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ABSTRACT

Objective: Regression models are ubiquitous in thoracic surgical research. We
aimed to compare the value of standard logistic regression with the more complex
but increasingly used penalized regression models using a recently published risk
model as an example.

Methods: Using a standardized data set of clinical T1-3N0 esophageal cancer pa-
tients, we created models to predict the likelihood of unexpected pathologic nodal
disease after surgical resection. Models were fitted using standard logistic regres-
sion or penalized regression (ridge, lasso, elastic net, and adaptive lasso). We
compared the model performance (Brier score, calibration slope, C statistic, and
overfitting) of standard regression with penalized regression models.

Results: Among 3206 patients with clinical T1-3N0 esophageal cancer, 668 (22%)
had unexpected pathologic nodal disease. Of the 15 candidate variables considered
in the models, the key predictors of nodal disease included clinical tumor stage, tu-
mor size, grade, and presence of lymphovascular invasion. The standard regression
model and all 4 penalized logistic regression models had virtually identical perfor-
mance with Brier score ranging from 0.138 to 0.141, concordance index ranging
from 0.775 to 0.788, and calibration slope from 0.965 to 1.05.

Conclusions: For predictive modeling in surgical outcomes research, when the
data set is large and the outcome of interest is relatively frequent, standard regres-
sion models and the more complicated penalized models are very likely to have
similar predictive performance. The choice of statistical methods for risk model
development should be on the basis of the nature of the data at hand and good sta-
tistical practice, rather than the novelty or complexity of statistical models. (JTCVS
Open 2022;9:303-16)
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Standard and penalized models had similar perfor-
mance with frequent outcome of interest in a large
data set.
CENTRAL MESSAGE

The choice of statistical meth-
odology for risk model develop-
ment should focus on the nature
of the data and good statistical
practice rather than method
complexity.
PERSPECTIVE
Penalized regression models might be advanta-
geous when the number of events is small relative
to the number of potential predictors. However,
they are being increasingly used in surgical out-
comes research even in data sets in which the
event is not rare. In this study, we evaluated the
predictive performance of penalized models
versus standard regression when the outcome
of interest is frequent.
xceedingly small fraction of the numerous
Descriptive modeling, the most commonly applied approach
in medicine, involves summarizing data and describing asso-
ciations between dependent and independent variables. Pre-
dictive modeling, in contrast, aims to predict new or future
observations. An e
multivariable models published annually in surgical out-
comes research become used clinically. Predictive modeling
seeks to overcome this shortcoming by delivering tools
applicable in routine clinical practice.
Predictive modeling is on the basis of developing rules to

estimate the probability of the presence of a specific disease
in diagnostic research or the probability of the occurrence of
a future event in prognostic research. In thoracic surgery or
oncology, for example, models are frequently developed to
predict the likelihood of cancer recurrence or the probabil-
ity of a postoperative complication.1-3 When the clinical
outcome of interest is binary (yes/no), the prediction rule
is commonly developed using a multivariable logistic
regression model.4
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Abbreviations and Acronyms
cvMSE ¼ cross-validated mean square error
EPV ¼ events per variable
MLE ¼ maximum likelihood estimation
MSE ¼ mean square error
NCDB ¼ National Cancer Database
PRM ¼ penalized regression model
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A logistic regression model can be fitted using 1 of 2
approaches: the more commonly utilized maximum
likelihood estimation (MLE) (standard approach),5,6 or
the newer, penalized regression model (PRM) approach.7,8

With epidemiological and biostatistics journals often
reporting improved predictive accuracy using PRMs,9-12

this approach is being increasingly adopted in thoracic
surgery publications.7,8,13,14 However, PRM analyses might
have some disadvantages, including arbitrary variable
selection and discordance of output from different
software.15-17 Furthermore, PRMs are conceptually
more complex to build and require specific software
programs.

Despite the appropriate and timely emphasis that has
been given to statistical approach and rigor in clinical jour-
nals over the past decade, many clinicians find study meth-
odology difficult to understand. Multivariable models are
the most commonly used statistical tools in health services
research. In the setting of newer available methods to build
multivariable models, we aim to: (1) provide a brief descrip-
tion of the PRM approach in contrast to standard MLE
regression models, and (2) compare the performance of
PRM and standard logistic regression models using a stan-
dardized data set and a clinical question relevant to out-
comes researchers.

