91, and 96.56% toward ammonia, ethanol, and acetone,
respectively. And the multiclass disease biomarker classification accuracy of the readymade and homemade eNose prototype models
was compared, and the results are summarized.

1. INTRODUCTION
In recent times, disease diagnostic techniques, especially hand-
held electronic devices like the electronic nose (eNose), have
emerged as an effective noninvasive tool to diagnose the onset
of various diseases.1,2 The development of such devices assists
medical practitioners in narrowing down the gap in the
prediction of diseases and, in turn, provides focused treatment
to the patients.3 Moreover, these devices greatly reduce the
cost and time involved in the prediction and analysis of
diseases.4,5 The eNose device has achieved a prominent
position among such devices in predicting and analyzing the
onset of diseases, such as renal disease, diabetes, vitamin
deficiencies, etc., in a noninvasive manner.2 The recent reports
on eNose-based disease detection systems by analyzing the
presence of biomarkers in the exhaled breath have highlighted
the need for such devices for rapid diagnosis.6

The eNose employs an array of cross-selective gas sensors to
detect the number of VOCs in exhaled breath, but it has not yet
been widely implemented in clinical practice due to the lack of
specificity, standardization, a short-fall on the accuracy,
replication, etc.7 At the same time, researchers have been
continuously working on the development of eNose systems
for asthma biomarker prediction,8 brain cancer detection,9

diabetes analysis,10 cervical cancer classification,11 smoking

detection,12 tuberculosis,13 prediction of pulmonary diseases,14

and so on.
In this context, the present study has focused on the

detection of primary biomarkers of renal disease (ammonia),
vitamin E deficiency/cancer (ethanol), and diabetes (acetone)
using an eNose. According to International Diabetes
Federation (IDF) report 2019, more than 463 million people
suffered because of diabetes, and this number will cross 700
million in the 2040s.15 In India, 88 million people, i.e., 1 in 5
adults, live with this chronic medical condition.16 As per
International Society of Nephrology (ISN) report 2021, 843
million people suffered due to renal-related issues.17 Also, 2
billion people were affected by vitamin deficiencies, which are
associated with major health issues such as cancer, anemia,
infertility, immune impairment, and so on.18 Hence, early
detection and diagnosis of these diseases need to be refined in
order to save human lives.19
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In this background, a custom-made eNose prototype
embedded with a data analysis method has been developed
for diagnosing ammonia, ethanol, and acetone biomarkers. To
enhance the overall performance of the eNose device, various
machine learning (ML) models have been tried. Since the
development of such models poses higher complexities in
handling relationships among the data points and fails to
produce the expected outcome,20,21 adapting newer advance-
ments and fine-tuning model parameters help to optimize the
model performance. In order to demonstrate the viability of the
suggested sensing strategy employing metal oxide-based
composite nanostructures and the ML model, the study
concentrates on the detection and classification of the stated
biomarkers. Hence, in this study, the complex structure of data
sets has been analyzed using the enhanced extreme gradient
boosting (enhanced XGBoost) classifier. In other words, in this
study, the extreme gradient boosting classifier (XGBoost)
model was modified based on the parameters max_depth and

num_leaves (denoted as enhanced XGBoost classifier), and it
was adapted to enhance the performance of the eNose
prototype. The detailed analysis of various features and their
relationships demands numerous mathematical techniques to
explore the covariance relationship among the attributes. The
implemented model has secured ∼ 98% prediction accuracy in
multiclass disease prediction and classification for the
commercial sensors. Moreover, integration and combination
of homemade and commercial sensors along with data analysis
have seldom been reported. Henceforth, the homemade one-
dimensional metal oxide sensing elements such as ZnO, Cr-
doped ZnO, and ZnO/NiO composite nanostructures, which
were reported in our previous work,22,23 have been integrated
with the aforementioned sensor array, and the multiclass
disease biomarker prediction and classification accuracy of the
implemented model have been observed and reported.

Table 1. Technical Specification of Sensors Used in the Proposed Model

s. no. sensor code target vapors

1 TGS 826 ammonia and amine
2 TGS 822 organic solvent and ethanol
3 TGS 2600 ethanol and methane
4 TGS 2602 ammonia, toluene, and hydrogen sulfide
5 DHT-11 temperature and relative humidity
6 ZnO ammonia
7 Cr-doped ZnO ethanol
8 ZnO/NiO acetone

Figure 1. Schematic representation of the proposed prototype model.

