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Abstract

Multi-atlas segmentation propagation has evolved quickly in recent years, becoming a state-of-the-art methodology for
automatic parcellation of structural images. However, few studies have applied these methods to preclinical research. In this
study, we present a fully automatic framework for mouse brain MRI structural parcellation using multi-atlas segmentation
propagation. The framework adopts the similarity and truth estimation for propagated segmentations (STEPS) algorithm,
which utilises a locally normalised cross correlation similarity metric for atlas selection and an extended simultaneous truth
and performance level estimation (STAPLE) framework for multi-label fusion. The segmentation accuracy of the multi-atlas
framework was evaluated using publicly available mouse brain atlas databases with pre-segmented manually labelled
anatomical structures as the gold standard, and optimised parameters were obtained for the STEPS algorithm in the label
fusion to achieve the best segmentation accuracy. We showed that our multi-atlas framework resulted in significantly higher
segmentation accuracy compared to single-atlas based segmentation, as well as to the original STAPLE framework.
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Introduction

Genetically modified mice are widely used in the preclinical

studies of human brain diseases such as Alzheimer’s disease, as

they share more than 85% of their genes with humans [1]. Since

an estimated 20,000 knockout mouse strains will be created by the

International Knockout Mouse Consortium over the coming

decade [2], advanced computational imaging tools will be essential

for efficiently extracting information. Worldwide efforts to

understand the role of genes in brain morphology demand

efficient data acquisition and analysis framework to quantify the

consequences of gene function in development and pathology.

High resolution MRI techniques (voxel size ,100 mm) are

becoming an increasingly popular tool to study morphometric

changes in transgenic mice. Large scale MRI phenotyping studies

demand high-throughput acquisition and analysis of high-resolu-

tion 3D data. In particular, automatic, accurate quantitative

methods for MR image analysis are essential for effective

phenotyping. Structural parcellation is a quantitative analysis

method, which enables the morphometric characterisation of

brain structures, such as shape and volume. The current gold

standard for structural parcellation in MRI studies of mouse brains

is conducted manually, despite being expert-dependent and labour

intensive [3,4]. Different automatic algorithms have thus been

developed to overcome these limitations and meet the challenge of

objective and accurate high throughput analysis [5,6].

Segmentation propagation is a method for automatic structural

parcellation [7–10]. It uses pre-labelled MR images – called

‘‘atlases’’ – to automatically segment different anatomical regions

of an unlabelled MR image. Here we define an atlas as a pair of

images containing both the original MR data and its correspond-

ing manually labelled anatomical structures. Firstly, a transforma-

tion is performed which maps the original MR data of the atlas to

the unlabelled MRI in a process called image registration.

Secondly, the same transformation is applied to the manually

labelled anatomical structures in order to match the unlabelled

image’s morphology. The performance of the segmentation

propagation method relies highly on the image registration

procedure [11]. Local misalignments can occur due to the large

morphological variability between subjects, imaging artefacts, low

signal/contrast-to-noise ratios and different contrasts (i.e. T1, T2,

T2* weighted), resulting in poorly propagated segmentations.

Several studies have tried to improve the accuracy of

segmentation propagation methodologies by propagating several

atlases’ labels and then merging them into a more accurate result;

this concept is known as ‘‘label fusion’’ [12,13]. Aljabar et al. have

shown that segmentation accuracy is dependent on the number of

atlases used [14]. They tested label fusion using a majority voting
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strategy, in which each voxel is assigned to the structural label

upon which the majority of the propagated atlases agree. They

concluded that the segmentation accuracy reaches a maximum

value when the number of atlas selected for fusion reaches a

certain number.

Several methods have been introduced to achieve automatic

structural brain parcellation in clinical MRI studies [8,15–17],

especially using the multi-atlas based approach [12,18–24].