Because risk model development, validation, and appli-
cation are highly pertinent topics in surgical research, we
anticipate that this work will be useful for those reading
the literature to judge if a valid statistical approach is
used in a report as well as for those reviewing manuscripts
to know the range of statistical options available for anal-
ysis. Even more importantly, for clinical researchers, our
analyses will provide guidance on the advantages and disad-
vantages of certain statistical techniques and will help iden-
tify when it is ideal to collaborate with an expert
biostatistician.
METHODS
Development of the Question

In a recent publication, we used a multivariable logistic regression

model to predict the likelihood of occult lymph node metastases in patients

with surgically resectable esophageal cancer who were clinically staged as

N0.18 Our logistic regression model was fitted using the standard MLE

approach. Patients in the study were selected from the National Cancer
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Database (NCDB). Of 3186 patients in our study, 688 (22%) had patho-

logic lymph node involvement. The presence of the outcome of interest

(ie, pathologic lymph node involvement) in our study, is deemed an

“event.” Hence, we had 688 events in our analysis. Potential predictors

included histology, stage, tumor size, grade, presence of lymphovascular

invasion, and other demographic or socioeconomic variables. In multivari-

able models, each level of such predictors (eg, stage might have 4 levels)

leads to the generation of its individual regression coefficient. Therefore,

the total number of regression coefficients in our previous study was

approximately 30. The ratio of the number of events to the number of

regression coefficients in the model is termed the “events per variable”

or EPV. A well accepted rule of thumb is to have at least 10 to 15 EPV

in any model.19,20 Our previous study with 688 events and approximately

30 regression coefficients had an EPV of>20. For a data set with such a

high EPV, it is not clear if more recently developed modeling methods

such as PRM provide better predictive performance of models than the

standard MLE approach. We designed the following analysis to investigate

this question.

Data and Patients
Data for this study come from the NCDB Participant Use File for esoph-

ageal cancer. The NCDB is a retrospective data set from the American Can-

cer Society and the American College of Surgeons that captures>70% of

all new nationwide cancer diagnoses from>1500 hospitals accredited by

the Commission on Cancer. Patients with clinically localized esophageal

cancer (cT1-3N0M0) who underwent esophagectomy from 2004 to 2014

were included in the study. Patients were excluded if: (1) they underwent

any type of neoadjuvant therapy (radiation, chemotherapy, hormone, ther-

apy, or other systemic therapy), (2) were documented as having clinical T0

(no evidence of a primary tumor) or Tis (high-grade dysplasia) disease, or

(3) had missing data on the timing of their surgery, tumor stage, tumor size,

pathologic lymph node staging, or histology.18 This study was exempt from

Washington University’s Institutional Review Board approval because the

data set is deidentified. All computations in our analysis were performed

using R “base,” “glmnet,” and “rms” packages (R Foundation for Statistical

Computing).

Variables
The outcome variable was whether a patient was pathologically

node negative (N0) or positive (Nþ). Potential predictors included

the following demographic and tumor variables: age, sex, race (White

vs non-White), insurance status (private vs public), median income ac-

cording to zip code (lowest quartile of <$38,000 vs >$38,000), edu-

cation status according to zip code (lowest quartile of >21% without

a high school degree vs the remainder), population according to zip

code (>250,000 vs <250,000), Charlson–Deyo Score (0, 1, �2), treat-

ment center type (academic vs nonacademic), year of diagnosis, his-

tology (squamous cell vs adenocarcinoma), tumor stage, tumor size,

grade, and presence of lymphovascular invasion. Data on these vari-

ables are largely available preoperatively, with the possible exception

of lymphovascular invasion. We used a missing category in that

context. In our previous study, to evaluate the model built around

these variables, we performed additional analyses with 3 clinically

relevant variations and compared their predictive accuracy. First, we

excluded the variable, lymphovascular invasion, because it is not al-

ways available preoperatively. Second, we excluded the cT3N0 pa-

tients, because many such individuals are prescribed induction

chemoradiation on the basis of the depth of invasion. Finally, we

divided the cT1N0 patients into T1a, T1b, and T1 not otherwise spec-

ified populations. Because none of these variations improved the pre-

dictive performance of the initial model and because the “missing”

category in lymphovascular invasion allowed for its use in all patients,

we retained the original for creation of the nomogram presented in

our previous publication.18
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FIGURE 1. An example of a calibration plot. A perfectly accurate predic-

tion model would result in a plot in which the plotted observed and pre-

dicted probabilities follow the 45� line (slope ¼ 1). The x coordinate of

the dot represents predicted probability, and the y coordinate represents

observed probability. Each dot represents the performance of a subset of

data, ordered by the predicted probability. The solid line represents the

regression line of the dots and corresponds to a slope of 1 in this case.
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FIGURE 2. An example of a receiver operating characteristic (ROC)

curve. The dashed line represents the ROC curve of the predictive model

and the solid line represents the performance of a random classifier. The

larger the area under the ROC curve (C statistic), the higher the discrimi-

nation of the model.
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Statistical Models
Logistic regression with MLE (standard model). Details

about model development are presented in our recent work.18 Briefly, we

started by identifying all potential predictors associated with pathologi-

cally positive lymph nodes on the basis of clinical knowledge. Next, we

used multivariable logistic regression to develop the risk model. The model

was internally validated using bootstrapping techniques. We selected pre-

dictors with P<.05 and clinical importance criteria in the final model. The

regression coefficients were estimated using MLE, a probabilistic frame-

work for estimating the parameters of a model.21

Logistic regression with penalization (PRMs). Different

from standard regression, penalized logistic regression has a shrinkage

term in the model. The purpose of the shrinkage term is to prevent extreme

values of regression coefficients in model development, so that the possi-

bility of overfitting is reduced. An overfitted model predicts very well in

the patients from the model development data set, but has poor predictive

performance for patients in other data sets.