Figure 2. eNose prototype.
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2. MATERIALS AND METHODS
The eNose prototype has been designed and developed using
four Figaro (Japan) sensors along with their target vapors,
which are given in Table 1. In addition, the temperature and
relative humidity sensor DHT-11 has been integrated with the
eNose model. The schematic representation of the sensor array

prototype is shown in Figure 1. In addition, three homemade
sensors fabricated using ZnO, Cr-doped ZnO, and ZnO/NiO
nanostructures were integrated with the aforementioned array,
and the corresponding data sets have been recorded for the
classification process. The data sets were stored and processed
using the Atmega 328p microcontroller controller present in

Figure 3. Enhanced XGBoost classifier architecture.

Figure 4. Data visualization of the array of readymade sensors.
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the Arduino UNO R3 board. All three homemade sensors
worked under room-temperature conditions (30 °C) and a
relative humidity of ∼58%.
In order to train and test the sensor prototype, 1 to 10 ppm

of acetone, ammonia, and ethanol vapors were introduced into
the 500 mL capacity sampling box, and the headspace of the
sensor array was placed for data collection. Figure 2 shows the
developed eNose prototype. The primary version of the data
sets has been trained by the proposed enhanced XGBoost
classifier model. The streaming data values helped to identify
the possibility of the occurrence of a specific disease marker.
The data set consists of 42,888 entries to provide sufficient
training and testing data for the proposed model development.

3. ENHANCED XGBOOST CLASSIFIER
The discrimination of disease variants from the patient’s
exhaled breath is a challenging task, and the earlier approaches
were used for predicting diseases of particular types with a fixed
set of parameters and constraints.24−26 This work aims for
multiclass classification using the enhanced XGBoost classifier
and to produce better results over streaming sensor data
collected from eNose. The proposed model has achieved 98%
classification accuracy, which is comparatively higher than that
of the earlier approaches.24−27 The proposed enhanced
XGBoost classifier utilizes the k-fold cross-validation approach
for handling the various segments of training and testing data
portions. Each decision tree produces various results and is

Figure 5. Feature correlations of the array of readymade sensors.

Figure 6. Class distributions of the readymade sensor data set.
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compared based on a major voting scheme. The boosting
mechanisms greatly improve the performance of the ML
models by incorporating efficient techniques and parallel
approaches. The input features for the ML were derived from
the responses of metal oxide-based homemade and readymade
sensors in the presence of target biomarkers, namely, ammonia,
acetone, and ethanol. These input data were structured as an
array of numbers. Each sample in the data set was represented
by a multidimensional array, where each element of the array
corresponds to a specific input feature. These sensor response
data were used to train the ML model and in turn to learn
patterns and relationships between the input data and the
respective biomarker concentrations. A standardization ap-
proach was used to make sure that the comparisons of various

characteristics are fair and accurate and also to lessen the
influence of differences in feature scales. The values in the data
set were transformed to a standardized range of −1 to +1 using
a standard transformer.
Figure 3 demonstrates the overall architecture of the

enhanced XGBoost classifier architecture.
The proposed model has used boosting, stacking, and

bagging techniques, specifically combining multiple learner
models, to enhance the overall performance. Additionally, the
bias and variance of the model were reduced, and the predictive
power was significantly improved. The following two sections
narrate the process involved in implementing the enhanced
XGBoost classifier model. The first section describes the
classification accuracy of the eNose model with ready-made

Figure 7. Box and whisker plots of the features grouped by the class.

Table 2. Sensor Arrays with Three Different Groups of Sensors

groups readymade sensors homemade sensors

G1 TGS 822,2600,2602 & DHT 11 ZnO
G2 TGS 826,822,2602 & DHT 11 Cr-doped ZnO (Cr−ZnO)
G3 TGS 826,822,2602 & DHT 11 NiO/ZnO

Table 3. Features of the Homemade eNose System

sensor technology metal oxide-based chemiresistive gas sensors
measuring range 1 to 10 ppm (for the eNose system)
ML enhanced XGBoost classifier
accuracy 99.77 (ammonia), 94.91% (ethanol), and 96.56% (acetone)
sampling head space sampling (non-invasive)
temperature 30 °C
relative humidity (RH) 58%
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sensors, and the second section explains the classification
accuracy of the model with homemade sensors.

4. CLASSIFICATION ANALYSIS OF THE READYMADE
SENSOR ARRAY DATA SET
4.1. Data Visualization. Data visualization plays a

prominent role in analyzing the data set. The bar chart is
used to analyze the various dimensions of features and their
relationships. This strategy has strongly supported the creation
of an accurate prediction-based model, which also demon-
strates the correlation of the relationships between the different
variables and attributes. Figure 4 explores the distribution of
the sensor array data set. The various threshold ranges of each
attribute of the sensors are displayed individually to provide a

comparative analysis of the data set. This plot provides
additional information for the newly acquired data and
produces enhanced results.
4.2. Feature Correlations. The linear dependency

between two characteristic features is measured by the Pearson
product-moment correlation coefficient (r) in the range of −1
to +1 as shown in Figure 5. The correlation matrix confirms the
highest positive correlation values (0.82) between the sensors
TGS 2600 and TGS 822 compared to those of the other
sensors. This appears like a logical choice for a trial variable to
explain the concepts of a fundamental linear regression model,
and the class attribute denotes the type of class to which the
particular value of features belongs to the specific data.