However, only a handful of studies have applied multi-atlas based

structural parcellation techniques to preclinical data. Artaeche-

varria et al. segmented ex vivo mouse brains using a multi-atlas

approach [25]. Their study relied on an ex vivo mouse brain MRI

atlas database with 10 individual samples that had each been

manually segmented into 20 structural labels [26]. In their study, a

weighted majority voting label fusion method was used, with the

weights derived from the mutual information between the two

registered images. They showed improvement in segmentation

accuracy when compared to a simple majority voting method. In

the case where only one atlas is available, Chakravarty et al. [27]

proposed a method which firstly propagates the atlas labels to a set

of unlabelled images using a conventional single-atlas segmenta-

tion propagation approach. Subsequently the resulting set of

structural labels were propagated to the target image using

majority voting, demonstrating improvements in terms of

segmentation accuracy when compared with direct single-atlas

segmentation propagation.

The above-mentioned preclinical studies are largely dominated

by ex vivo data sets. Recently, there has been a shift from ex vivo

towards in vivo MRI phenotyping, limiting artefacts from tissue

preparation and enabling longitudinal studies [3,28,29]. However,

in vivo studies inevitably generate images with much lower

contrast/signal-to-noise ratio due to the shortened scanning time

and the limited use of contrast agents. There is a current need for

robust methodologies to process these data. Scheenstra et al.

proposed an automatic structural parcellation of in vivo mouse

brain MR images by firstly performing a single-atlas affine

registration-based segmentation, followed by an edge-based

clustering in order to achieve a fast segmentation [30]. This

method is shown to achieve the same level of segmentation

accuracy compared to non-rigid registration. More recently, Bai

et al. [5] conducted a study to compare structural parcellation

accuracy using various methods and found no significant

improvement when using a more advanced label fusion algorithm,

the simultaneous truth and performance level estimation (STA-

PLE) [12,13], or a Markov random field approach alone,

compared to a simple majority voting approach.

Cardoso et al. have recently proposed a multi-atlas label fusion

algorithm, the multi-label similarity and truth estimation for

propagated segmentations (STEPS) [21], which integrated the

Markov random field regularisation into the optimisation scheme

in the STAPLE framework, along with some other improvements,

including a spatially variant atlas ranking scheme based on the

locally normalised cross correlation (LNCC). Validation per-

formed on human brain MRI data showed better segmentation

accuracy using STEPS compared to other multi-atlas label fusion

algorithms.

In this paper, we apply a fully automatic multi-atlas based open

source framework to the structural parcellation of mouse brain

MRI. The framework consist of several preprocessing steps along

with a non-rigid B-spline parameterised registration [31], and the

above mentioned label fusion method STEPS. We investigated the

parameters in the STEPS label fusion algorithm, and optimised

those parameters for the in vivo mouse brain atlas database, the

MRM Neurological Atlas (MRM NeAt), provided by Ma et al.

[3]. We then evaluated the performance of our framework by

comparing it with a single-atlas based method without any label

fusion technique as well as with the commonly used STAPLE label

fusion algorithm. We also demonstrated the ability of our

framework to parcellate new unlabelled images by adopting

another in vivo mouse brain MRI atlas, the National University of

Singapore (NUS) mouse atlas [5] and regarded the MR images in

it as unlabelled test images. We further tested the ability of our

framework to detect volumetric difference between brain struc-

tures of mice with or without genetic modification.

Materials and Methods

In this section, we firstly introduce the multi-atlas framework of

the automatic structural parcellation step by step. Secondly, we

describe the in vivo mouse brain atlas which we use for evaluation.

Thirdly, we present the optimisation of the STEPS algorithm and

evaluated its performance using the in vivo atlas. Fourthly, we

apply and evaluate the ability of our framework to parcellate new

unlabelled in vivo MRI data. Finally, we evaluated the ability for

groupwise analysis using our framework on a previously published

ex vivo MRI dataset.

Automatic Multi-atlas Structural Parcellation Framework
Construction

The automatic multi-atlas framework includes two pre-process-

ing steps (brain extraction and bias field correction) followed by a

series of non-rigid registrations and a final label fusion step.

Figure 1 shows a step-by-step summary of the pipeline.

1. Brain extraction. Brain extraction is an important pre-

processing step to limit the analysis region of interest (ROI) to

areas specifically within the brain region. In this step, a mask is

created for the unlabelled image that includes only the regions

containing brain tissues and excludes all other non-brain tissues

and background. The mask of the unlabelled image is created

automatically from the atlas images through the following steps.