Depending on the form of shrinkage term, there are different types of

PRMs. The most popular types include ridge, lasso, adaptive lasso, and

elastic net. In brief: ridge includes the summation of squares of regression

coefficients as the shrinkage term. Lasso contains the summation of the ab-

solute value of regression coefficients as the shrinkage term. Elastic net has

a mixture of ridge and lasso as the shrinkage term. Adaptive lasso is a

variant of lasso, which allows different weights for shrinking different

regression coefficients. Details about these shrinkagemethods are provided

in Appendix 1. Details about the computation of these models are provided

in Appendices 2 and 3.

Comparison of predictive performance between MLE
(standard) and PRMs. The predictive performance of the models

was assessed using 3 measures:

1. Brier score for overall performance: the Brier score is the average

squared difference between the observed outcome and the predicted

probabilities. The lower the Brier score, the greater the predictive accu-

racy of the model.

2. Calibration slope for calibration: model calibration is the process of

adjustment of the model parameters and forcing within the margins of

the uncertainties to obtain a model representation of the processes of in-

terest that satisfies preagreed criteria (goodness of fit). Calibration is a

measure of fit of the model and is estimated by plotting predicted prob-

abilities against the actual probabilities (Figure 1). A slope of 1, as

shown in Figure 1, suggests perfect calibration. A slope of<1 suggests

overfitting; slope>1 suggests underfitting.

3. C statistic for discrimination: the C statistic is the probability that

the patient who experienced the event has a higher predicted value

than the patient without the event. A value of 0.5 suggests that the

model has no discrimination ability, whereas a value of 1 suggests

that the model can discriminate perfectly between higher-risk and

lower-risk patients. The C statistic is derived from the area under

the receiver operating characteristic curve (Figure 2). A higher C

statistic is desirable.

We elected not to use the binary classification method to compare pre-

dictive model performance in this study because a clinically meaningful

cutoff value cannot be identified. Additionally, because the output for a lo-

gistic regressionmodel is a probability, classification might lead to a loss of

valuable clinical information and is a less sensitive way of comparison.

Original sample. We evaluated the performance of standard MLE

and PRMs in the original NCDB sample. The Brier score, concordance in-

dex, and calibration slope of the standard MLE model and various PRMs

were compared.

Bootstrap sample. Next, we created a distribution of 1000 bootstrap

samples. In bootstrapping, random samples are drawn with replacement

from the original data set.22 From bootstrap samples, we obtained an
“apparent” predictive accuracy distribution by using the bootstrap samples

to develop the model and evaluate the performance. Finally, we also ob-

tained an “internally validated” predictive accuracy distribution by using

the bootstrap samples to develop the model and the original sample to eval-

uate the performance.

Overfitting. An overfitted model classifies very accurately in the

training data set (which is used to develop the model) but has poor per-

formance in the validation data set used to test model performance.

Overfitting in a model is an undesirable characteristic and is assessed

via “optimism” in all 3 performance measures (ie, Brier score, calibra-

tion slope, and C statistic). “Optimism” is defined as the difference be-

tween “apparent” performance and “internally validated” performance.

The larger the “optimism” value, the more overfitting in the model. A

0 value indicates no optimism and no overfitting. An optimism value

close to 0 is desirable.
JTCVS Open c Volume 9, Number C 305



TABLE 1. Demographic and tumor characteristics in the cohort

Variable Path N0 (n ¼ 2498) Path Nþ (n ¼ 688) P value

Mean age (� SD), y 65.0 � 9.9 65.2 � 10.7 .66

Male sex 1980 (79.3) 565 (82.1) .10

White race 2286 (91.5) 639 (92.9) .25

Private insurance 996 (39.9) 276 (40.1) .91

Population of area>250,000 1789 (71.6) 477 (69.3) .24

Median income<$38,000 365 (14.6) 107 (15.6) .54

>21% without high school diploma 324 (13.0) 75 (10.9) .15

Charlson–Deyo Score .48

0 1699 (68.0) 459 (66.7)

1 632 (25.3) 174 (25.3)

�2 167 (6.7) 55 (8.0)

Academic center 1562 (62.5) 413 (60.0) .23

Diagnosis year .15

2004 163 (6.5) 38 (5.5)

2005 157 (6.3) 54 (7.9)

2006 184 (7.4) 54 (7.9)

2007 208 (8.3) 67 (9.7)

2008 306 (12.3) 98 (14.2)

2009 334 (13.4) 77 (11.2)

2010 273 (10.9) 71 (10.3)

2011 253 (10.1) 69 (10.0)

2012 209 (8.4) 69 (10.0)

2013 221 (8.9) 43 (6.3)

2014 190 (7.6) 48 (7.0)

Histology .05

Squamous 548 (21.9) 127 (18.5)

Adenocarcinoma 1950 (78.1) 561 (81.5)

T stage <.001

T1 1602 (64.1) 238 (34.6)

T2 639 (25.6) 287 (41.7)

T3 257 (10.3) 163 (23.7)

