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ABSTRACT: Proper choice of the base allowed trans-diboration
of propargyl alcohols with B2(pin)2 to evolve into an exquisitely
regioselective procedure for net trans-carboboration. The method
is modular as to the newly introduced carbon substituent (aryl,
methyl, allyl, benzyl, alkynyl), which is invariably placed distal to
the −OH group.

As a substructure of polyketide origin, allylic alcohols of type
B are prominently featured in innumerous natural

products. Our group has recently devised a new entry into this
important motif based on a sequence commencing with a
stereochemically unorthodox trans-hydrometalation of a prop-
argyl alcohol followed by C-methylation of the resulting product
A by formal cross-coupling (Scheme 1).1,2 This methodology is

very functional group tolerant and has already stood the test of
total synthesis.3 For its exquisite regioselectivity, however, the
procedure does not broker formation of the isomeric motifD (R
= Me), which is equally prominent in the polyketide estate.
Inspired by a literature report,4 we saw an opportunity to

attain compounds of type D via formal trans-carboboration,
although broadly applicable manifestations of this type of
reactivity are exceedingly rare.5−10 Specifically, it is known that
propargyl alcohols such as 1a, on deprotonation with nBuLi,
followed by reaction with B2(pin)2 in THF at increased
temperature, undergo trans-selective diboration to give 4-
borylated 1,2-oxaborolol derivatives 3a after hydrolytic workup
(Scheme 2).4,11 The reaction likely passes through the mixed
ate-complex 2a; in one case, this putative intermediate has been

subjected to subsequent Suzuki coupling12 with 4-tolyl iodide in
the presence of catalytic palladium and aqueous KOH as a
promoter. In the present context, it is important to note that both
boron sites of 2a reacted under these conditions to give the
tetrasubstituted alkene 4a in 64% yield.4 Because ate-complexes
per se are competent intermediates for cross-coupling,12 we
surmised that addition of excess base might actually be
unnecessary. Rather, advantage could be taken of the distinct
chemical character to the two boron centers in a compound of
type 2: cross-coupling should occur selectively at the endocyclic
borate site, whereas the tricoordinate boron moiety is expected
to persist in the absence of external base; if so, many
opportunities for downstream functionalization can be
envisaged. As the borate site does not survive workup (see the
formation of product 3a), any such selective derivatization is
contingent on the ability to generate and manipulate an ate-
complex of type 2 in “one pot”.
However, our initial efforts to intercept the putative

intermediate 2 derived from the model substrate 1b by simply
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Scheme 1. Regio-complementary Functionalization of
Propargyl Alcohols: Access to Polyketide Motifs B and D

Scheme 2
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complementing the original recipe for trans-diboration4 with an
appropriate electrophilic partner (PhI, PhOTf, [Ph2I]OTf, MeI,
allyl bromide), a catalytic amount of a palladium source
(Pd(OAc)2, Pd2(dba)3, Pd(PPh3)4), and an adequate phos-
phine ligand (PPh3, PCy3, P(o-tol)3, P(2-furyl)3, X-Phos, dppf,
Xantphos, etc.) basically met with failure (Table 1, entries 1−4).

In most cases, the boracycle 3b was formed as the major
product; it was accompanied by varying amounts of the proto-
deborylated compound 4b but only tracesif anyof the
desired product 5b.
In an attempt to rationalize this renitence, we wondered

whether the borate subunit in 2 actually subsists under the
chosen conditions. Earlier work from this laboratory on the “9-
MeO-9-BBN variant” of the Suzuki reaction showed that the
stability of ate-complexes of type 7 derived from the highly
Lewis acidic 6 and polar organometallic reagents R−M is
strongly cation-dependent (Scheme 3).13,14 The ease of
scrambling complex 7 as the competent nucleophile for cross-
coupling into unproductive 8 and 9 roughly follows the order:
Na+ ≈ K+ < Li+ ≪MgX+, ZnX+. The analogous equilibration of
the borate unit in 2 is arguably more facile because it derives

from an inherently much less Lewis acidic RB(OR)2 entity.
15

Under this premise, a lithium counterion is unlikely to be the
ideal escort as the neutral boron species 2′ might be favored,
which will not engage in cross-coupling in the absence of an
external base. Therefore, we rescreened different counterions
with the hope of stabilizing the critical borate intermediate 2,
even though the original report on trans-diboration had
identified nBuLi as the optimal promoter.4