Firstly, the unlabelled image is globally registered to all atlas

images, with the cost function in the optimisation step calculated

over only the voxels inside the atlas mask and their corresponding

voxels in the warped unlabelled image. This global registration

steps are performed using a block-matching approach [32].

Secondly, the resulting transformation matrices are inverted and

used to propagate all the atlas brain masks to the unlabelled image.

Thirdly, all the propagated brain masks propagated from the atlas

database are fused using the STAPLE algorithm [12] in order to

obtain a consensus brain outline. Finally, the mask is dilated by 4

voxels so that the contrast between brain tissue and the

surrounding CSF can be captured by non-rigid image registration

in a later step.

2. Intensity non-uniformity correction. MR images are

corrupted by intensity non-uniformity, caused by factors such as

the inhomogeneity of the RF excitation field and the spatially non-

uniform distributed receiver coil sensitivity profiles [33]. The

corrupted intensity profiles may lead to misalignment in the

registration process. To correct this problem, we adopted the N3

intensity non-uniformity correction algorithm developed by Sled

et al. implemented in FreeSurfer [33]. The characteristic distance

over which the field varies was set to 10 mm, with a deconvolution

kernel used to sharpen the histogram set to 0.15 mm, a threshold

of percentage change in field estimate, below which iteration stops,

set to 0.0001 and a maximum iteration number set to 100.

3. Image registration. After the intensity non-uniformity

correction was implemented, the affinely aligned atlas images

obtained in the brain extraction step were then non-rigidly

Multi-Atlas Parcellate Mouse Brain MRI Structure
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registered to the unlabelled image. The non-rigid registration aims

at maximising the normalised mutual information using a cubic B-

spline parameterisation to model the transformation [31]. The

transformations obtained from the above registration procedures

were then used to warp the manually segmented structural labels

of the atlas images into the space of the unlabelled image. Nearest-

neighbour interpolation was used to preserve the integer nature of

the labels.

4. Label fusion. After all the propagated structural labels

were obtained from the image registration step, they were fused to

generate the final result of structural labels for the unlabelled

image. We adopted the STEPS algorithm developed by Cardoso

et al. [21] to perform the label fusion. STEPS is an extension of

the original STAPLE algorithm proposed by Warfield et al. [12],

and extended by Rohlfing et al. [13]. The original STAPLE

algorithm was developed with the purpose of fusing several expert-

delineated manually labelled anatomical structures in order to

obtain the hidden ground truth segmentation. Several improve-

ments over STAPLE were introduced in STEPS. A more detailed

derivation of the STEPS algorithm is described in Cardoso et al.,

2013 [21]. In the original paper, Cardoso et al. have compared

the STEPS algorithm to several other label fusion methods, and

demonstrated that STEPS resulted in the highest parcellation

accuracy under the same setting, and was most robust to the

reduction of database size. Representative resulting images

obtained after each processing step of the framework when

applying to an unlabelled image are shown in Figure 1.

Mouse Brain Atlas
To optimise the parameters for label fusion and evaluate the

accuracy of the parcellation results, we adopted the publicly

available mouse brain MRI atlas databases. Currently, the number

of such available atlas databases is limited. To the best of our

knowledge, there are currently 7 publicly available atlas databases

[3,5,26,34–40], most of which contain only one structurally

labelled average atlas (the minimal deformation atlas). A detailed

comparison of all the databases is presented in the supplementary

material ‘‘File S2. MRI mouse brain atlas databases currently

available’’. Within the databases, only two of them, the MRM

NeAt [3,26] and the NUS atlas [5], contain structural labels for

each individual atlas sample, which make it possible to be adopted

by the proposed multi-atlas based label fusion method. Both of

these two atlas databases include in vivo image samples, and the

brain structures were both manually parcellated following the

Franklin-Paxinos atlas [41]. The MRM NeAt database includes

atlases of 12 individual T2*-weighted in vivo brain MR images of

12–14 weeks old C57BL/6J mice; each with 20 manually labelled

anatomical structures. The NUS mouse atlas database includes 5

individual T2-weighted in vivo brain MR images of adult male

C57BL/6J mice, each has 40 manual labelled anatomical

structures. Detailed scanning parameters are described in Ma

et al., 2008 [3] and Bai et al. 2012 [5]. Heckemann et al had

previously shown that increasing the number of images in the atlas

database can improve the accuracy of the label fusion derived

consensus segmentation [8]. As a result, the MRM NeAt atlas

database, which has the largest number of atlases, was selected for

this part of the study. Due to missing labels in 2 of the 12 available

atlases in the MRM NeAt database, only 10 images and associated

structural labels were included.