Tumor Size <.001

<1 cm 539 (21.6) 24 (3.5)

1 to<2 cm 605 (24.2) 83 (12.1)

2 to<3 cm 531 (21.3) 151 (22.0)

3 to<4 cm 343 (13.7) 166 (24.1)

4 to<5 cm 216 (8.7) 115 (16.7)

�5 cm 264 (10.6) 149 (21.7)

Grade <.001

1 371 (14.9) 20 (2.9)

2 1103 (44.2) 253 (36.8)

3 780 (31.2) 373 (54.2)

4 35 (1.4) 18 (2.62)

Unknown 209 (8.4) 24 (3.5)

Lymphovascular invasion <.001

Yes 171 (6.9) 155 (22.5)

No 846 (33.9) 99 (14.4)

Missing 1481 (59.3) 434 (63.1)

Data are presented as n (%) except where otherwise noted.
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TABLE 2. Comparison of standard MLE and PRM in the original

data

Type of model Brier score C index Calibration slope

MLE (standard) 0.140 0.779 1.000

Ridge 0.140 0.780 1.119

Lasso 0.140 0.782 1.021

Adaptive lasso 0.140 0.780 1.034

Elastic net 0.140 0.782 1.021

Ridge, lasso, adaptive lasso, and elastic net are the PRMs.MLE, Maximum likelihood

estimation; PRM, penalized regression model.

Yan et al Thoracic: Esophageal Cancer
RESULTS
The distribution of potential predictors of pathologic

lymph node positive/negative status is shown in Table 1.
Each level of a variable (eg, T stage has 3 levels: T1, T2,
and T3) generates its own regression coefficient/parameter
in the models. With year of diagnosis as a continuous vari-
able in the model, we had 25 parameters in the model.
Because 688 patients had unexpected nodal disease (the
outcome of interest), we had 688 events. This results in a ra-
tio of 668/25 or 27.5 EPV.

The predictive performance of the standard MLE and
PRMs in the original sample is shown in Table 2. In the orig-
inal sample, the Brier scores for all models are indistinguish-
able to within 3 digits (0.140), indicating that overall
performance is identical for these models. The C statistics
for all models are also very similar, from 0.779 for standard
MLE to 0.782 for lasso and elastic net models. All models
with PRM are underfitted (calibration slope >1), whereas
theMLEmodel has perfect calibration (calibration slope¼ 1).

The predictive performance of the standard MLE and
PRMs in the bootstrap samples is shown in Table 3. This
represents the “apparent” predictive accuracy of the model.
Again, similar to the model performance in the original
data, the standardMLE and the various PRMs have virtually
identical performance.

The “internally validated” performance is the result of
developing the model in the bootstrap sample and testing
model performance in the original cohort. The “internally
validated performance” of the standard MLE and PRMs is
shown in Table 4. The standard MLE and PRMs have
very similar performance.
TABLE 3. Comparison of “apparent” predictive accuracy between MLE

Type of model Brier score

MLE (standard) 0.140 (0.132, 0.147)

Ridge 0.139 (0.131, 0.146)

Lasso 0.138 (0.130, 0.146)

Adaptive lasso 0.138 (0.131, 0.146)

Elastic net 0.138 (0.130, 0.146)

Ridge, lasso, adaptive lasso, and elastic net are the PRMs. Values shown are median (2.5

regression model.
The optimism values for the Brier score, C index, and
calibration slopes for the various models are shown in
Table 5. Optimism reflects the degree of overfitting in the
models, and values close to 0 are more desirable. The opti-
mism values for all 3 measures of model performance are
closer to 0 for the standard MLE models than for any of
the PRMs.
Next, in an exploratory analysis, we used the current data

set to perform simulations to evaluate the sample size and
outcome frequency needed for standard MLE to perform
similarly to PRMs on the basis of the C index, Brier score,
and calibration slope. At sample size>20% to 30% of the
total sample size (approximately 600-900 patients), stan-
dard MLE was noninferior to PRMs across all 3 metrics
(Figure E1). Outcome frequency simulation was performed
by setting the outcome of interest (lymph node involvement
by cancer) at 5%, 10%, 20%, 40%, and 80% using a sam-
ple size of 800 patients. Performance of standard MLE ap-
proached that of the PRMs at an outcome frequency>20%
(Figure E2).
A classification table was additionally generated using an

arbitrary but clinical reasonable cutoff at 30% probability
of occult nodal metastasis. Sensitivity and specificity were
similar for the standardMLE and any PRMmodel (Table E1).