In accord with the empirical order observed in our previous
study,13,14 replacement of nBuLi by NaHMDS16 opened the
doorway to the desired net trans-carboboration chemistry
(Table 1; for further details, see the Supporting Information).
In a first foray, trans-diboration was merged with classical
Suzuki-type sp2−sp2 coupling: to this end, the use of
diaryliodonium salts in combination with Pd2(dba)3/P(2-
furyl)3 proved optimal. Although the reaction proceeded well
in 1,4-dioxane in many cases, the use of 1,2-dichloroethane/
THF (10 equiv) was found to be more general (Figure 1). The

crude products are usually very clean, but partial loss of material
upon flash chromatography on silica diminishes the isolated
yields. In the case of tert-propargyl alcohols as the substrates, the
basic conditions can entail retro-alkynylation, leading to the
formation of the corresponding ketones as minor impurities.
The functional group compatibility is remarkable in that pre-

existing aryl bromides or chlorides remained intact, regardless
whether they originate from the propargyl alcohol substrate or
from the transferred aryl substituent; conceivable oligomeriza-
tion of the resulting products carrying a C−X as well as a C−B
unit was not observed. This favorable outcome shows that the
residual tricoordinate boron substituent in the product formed is
“silent” in the absence of an external base, whereas the ate site of
transient 2 (M = Na) readily engages in cross-coupling.17 The
excellent regioselectivity harnessed in reactions of 1,3-enyne or
even 1,3-diyne substrates is an additional asset: only the
propargylic triple bond undergoes carbometalation, whereas an
additional site of unsaturation does not interfere.
The new procedure also lends itself to the introduction of a

methyl substituent at the distal propargylic C atom; a slightly
modified catalyst system (Pd2(dba)3/P(1-nap)3 in 1,4-dioxane)
in combination with MeI gave the best results (Figure 2 and
Supporting Information). In all cases investigated, C−C bond

Table 1. Optimization of the trans-Arylborationa

entry base PhX [Pd] ligand 5b (%)

1 BuLi PhOTf Pd(OAc)2 dppf 0b

2 LiHMDS PhOTf Pd(OAc)2 dppf <10c

3 LiHMDS PhI Pd(PPh3)4 0
4 LiHMDS Ph2IOTf Pd2(dba)3 P(o-tol)3 31
5 NaHMDS Ph2IOTf Pd2(dba)3 P(o-tol)3 62d

6 NaHMDS Ph2IOTf Pd2(dba)3 P(2-furyl)3 81d

7 NaHMDS Ph2IOTf Pd2(dba)3 P(2-furyl)3 82e

aUnless stated otherwise, the reactions were performed in THF at 70
°C (bath temperature). b73% of 3b was obtained after workup. c62%
of 3b and 9% of 4b were formed. dIn 1,4-dioxane. eIn 1,2-
dichloroethane + THF (10 equiv).

Scheme 3. Presumed Equilibration of the 1,2-Oxaborolol
Intermediatea

aThe cation- and solvent-dependent scrambling of ate-complexes in
the 9-BBN series provides relevant precedent.

Figure 1. Products 5 formed by trans-arylboration of propargyl
alcohols. aReagents and conditions: NaHMDS (1 equiv), B2(pin)2 (1.1
equiv), Pd2(dba)3 (5 mol %), P(2-furyl)3 (20 mol %), [Ar2I]OTf (2
equiv), 1,2-dichloroethane/THF, 60 °C. bIn 1,4-dioxane.
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formation occurred exclusively distal to the alcohol substituent.
Extensive NMR investigations and crystallographic data
confirmed connectivity and double bond geometry of the
products (for the structures of compounds 3b, 5b,n, and 10i in
the solid state, see the Supporting Information). Once again, the
observed regio- and stereoselectivities were excellent as were the
functional group tolerance; moreover, the method scales well. It
is important to note that O-methylation of the propargylic
alcohol substrate did not interfere with productive trans-
methylboration to any noticeable extent, which indicates a
perfect orchestration of events along the reaction coordinate.
For this very reason, other reactive electrophiles are equally