For neurodegenerative diseases, the progression of pathology

might vary between two hemispheres [20]. Furthermore, for

studies interested in further estimating the cortical thickness from

the structural parcellation result, hemisphere separation can also

help to identify and segment the intra-hemispheric cortical surface

area [42,43]. It is thus preferable to separate the structural labels of

the original atlas into left and right hemispheres. We thus

separated the brain images and their corresponding structural

labels in the original atlas database into left and right hemispheres

along the mid-sagittal plane. Maes et al. achieved left/right

hemisphere separation for asymmetry measurement using seg-

mentation propagation [44]. An alternative way to determine the

inter-hemisphere separation plane is to exploit the symmetric

nature of the MR data. This method aims at finding the reflective

rigid-body transformation that minimizes the absolute distance of

an image and its mirrored version [45–47]. This method is only

valid for brain images from wild type mouse strains, for which no

left/right asymmetries are induced by diseases. Since the mice in

the atlas database adopted in this study are wild type animals, we

used the latter method by firstly flipping the atlas images and using

Figure 1. Step-wise summary of the framework. Pipeline of the framework is shown at the top of the image. Below the pipeline are
representative images of results obtained after each processing step of the framework when applied to an unlabelled image. (A) Brain extraction –
create brain mask for bias field correction; (B) Dilate mask to include contrast of brain tissues and CSF for image registration; (C, D) Images before and
after bias field correction; (E) Structural parcellation result after single-atlas segmentation propagation; (F) Structural parcellation result after multi-
atlas label fusion.
doi:10.1371/journal.pone.0086576.g001
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normalised mutual information as an asymmetry measurement to

find the mid-sagittal plane.

Parameter Optimisation
In the STEPS algorithm, the best local labels for label fusion are

selected after ranking based on the LNCC computed over a local

Gaussian kernel [21]. As a result, the segmentation accuracy varies

depending on two user-specified parameters. The first is the width

of the Gaussian kernel used to estimate the LNCC for locally

ranking the propagated atlases. The second is the number of top

ranked atlases to include in the local label fusion. In this paper, we

optimised the parameters on the MRM NeAt atlas database after

the labels have been separated into left and right hemisphere. We

varied the Gaussian kernel standard deviation from 1 to 6 voxels

(incremental step of 0.5 voxel) and the number of atlases used from

3 to 9. In total, 77 parameter combinations were calculated.

For each pair of parameters, we calculated the average Dice

similarity coefficient of every atlas across the entire database as an

indicator of the structural parcellation performance. The average

Dice similarity coefficient is obtained in the following steps (known

as a ‘‘leave one out cross validation’’). Firstly, each of the 10

images was regarded as an unlabelled test image, and the

remaining 9 were used as the atlas images. The structural labels

in the atlases were propagated to the unlabelled image with multi-

atlas segmentation propagation scheme. Secondly, the Dice

similarity coefficients between the automatic segmentations and

the manual segmentations were calculated for every image in the

database. Finally, the averaged Dice similarity coefficients for all

the images across all structures were calculated for each parameter

combination. The combination that gave the highest average Dice

similarity coefficient was selected and regarded as the optimal set

of parameters.

Performance Evaluation
In order to evaluate the performance of the multi-atlas label

fusion part of our framework, we compared it with a single-atlas

based segmentation propagation method as well as with the

commonly used multi-atlas label fusion method STAPLE. A leave-

one-out cross validation similar to what was described in the

parameter optimisation section was performed for both methods.

For the single-atlas method, we propagated the label from each of

the 9 atlases and averaged the Dice similarity coefficient.

Application to Unseen Images
MR images collected from different sites and studies may vary

due to various factors such as scanner/coil variance and scanning

sequence differences. As a result, in addition to the cross validation

within the same atlas database, we tested the performance of our

framework to parcellate images collected from sites other than the

atlas database, to further evaluate its performance in the situation

of a real application.