DISCUSSION
In this analysis, we used a risk model for predicting the

probability of occult lymph node metastases in patients
with surgically resectable esophageal cancer as a case study
to compare standard logistic regression (MLE) and the
more complicated penalized logistic regression methods.
Predictive performance (Brier score, concordance index,
and calibration slope) was quantified in the original sample
and in bootstrap samples. In this case study, the standard
MLE model had virtually identical predictive accuracy as
the more sophisticated PRMs. Moreover, overfitting from
the MLE model was no greater than that from the PRMs
(Figures 3 and 4).
Generalizability of a risk model from a derivation sample

to new patients depends on several factors23-27: similarity
between derivation and new patient cohort in the
definition of predictors and outcome, patient selection
(case mix), the prevalence/incidence of the outcome, and
and PRM in the bootstrap sample

C index Calibration slope

0.782 (0.763, 0.801) 1.000 (1.000, 1.000)

0.786 (0.768, 0.803) 1.122 (1.100, 1.145)

0.788 (0.769, 0.804) 1.036 (1.012, 1.090)

0.787 (0.767, 0.804) 1.017 (1.004, 1.057)

0.788 (0.769, 0.804) 1.040 (1.012, 1.091)

percentile, 97.5 percentile). MLE, Maximum likelihood estimation; PRM, penalized

JTCVS Open c Volume 9, Number C 307



TABLE 4. Comparison of predictive accuracy between MLE and PRM with the model developed in bootstrap samples and tested in the original

cohort (“internally validated” performance)

Type of model Brier score C index Calibration slope

MLE (standard) 0.141 (0.141, 0.142) 0.777 (0.774, 0.779) 0.968 (0.875, 1.078)

Ridge 0.141 (0.141, 0.142) 0.775 (0.771, 0.778) 1.059 (0.974, 1.158)

Lasso 0.141 (0.140, 0.142) 0.777 (0.773, 0.779) 0.976 (0.883, 1.096)

Adaptive lasso 0.141 (0.140, 0.142) 0.777 (0.772, 0.780) 0.965 (0.872, 1.079)

Elastic net 0.141 (0.140, 0.142) 0.777 (0.772, 0.779) 0.978 (0.883, 1.094)

Ridge, lasso, adaptive lasso, and elastic net are the PRMs. Values shown are median (2.5 percentile, 97.5 percentile). MLE, Maximum likelihood estimation; PRM, penalized

regression model.
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overfitting of the risk model. An overfitted model tends to
contain the true predictor–outcome relationship and the
noise–bizarre relationship in the derivation data set. When
overfitting is present, predictive performance is exaggerated
in the derivation data set and the observed future patient
outcomes do not agree with predicted values.

Shrinkage is a very popular way to alleviate the problem
of model overfitting by shrinking the regression coefficients
toward 0. It has the effect of moving extreme predicted
values toward the average risk, therefore making more ac-
curate predictions when the model is applied in new pa-
tients. Although we may apply shrinkage after estimation
of regression coefficients using a shrinkage factor,28

applying shrinkage during estimation using a penalized
method is a novel approach to reduce model overfitting.
However, in our case study, none of the 4 PRMs outper-
formed a standard logistic regression model.

There are several explanations for our findings. First, we
have a relatively large data set with a high event rate (688/
3186; 22% of patients with occult lymph node metastases)
and a modest number of candidate predictors (15 variables
with 25 regression parameters). Hence our EPVof 27.5 (688
events divided by 25 parameters) is significantly larger than
the rule of thumb of needing approximately 10 to 15 EPV in
the model. Second, the relationship of most predictors
(stage, grade, tumor size, etc) with the outcome is well un-
derstood from clinical experience and previous cohort
studies, thus making variable selection more intuitive.
Third, we adhered to recommended good practices in build-
ing our standard logistic regression predictive model. We
TABLE 5. Comparison of optimism in the measures of model performanc

Type of model Optimism of Brier score

MLE (standard) �0.002 (�0.010, 0.005)

Ridge �0.003 (�0.011, 0.005)

Lasso �0.003 (�0.011, 0.004)

Adaptive lasso �0.003 (�0.011, 0.005)

Elastic net �0.003 (�0.011, 0.004)

Ridge, lasso, adaptive lasso, and elastic net are the PRMs. Values shown are median (2.5

likelihood estimation; PRM, penalized regression model.

308 JTCVS Open c March 2022
carefully examined the distribution of each potential predic-
tor, meaningfully recoded some of the variables as neces-
sary, used clinical knowledge supplemented by statistical
methods for variable selection, and tested clinically impor-
tant interactions. A combination of a sizable data set, clin-
ical knowledge about possible predictors, and appropriate
statistical methods allowed us to fit a risk model using stan-
dard logistic regression which has a predictive accuracy
similar to that of more complicated PRMs.

Despite our findings, there are certain situations in surgi-
cal outcomes research in which PRMs are better suited for
developing risk prediction rules. In the event of a relatively
small data set, a rare outcome, and a large number of poten-
tial predictors (thus a low EPV) with possible correlations
necessitating an elaborate statistical approach for variable
selection, PRMs are advantageous over standard regression
models because of their ability to shrink extreme coeffi-
cients that cause overfitting. This scenario is likely to arise
when analyzing institutional data sets with granular vari-
ables or studying a relatively uncommon event. Conversely,
for large data sets with a relatively frequent outcome of in-
terest (leading to a high EPV) and a moderate number of po-
tential predictors, standard regression models are very
likely to have similar predictive performance as the more
complicated PRMs. In addition, in the clinical setting, it
is important to minimize the number of inputs in the predic-
tive model to create a practical user interface. Although one
might expect the PRMmethods to create models with fewer
variables, in our study, ridge, lasso, and elastic net did not
shrink any parameter estimates to 0. Therefore, all 15
e between the standard MLE and the PRM