competent partners (Figure 3). Specifically, allyl and benzyl

bromide could be used without O-alkylation intervening.
Likewise, the incorporation of an alkynyl substituent was
successful; the resulting enynes 13 are regioisomeric to the
products formed by the transition-metal-free trans-alkynylbora-
tion using RCC−B(pin) as the reagent recently described in
the literature.5 Overall, these data show that the concept
underlying this new trans-carboboration manifold is pleasingly
general, although its different incarnations require some catalyst
optimization. Further extensions are subject to ongoing
investigations in our laboratory.
The alkenyl boronate products thus formed lend themselves

to numerous downstream transformations;18 only a few
possibilities are shown in Scheme 4: (i) Although proto-
deborylation of 10 “wastes” the valuable C−B bond, it leads to

the important polyketide motif D cited in the introduction; as
shown for product 14, the reaction can be readily achieved using
catalytic AgNO3.

19 (ii) Addition of aq NaOH “arms” the
remaining boron atom in 10 for cross-coupling with a second
electrophilic partner. In this manner, two dif ferent hydrocarbyl
residues can be stitched trans to each other across the triple
bond;20 the resulting tetrasubstituted alkenes such as 15 are
difficult to make in rigorously stereodefined format by other
means.21 This aspect is highlighted by the concise approach to
compound 22, which is a key metabolite of the nonsteroidal
estrogen receptor modulator idoxifen (Scheme 5);22 this

example further substantiates the compatibility of the method
with alkyl as well as aryl halides. (iii) Oxidation of the C−B
bond23 in 10 unmasks the corresponding acyloin 16, whereas
directed epoxidation affords the building block 17 with high
diastereoselectivity.24 (iv) Addition of catalytic amounts of
Sc(OTf)3 as an oxophilic Lewis acid activates the allylic −OH
group of 5c without damaging the C−B bond as evident from
the intramolecular Friedel−Crafts alkylation, furnishing the
borylated indene 18.25 (v) Finally, we note that the triple bond
of compounds 13 constitutes yet another valuable handle for
functionalization; the formation of the tetrasubstituted bory-

Figure 2. Products 10 formed by trans-methylboration of propargyl
alcohols. aReagents and conditions: NaHMDS (1 equiv), B2(pin)2 (1.1
equiv), Pd2(dba)3 (5 mol %), P(1-naphthyl)3 (20 mol %), MeI (3
equiv), 1,4-dioxane, 60 °C. bWith KHMDS.

Figure 3. Additional trans-carboboration reactions. aReagents and
conditions: NaHMDS (1 equiv), B2(pin)2 (1.1 equiv), Pd2(dba)3 (5
mol %), supplemented by bPd(PtBu3)2 (10 mol %), allyl bromide (3
equiv), 1,4-dioxane, 75 °C; cP(1-naphthyl)3 (20 mol %), BnBr (3
equiv), 1,4-dioxane, 60 °C; dP(2-furyl)3 (20 mol %), (R3Si)CCBr (3
equiv), toluene/THF, 75 °C.

Scheme 4

Scheme 5a

aReagents and conditions: (a) Pd2(dba)3 (5 mol %), Pd(2-furyl)3 (20
mol %), NaHMDS, B2(pin)2, (4-BrC6H4)2IOTf, THF/1,2-dichloro-
ethane, 60 °C, 62%; (b) PhI, aq KOH, (dppf)PdCl2 (5 mol %), THF,
97%; (c) (i) pyrrolidine, EtOH, reflux; (ii) CuI, NaI, N,N′-
dimethylethane,1,2-diamine, 1,4-dioxane, 110 °C, 75%
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lated furan 19 with the aid of AuCl3 as a carbophilic catalyst
illustrates this aspect.26,27

In summary, a robust yet modular procedure for net
carboboration of propargyl alcohols is reported. The trans-
formation is distinguished by the unorthodox trans-addition
mode and benefits from exquisite regio- and chemoselectivity.
For these virtues and for the multifaceted character of the
resulting products, we expect that the new method qualifies for
many applications. Studies along these lines are currently
ongoing in our laboratory.
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