To quantitatively evaluate the performance of our multi-atlas

framework when applied to a new dataset, an expert-delineated

manual structural parcellation is required for the new dataset as a

gold standard. Here we use the atlases in the NUS atlas database

[5] as unlabelled test images. We separated the corresponding

manual structural labels into left/right hemisphere as we did for

the MRM NeAt atlas database, and generated 40 structural labels

for each hemisphere.

We selected and grouped 24 structural labels (12 in each

hemisphere), which were presented in the manual segmentation in

both of these two atlas databases to ensure a one-to-one structural

correspondence between all atlases. However, the inter-rater

variability still needs to be taken into account. This is due to the

differences in the manual structural parcellation protocols between

two databases, and the subsequent accuracy of the quantitative

analysis [48]. For the two atlas databases we adopted, the manual

structural parcellations were both following the Franklin-Paxinos

atlas [41]. Nevertheless, giving the fact that there is no knowledge

about the inter-rater variability between these two datasets, there

is still a source of variability in the experiment. This limitation is

discussed in more detail in the ‘‘conclusion and discussion’’

section.

Similarly to the procedure described in the performance

evaluation step, we propagated the structural labels from the

MRM NeAt database to each of the unlabelled images from the

NUS database using our multi-atlas framework, as well as the

STAPLE algorithm and single-atlas segmentation propagation

method. We adopt the parameters we previously obtained to fully

represent a real situation, where no manual segmentation are

available to optimise the parameters. Finally, for each of the three

approaches, we calculated the Dice similarity coefficient between

the automatic parcellation results and the manual segmentations

in the NUS database, and compared the results.

Application to the Groupwise Analysis
One of the main applications of structural parcellation is to

detect and quantify volumetric changes in brain structures of

different animal groups, which vary in terms of pathology or

genetic background. To test the ability of our framework to detect

such statistical differences, we adopted previously published data

set of the Tc1 mouse model of Down syndrome. Details about the

Tc1 model and image acquisition are described in Sinclair et al.

[49]. Ex vivo mouse brains of 16 animals, 8 wild type and 8

transchromosomic, were selected and structural parcellated. The

MRM NeAt database also includes 10 ex vivo atlas images, which

were manually parcellated into the same 20 structures [26]. We

thus adopted these ex vivo atlases, again with structural labels

separated into left and right hemisphere (one of these 10 ex vivo

atlases is discarded due to the artefact as well as its resolution

difference compared with other ex vivo atlases in the database).

Similarly to the in vivo database, we used a leave-one-out cross-

validation strategy to obtain an optimised combination of

parameters using the atlases. We then applied the proposed

framework to parcellate the structures of all 16 animals. Both our

framework and the single-atlas method were used to detect volume

differences in all structures between the wild-type group and the

transchromosomic group. The obtained volumes were compared

both with and without total intracranial volume normalisation.

Results

We firstly optimised the parameters of the STEPS algorithm in

our framework, and evaluated its performance using leave-one-out

cross validation for the in vivo atlas database MRM NeAt.

Secondly, we compared the segmentation accuracy obtained from

our pipeline with the result obtained from a single-atlas

segmentation propagation method, and with the STAPLE

algorithm. Thirdly, we adopted the in vivo mouse brain MRI data

from another atlas database, the NUS mouse atlas, as test images,

and validated the ability of our multi-atlas framework to parcellate

unlabelled new data from different site. Finally, we applied our

framework on ex vivo MRI data from two groups of mice with

different genetic background to evaluate the ability to detect

volumetric difference between groups. The framework source code

and a sample atlas database can be downloaded from http://cmic.

cs.ucl.ac.uk/staff/da_ma/multi_atlas/.

Multi-Atlas Parcellate Mouse Brain MRI Structure
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Parameter Optimisation
Optimal parameters were obtained for the MRM NeAt atlas

database. We optimised the values of two parameters in the local

ranking system LNCC of the STEPS algorithm: the width of the

Gaussian kernel for image comparison and the number of top

ranked labels to include in the label fusion. Between the two

parameters, the number of top-ranked atlas selected for label

fusion appears to have a dominant effect on the performance.