Optimism of C index Optimism of calibration slope

0.006 (�0.013, 0.024) 0.032 (�0.078, 0.125)

0.011 (�0.008, 0.028) 0.063 (�0.045, 0.152)

0.011 (�0.008, 0.028) 0.062 (�0.042, 0.148)

0.010 (�0.009, 0.028) 0.056 (�0.049, 0.143)

0.011 (�0.008, 0.028) 0.062 (�0.042, 0.148)

percentile, 97.5 percentile). Values closer to 0 are more desirable. MLE, Maximum
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variables were kept in the models. Adaptive lasso selected 6
variables. In contrast, standard MLE only selected 5 vari-
ables in the final model and is in fact more easily applicable
in the clinical setting.

In simulations using our data set we noted that when the
sample size was >600 to 900 and the frequency of the
outcome was greater than 20% to 30%, the standard
MLE model performed as well as the more complex
PRMs. Because extensive knowledge regarding the clinical
Comparison of Standard and Penalized Logist

Model

Ridge
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Elastic

Ridge,

Adapt
Lasso

MLE
(stand

Aim: Compare the predictive performance of standard
regression model and penalized regression models
using a large standardized dataset.

Patient: NCDB localized esophageal cancer
(T1-3, N0) patients undergoing esophagectomy
from 2004-2014. N = 3186.

Predicted Outcome: Occult lymph node
metastases. 688/3186 (22%)

*** NCDB: National Cancer Database. MLE: maximum likelihood estim

- Standard regression model has similar performance to 
interest using la

Models:
1. Standard regression model (maximum likelihood
    estimation)
2. Penalized regression models (Ridge, Lasso,
    Adaptive Lasso, Elastic net).

FIGURE 4. The predictive performance of a standard logistic regression mod

Cancer Database (NCDB) esophagectomy data regarding occult nodal metasta

to the PRM. MLE, maximum likelihood estimation.
relevance of candidate predictors is necessary to appropri-
ately select variables included in regression models, we
did not perform simulations for the number of candidate
variables. Furthermore, these simulations remain specific
to the analyzed data set.
A caveat in using a large clinical or administrative database

to compare different statisticalmethods should be noted. That
is, if thevariables in a database donot contain detailed clinical
information necessary for high-quality risk prediction
ic Regression in Risk Model Development

 net
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models, the difference in model predictive performance from
different statistical methods will be obscured. The NCDB
used in this study is a robust national database, butmore gran-
ular information including patient comorbidities, laboratory
values, and modality of clinical staging were lacking. It is
possible that the model performance was limited by the qual-
ity of data itself rather than the methods.
CONCLUSIONS
The choice of statistical methods for risk model develop-

ment should be on the basis of the nature of the data at hand
and good practice rather than the complexity or novelty of
statistical models. Close collaboration between clinicians
who will be end users of the models, and the statistical
team is critical to inform this process.
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APPENDIX 1. DESCRIPTION OF 4 COMMON
PENALIZEDMETHODS AND OTHER SHRINKAGE
METHODS

1. Ridge or L2 penalization places a constraint on the sum
of squares of regression coefficients ðlPp

j¼1b
2
j Þ. Ridge

was initially designed to deal with issues of many highly
correlated variables in a model. It shrinks the regression
coefficients toward 0 (but not exactly 0) and has been
shown to perform well in scenarios with correlated pre-
dictors.

2. Lasso (least absolute shrinkage and selection operator)
or L1 penalization imposes a constraint on the sum of
the absolute value of regression coefficients, and the
penalty term has the form ðlPp

j¼1

��bj��Þ. Lasso was devel-
oped for variable selection in high-dimensional data an-
alyses when the number of parameters (p) is much larger
than the sample size (p>> n). In lasso, the model can
yield 0 estimates when the parameter values are close
to 0 and hence can perform variable selection, resulting
in parsimonious models. This method is not optimal in
the presence of many correlated predictors. It might
select 1 at random from a group of highly correlated pre-
dictors, which can affect the interpretation of the model
and compromise its predictive accuracy.

3. Elastic net is a mixture of ridge and lasso. It has a penalty
with ridge and lasso components ðl½aPp

j¼1

��bj�� þ ð1 �
aÞPp

j¼1b
2
j �Þ. The a can be considered as a mixing

parameter, describing relative contribution of ridge and
lasso to the penalty term. Elastic net combines the
strengths of ridge and lasso: it can produce more parsi-
monious models than ridge by performing variable se-
lection while also tending to select or omit highly
correlated predictors as a group.

4. Adaptive lasso is a variant of lasso. It extends lasso by
allowing a different weight for each parameter in the
penalty term ðlPp

j¼1uj

��bj��Þ. The weights uj allow us
to shrink different coefficients differently: coefficients
of strong predictors are shrunk less and coefficients of
weak predictors are shrunk more. These weights are
data-dependent and can be derived from the inverse of
the corresponding coefficient from ridge regression.