Figure 8. Feature distributions of the three eNose systems.
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4.3. Class Distributions and Box Plots of the Data Set.
In the overall data set, 80% of the data have been considered
training data and 20% for testing and validation. Figure 6 shows
the class distributions of the training data set based on different
attributes and threshold values, which provide information on
imbalanced class variations. Figure 7 shows the box and
whisker plots of the features, which are grouped by class. The
medians confirm the symmetric and skewed distributions of the
class data and help to detect and remove outliers from the
sensor array data set. The whiskers provide information on the
minimum and maximum data range by first or third quartile
plus 1.5 times the interquartile range, which helps to attain
higher accuracy of the data set.

5. CLASSIFICATION ANALYSIS OF THE HOMEMADE
SENSOR ARRAY DATA SET
5.1. Feature Visualization and Correlation. Three

different room temperature-operated sensors such as ZnO,23

Cr−ZnO, and ZnO/NiO22 have been fabricated for the specific
detection of ammonia, ethanol, and acetone. These sensors
were individually integrated with the aforementioned sensor
array. Thus, the eNose system consists of three different groups
(G1, G2, and G3) of a sensor array. The sensor array’s group
details and features are given in Tables 2 and 3.
The feature distribution and correlations between the same

for all three groups are displayed in Figures 8 and 9. The
feature correlation provides information about the magnitude
of the associations and the directions of the feature relations. It
confirms the existence of both the positive and negative

Figure 9. Feature correlation of the three eNose systems.

Figure 10. Class distribution of the three eNose systems.

Table 4. Classification Reports of the Confusion Matrix

biomarkers precision recall F1-score

acetone 1 ppm 0.974026 0.892857 0.931677
acetone 10 ppm 0.892308 1.000000 0.943089
acetone 5 ppm 0.962441 0.995146 0.978520
ammonia 1 ppm 1.000000 1.000000 1.000000
ammonia 10 ppm 0.985816 0.985816 0.985816
ammonia 5 ppm 0.993151 1.000000 0.996564
ethanol 1 ppm 0.994792 0.989637 0.992208
ethanol 10 ppm 1.000000 0.882353 0.937500
ethanol 5 ppm 1.000000 0.995951 0.997972
accuracy 0.983632 0.983632 0.983632
macro avg. 0.978059 0.971307 0.973705
weighted avg. 0.984284 0.983632 0.983511
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correlations. Thus, the positive correlation provides informa-
tion on the dependent variable of features, but the negative
correlation gives information on the independent variable of
features.
5.2. Class Distributions and Box Plots of the Data Set.

Figure 10 confirms the imbalanced class distributions of the
sensor array data set for all three groups. A visual analysis of the
performance comparison of all three groups of eNose systems
is depicted by a box plot, as shown in Figure 11. The box plot
reports the performance of each sensor with the average
accuracy and class variance. In the box, the center line denotes
the median, the box border denotes the 25th and 75th
percentiles, and the whiskers are extended to the extreme data
points that are not deemed outliers, but the outliers are shown
individually. Additionally, box plots provide information on

overlapped notches, which reduce the accuracy of the particular
sensor array data system.

6. RESULTS AND DISCUSSION
This section describes the experimental results of the proposed
enhanced XGBoost classifier model. The various quality
measures are applied to evaluate the model performance in
various dimensions.
6.1. Classification Accuracy Result of Readymade

Sensor Arrays. The prediction result of the enhanced
XGBoost classifier model is plotted as a confusion matrix in
Figure 12. It demonstrates the summary of each class
prediction result over the data set. This study has investigated
the performance of the enhanced XGBoost classifier model
using eqs 1−4. The precision, recall, F1 score, and accuracy are

Figure 11. Box plots of the training set by the three classifiers of all three groups.
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determined using the same set of equations, where TP, TN, FP,
and FN represent the true positive, true negative, false positive,
and false negative values.28,29 The computed metrics are given
in Table 4. The proposed model exhibited 98.36% classification
accuracy for the case of a ready-made sensor array.
Precision is the quality of a positive prediction made by the

sensor array model. It can be measured by the number of true
positives divided by the total number of positive predictions.