Figure 2 shows the Dice similarity coefficient value obtained with

respect to different number of atlases selected, where the error bars

represent the variation caused by selecting different values of the

Gaussian kernel standard deviation in the LNCC image similarity

measurement. The segmentation accuracy was estimated as the

average Dice similarity coefficient across all the structures, which

varies from 0.79 to 0.83.

For the highest average Dice similarity coefficient we obtained,

the number of atlases for label fusion was equal to 8 and Gaussian

kernel standard deviation was equal to 3 voxels. Sample images of

the cross validation of our pipeline on the original atlas database as

well as the atlas with left-right hemisphere separation are shown in

Figure 3. This parameter combination was used to access the

difference between our framework and two other approaches, as

reported in the following section.

Statistical Comparison
We compared the parcellation accuracy of our framework with

the single-atlas based segmentation propagation and STAPLE

label fusion methods using a leave-one-out validation on the

MRM NeAt atlas database. For each atlas image, we averaged the

Dice similarity coefficient of all the propagated atlases. Both

approaches were compared with the STEPS algorithm using an

optimised parameter combination (Figure 4). A two-tailed paired t-

test was performed on each of the 40 structures, and multiple

comparisons across all the structures was corrected with FDR set

to q = 0.05. Compared to the single-atlas method, our multi-atlas

framework achieved significantly higher segmentation accuracy for

every structures except the left hippocampus, left/right cerebel-

lum, and right caudate putamen. Compared to the STAPLE

algorithm, significantly higher segmentation accuracies are

achieved in the left/right anterior commissure, left superior

colliculi, left central gray and the remaining left/right midbrain

olfactory bulb, brain stem and fimbria for both left and right

hemispheres.

Application to Unseen Images
In order to evaluate the ability of our multi-atlas framework to

parcellate new data, we adopted the mouse brain MR images in

the NUS atlas database as unlabelled test images. We propagated

the structural labels in the MRM NeAt atlas database to the MR

images in the NUS atlas database with the optimised parameter

Figure 2. Parameter optimisation for atlas database with left/
right hemisphere separated. The overall Dice similarity coefficient
across all structures resulted from the selection of different number
(from 3 to 9) of top-ranked atlases for label fusion. The error bars
represent the standard deviation of 12 tests with different Gaussian
kernel standard deviation in the LNCC image similarity measurement
(from 1 to 6 with 0.5 step increment). The small variation indicates little
effect of the Gaussian kernel width towards the overall accuracy.
doi:10.1371/journal.pone.0086576.g002

Figure 3. Sample images from the cross validation result of the pipeline on the atlas databases. Parcellation results obtained with the
proposed method and parameters. (A) The original MR image from the atlas (B, D) The MR image from the atlas overlaid with corresponding manually
labelled anatomical structures which is considered as gold standard. (C, E) The same MR images overlaid with the structural parcellation result after
applying our multi-atlas framework. Top row: coronal view, bottom row: axial view.
doi:10.1371/journal.pone.0086576.g003

Multi-Atlas Parcellate Mouse Brain MRI Structure
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combination obtained previously for the MRM NeAt atlas

database. Figure 5 shows the sample images of the test MRI data

overlaid with corresponding manual labels as well as the automatic

structural parcellation after applying our multi-atlas framework.