PRMs provide a better way to obtain shrunk regression
parameter estimates because shrinkage is built into the esti-
mation process. Another approach to alleviating overfitting

is the use of a shrinkage coefficient after obtaining regres-
sion parameter estimates. The shrinkage coefficient can be
estimated from the original model fit. For generalized linear
models, it can be estimated from (model c2 � p )/model c2,
where model c2 is the likelihood ratio c2 statistic for testing
the global null hypothesis of all predictors simultaneously,
and p is the total degrees of freedom for the predictors
including those in the final model and those tested but not
in the final model. For an ordinary linear model, it can be
estimated from ðn � p � 1Þ =ðn � 1Þ �R2

adj =R
2. The

shrinkage coefficient can also be estimated as the average
calibration slope using bootstrap or cross-validation.
After we obtain the shrinkage coefficient estimate, bg, we

make adjustments to original regression parameter esti-
mates ðbb0; bbjÞ as

bbs

0 ¼ ð1�bgÞYþbgbb0

bbs

j ¼ bgbbj; j ¼ 1;.; p:

where Y is the mean of the response vector10.

APPENDIX 2. COMPUTATION METHODS
For all 4 penalized methods, l is an important tuning

parameter. l ¼ 0 Corresponds to standard maximum likeli-
hood estimation, and as l increases, the effect of shrinkage
penalty grows. When l is sufficiently large, the regression
coefficients will approach (or equal) 0. In addition to tuning
parameter l, we need to find appropriateweightsuj for adap-
tive lasso, and optimal mixing parameter a for elastic net.
For ridge and lasso, we use 10-fold cross-validation to

identify the optimal value of l.

1. We partition our data into 10 mutually exclusive blocks
of equal size; the same partition of data into 10-fold are
maintained across different penalized methods to avoid
random sampling variations.

2. In the first fold, we use the first 9 blocks as training data
to fit the ridge (lasso) model with each candidate value lj
(j ¼ 1,2,3,.,m), and use the fit to generate predicted
values for each subject in the last block. Thus, after
fold 1 is completed, we have predicted values for one-
tenth of the data for each lj value. Note these predicted
values are generated on data not used to fit the model.

3. Repeating the process in step 2, we rotate the validation
set—block 10, 9,., 1, such that each block serves as the

Patient ID l1 l2 . . . lm Y

1 0.18 0.23 0.35 0

2 0.54 0.76 0.45 1

. .

n

cvMSE(l1) cvMSE(l2) cvMSE(lm)
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validation data once. At the end of complete 10-fold
cross-validation, we have predicted values for each sub-
ject under each lj value. These predicted values use the
held-out validation sample from each fold.

4. We calculate the cross-validated mean square error
(cvMSE; Brier score) for each lj using predicted values
and observed outcome as:

cvMSE
�
lj
�¼ 1

n

Xn

i¼1

� bY ji�Yi

�2

The optimal l value is chosen as the minimum of
cvMSE(lj) – the lj at which the cvMSE achieves the
minimum.

For adaptive lasso, we first perform ridge regression, us-
ing the l value minimizing the mean square error (MSE)
metric in 10-fold cross-validation, to obtain coefficients
for each predictor. Then we fit lasso with the inverse of co-
efficients from ridge regression as the weights uj, using the
l value minimizing the MSE metric in 10-fold cross-
validation.

For elastic net, the optimal value of a and l is determined
by searching the grid (a ¼ seq(0.1, 0.9, 0.05), l ¼ (l1, l2,
., lm)). That is, for each value of a from 0.1 to 0.9 at
0.05 interval, we search for optimal value of lj minimizing
the MSE metric in 10-fold cross-validation.

APPENDIX 3. REGRESSION PARAMETER
ESTIMATES FROM MLE AND PRM

MLE MLE-full Ridge Lasso Adaptive lasso Elastic net

Age �0.007 �0.005 (0.23) �0.006 (0.06) 0.000 (1.00) �0.006 (0.06)

Sex �0.088 �0.097 (0.10) �0.083 (0.06) 0.000 (1.00) �0.084 (0.05)

Race 0.041 0.051 (0.25) 0.029 (0.28) 0.000 (1.00) 0.031 (0.25)

Insurance 0.042 0.050 (0.18) 0.039 (0.09) 0.000 (1.00) 0.039 (0.08)

Population of area 0.046 0.054 (0.17) 0.043 (0.06) 0.000 (1.00) 0.044 (0.05)

Median income �0.278 �0.234 (0.16) �0.260 (0.07) �0.192 (0.31) �0.261 (0.06)

% Without high school diploma 0.395 0.336 (0.15) 0.375 (0.05) 0.295 (0.25) 0.376 (0.05)

Charlson–Deyo score (1 vs 0) 0.068 0.050 (0.26) 0.056 (0.18) 0.000 (1.00) 0.057 (0.17)

Charlson–Deyo score (�2 vs 0) 0.066 0.060 (0.09) 0.050 (0.25) 0.000 (1.00) 0.051 (0.23)