=
+

Precision
TP

TP FP (1)

Recall is the model’s ability to detect positive predictions. It
is evaluated from the ratio between the number of positive
samples correctly classified as positive to the total number of
positive samples.

=
+

Recall
TP

TP FN (2)

F1-score is the harmonic mean between precision and recall
value. This statistical measurement is used to determine the
performance accuracy.

Figure 12. Confusion matrix of the enhanced XGBoost classifier results for readymade sensor data.

Figure 13. Confusion matrix of the enhanced XGBoost classifier model results for homemade sensor data.
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= × ×
+

F1 Score 2
Recall Precision
Recall Precision (3)

And the accuracy is a standard value, i.e., the total percentage
of positive predictions.

= +
+ + +

Accuracy
TP TN

TP FP TN FN (4)

6.2. Classification Accuracy of the Homemade Sensor
Array Data. Figure 13 depicts the confusion matrix of the
enhanced XGBoost classifier results for homemade sensors.
Table 5 summarizes the prediction accuracy of the homemade
sensor’s data set. The proposed model exhibits 99.77, 94.91,
and 96.56% classification accuracy of the groups G1, G2, and
G3, respectively.

Table 5. Prediction Accuracy of the Homemade Sensor Data

groups biomarkers precision recall F1-score

G1 ammonia 1 ppm 0.993711 1.000000 0.996845
ammonia 10 ppm 1.000000 1.000000 1.000000
ammonia 5 ppm 1.000000 0.993103 0.996540
accuracy 0.997748 0.997748 0.997748
aacro avg. 0.997904 0.997701 0.997795
weighted avg. 0.997762 0.997748 0.997747

G2 ethanol 1 ppm 0.907767 0.968912 0.937343
ethanol 10 ppm 1.000000 1.000000 1.000000
ethanol 5 ppm 0.974359 0.923077 0.948025
accuracy 0.949187 0.949187 0.949187
macro avg. 0.960709 0.963996 0.961789
weighted avg. 0.950947 0.949187 0.949328

G3 acetone 1 ppm 0.974684 0.916667 0.944785
acetone 10 ppm 0.982143 0.948276 0.964912
acetone 5 ppm 0.957944 0.990336 0.973872
accuracy 0.965616 0.965616 0.965616
macro avg. 0.971590 0.951760 0.961190
weighted avg. 0.965995 0.965616 0.965382

Figure 14. Performance analysis of the enhanced XGBoost classifier model for (a) readymade sensors and (b) G1, (c) G2, and (d) G3 arrays.

Table 6. Comparison of Existing Reports with the Enhanced
XGBoost Classifier Model

author method accuracy (%)

Azraret al.30 KNN, decision trees, and naive
Bayes

65.19,75.65,71.74

Kumari et al.31 SVM 78
Xu et al.32 RF 85
Antony and
Singh33

NB, MLP, and RF 76.53,76.76,84.77

Krishnamurthy et
al.34

logistic regression 83

proposed model enhanced XGBoost classifier 98.36 (readymade
sensor)

99.77 (G1)
94.91 (G2)
96.56 (G3)
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The performance of the enhanced XGBoost classifier model
is compared with that of the existing techniques, and the results
are depicted in Figure 14. It clearly showed a better
performance of the enhanced XGBoost classifier model than
that of the existing models. The accuracy of the enhanced
XGBoost classifier model is compared with that of the other
models and is given in Table 6. The proposed technique
possesses higher accuracy than the existing techniques.
Overall, the developed readymade sensor prototype responds

to the multicomponents and secured an accuracy of 98.36%.
The fabricated homemade sensors are selective toward specific
biomarkers as discussed in our previous work.22,23 Hence, the
accuracy of the prototype is significantly enhanced toward
specific biomarkers after integrating homemade sensors.

7. CONCLUSIONS
The design and development of eNose prototypes using
readymade and homemade sensors for the detection of
biomarkers, namely, ammonia, ethanol, and acetone, have
been successfully accomplished. The enhanced XGBoost
classifier approach has been adapted to perform multiclass
classification of sensor array data. The implemented model has
secured 98.36% prediction accuracy in multiclass disease
prediction and classification of the eNose developed using
readymade sensors. On the other hand, the eNose models with
three different homemade sensor groups G1, G2, and G3 have
exhibited a classification accuracy of 99.77, 94.91, and 96.56%
toward ammonia, ethanol, and acetone, respectively. Overall,
the prediction accuracies of the homemade eNose prototypes
provide better performance than those of the commercially
available sensors. Hence, the developed eNose systems with
inbuilt homemade sensors may be deployed for real-time
analysis.
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