Facility type �0.076 �0.049 (0.35) �0.065 (0.14) 0.000 (1.00) �0.066 (0.13)

Diagnosis year 0.026 0.011 (0.60) 0.021 (0.18) 0.000 (1.00) 0.022 (0.17)

Histology 0.558 0.523 0.450 (0.14) 0.513 (0.02) 0.519 (0.01) 0.513 (0.02)

Tumor stage (T2 vs T1) 0.639 0.660 0.668 (0.01) 0.659 (0.00) 0.648 (0.02) 0.659 (0.00)

Tumor stage (T3 vs T1) 0.775 0.822 0.828 (0.01) 0.817 (0.01) 0.777 (0.05) 0.818 (0.01)

Tumor size (1-2 vs<1) 0.812 0.828 0.234 (0.72) 0.704 (0.15) 0.501 (0.39) 0.707 (0.15)

Tumor size (2-3 vs<1) 1.342 1.371 0.758 (0.45) 1.250 (0.09) 1.076 (0.22) 1.252 (0.09)

Tumor size (3-4 vs<1) 1.686 1.715 1.103 (0.36) 1.595 (0.07) 1.430 (0.17) 1.598 (0.07)

Tumor size (4-5 vs<1) 1.734 1.753 1.140 (0.35) 1.634 (0.07) 1.473 (0.16) 1.636 (0.07)

Tumor size (�5 vs<1) 1.796 1.824 1.189 (0.35) 1.702 (0.07) 1.527 (0.16) 1.704 (0.07)

Grade (2 vs 1) 0.964 0.969 0.496 (0.49) 0.870 (0.10) 0.600 (0.38) 0.873 (0.10)

Grade (3 vs 1) 1.480 1.495 1.024 (0.31) 1.398 (0.06) 1.137 (0.24) 1.402 (0.06)

Grade (4 vs 1) 1.423 1.422 0.957 (0.33) 1.314 (0.08) 1.048 (0.26) 1.319 (0.07)

Grade (unknown vs 1) 0.628 0.625 0.099 (0.84) 0.501 (0.20) 0.000 (1.00) 0.506 (0.19)

Lymphovascular invasion

(yes vs no)

1.548 1.539 1.446 (0.06) 1.530 (0.01) 1.544 (0.00) 1.529 (0.01)

Lymphovascular invasion

(missing vs no)

0.625 0.740 0.598 (0.19) 0.710 (0.04) 0.619 (0.16) 0.711 (0.04)

MLE, Maximum likelihood estimation; PRM, penalized regression model.
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Parameter estimates for the MLE model are from our recent
publication,18 and MLE-full is from the model with all po-
tential predictors. Percentage shrinkage is the difference in
the parameter estimate between MLE-full model and PRM
divided by the parameter estimate from the MLE-full model.
For example, the parameter estimate of age from the ridge
model is �0.005 and from the MLE-full model is �0.007.
Then the percentage shrinkage for the parameter estimate
of age from the ridge model is [�0.007 � (�0.005)]/
�0.007 ¼ 0.23, or 23%.

Lasso does not shrink any regression coefficient to 0, nor
does elastic net in this data set. Lasso and elastic net have a
very similar shrinkage pattern. Regarding the shrinkage
properties of adaptive lasso, it is observed that small coeffi-
cients tend to be shrunk to 0, whereas large coefficients are
shrunk less than small coefficients. For example, the coeffi-
cients of all demographic and socioeconomic variables are
shrunk to 0, the coefficients of tumor size and grade are
shrunk much less than in ridge (for tumor size shrunk by
15% to 39% for adaptive lasso vs 35% to 72% for ridge).
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C-index summary plot
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FIGUREE1. C index, Brier score, and calibration slope for simulation of sample size from 10% to 90% of total sample size. The first vertical line in each

cluster represents the standard maximum likelihood estimation model, followed by ridge, lasso, adaptive lasso, and elastic net models. Length of vertical

lines corresponds to the 95% confidence interval on the basis of the distribution of 500 bootstrap samples, and the diamond represents the median.
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C-index summary plot
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FIGURE E2. C index, Brier score, and calibration slope for simulation of

outcome frequency at 5%, 10%, 20%, 40%, and 80% with 800 patients.

The first vertical line in each cluster represents the standard maximum like-

lihood estimation model, followed by ridge, lasso, adaptive lasso, and

elastic net models. Length of vertical lines corresponds to the 95% confi-

dence interval on the basis of the distribution of 500 bootstrap samples, and

the diamond represents the median.

JTCVS Open c Volume 9, Number C 315

Yan et al Thoracic: Esophageal Cancer



TABLE E1. Classification table of the 5 prediction models with cutoff

at 30% outcome probability

Type of model Sensitivity Specificity

MLE (standard) 59.16% 79.82%

Ridge 57.70% 81.02%

Lasso 59.59% 80.06%

Adaptive lasso 58.28% 80.34%

Elastic net 59.59% 80.06%

MLE, Maximum likelihood estimation.
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