The 24 manual structural labels (12 in each hemisphere) that were

present in both atlas databases were selected and grouped. Figure 6

shows the statistical comparison of the resulting Dice similarity

coefficient derived from our multi-atlas framework as well as that

from the STAPLE algorithm and the single-atlas segmentation

propagation. One should note that the Dice similarity may be of

limited use due to the intrinsic variability between the manual

segmentation protocols in the two atlas databases. The Dice

similarity coefficient obtained here should neither be compared to

that derived in the parameter optimisation part nor to the results

from Bai et al’s study [5], because the images differ in contrast and

SNR. A two-tailed paired t-test was performed on each of the 24

structures, with multiple comparisons across all the structures

corrected with FDR (q = 0.05). When compared to the single-atlas

method, our multi-atlas framework achieved significantly higher

segmentation accuracy to parcellate left/right external capsule,

left/right internal capsule, right anterior commissure, left olfactory

bulb and right amygdala. Compared to the STAPLE algorithm,

significantly higher differences are achieved in the external

capsule, anterior commissure, cerebellum and neocortex for both

hemispheres, and amygdala for right hemisphere. Interestingly,

the performance of STAPLE is worse than the single atlas method

when parcellating the anterior commissure. It could be due to the

fact that the STAPLE algorithm assumes that the segmentation

errors, for each individual segmentation, are due to random

human rater error. However, a large portion of the segmentation

errors here are due to image registration. The anterior commissure

is a small structure, resulting in a relatively low impact on the

registration algorithm compared to the contrast from surrounding

tissues. On the other hand, the STEPS algorithm reduced the

segmentation error coming from registration by taking the local

image similarity into account in the atlas selection procedure [21].

Application to Groupwise Analysis
Figure 7 shows sample images of parcellation results using our

framework (Figure 7b) as well as using the single-atlas based

method with misalignments occurring in some regions (Figure 7c,

7d). The STEPS label fusion algorithm successfully obtained the

correct labels at both regions where not all of the single-atlas based

methods produce accurate labels (shown by the red arrow).

Statistical analysis between Tc1 Down Syndrome and wild type

mouse was performed on the volumetric data both with and

without total intracranial volume normalisation. A two-tailed

paired t-test was performed on each of the 40 structures. Multiple

comparisons were corrected with a false discovery rate q = 0.05

(Figure 8). We compared the statistical result of our framework

with the result of the single-atlas based method for each of the 9

atlases in the database (Table 1).

For the unnormalised volumetric data, our framework detected

significant volume increase in the transchromosomic group in

hippocampus, caudate putamen, thalamus, cerebellum, neocortex

and rest of the midbrain in both left and right hemispheres.

Conversely, in the single-atlas method, five out of nine atlases (A1

A4 A5 A6 A8) failed to detect all significant volume increases as

shown in our framework, one (A3) showed the same significant

result, and one (A9) showed a significant result on the olfactory

bulb which is neither detected by our framework nor the tensor-

based morphometry analysis in the original study [49]. This was

possibly due to a larger variance in the single-atlas based method.

On the other hand, two atlases (A2 A7) showed a significant

increase in external capsule which was not picked up by our

framework, although they failed to detect significant differences

either for the thalamus on the left hemisphere (A2) or for the rest

of the midbrain on the right hemisphere (A7).

While for the volume normalised by the total intracranial

volume, our framework detected significant volume shrinkage in

the cerebellum and olfactory bulb that coincides with the tensor-

based morphometry results reported by the original study, while

all the single-atlas based methods detected less or no significant

volume differences, suggesting less statistical power. It is worth

Figure 4. Cross validation result on the in vivo mouse brain
atlas MRM NeAt [3]. Comparison of the average Dice similarity
coefficient using our framework, a single-atlas segmentation propaga-
tion method and the STAPLE algorithm. Two-tailed paired t-tests were
performed, with multiple comparisons of 40 structures corrected with
false discovery rate set to 5%. Error bars representing standard
deviation (*: significant difference was discovered between single-atlas
method and STEPS algorithm; #: significant difference was discovered
between STAPLE and STEPS algorithm).
doi:10.1371/journal.pone.0086576.g004
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noting that for the previously mentioned single-atlas based method

on A2 and A7, which revealed additional statistical group

difference on external capsule in the unnormalised data, they

showed no statistical difference on all the structures after total

intracranial volume normalisation.

Overall, our framework obtained better statistical power to

detect structural group volume differences when compared to the

single-atlas method. Nevertheless, some of the structural volume

differences detected by the tensor-based morphometry analysis in

the original study, such as superior colliculus and hypothalamus

for the unnormalised data, and external capsule (posterior part of

the corpus callosum) for the normalised data, were not captured

using the proposed framework. This is possibly due to the voxel-

wise nature of tensor-based morphometry techniques, which can

detect very local changes, as opposed to the proposed technique,

which can only detect changes in regional volume. Furthermore,

an accurate structural parcellation is not only important for

regional volume analysis, but also for further quantitative analyses

such as thickness or shape analysis.

Conclusions and Discussion

Conclusion and Further Development
This paper presents a fully automatic multi-atlas framework for

structural parcellation of mouse brain MRI data. The proposed

work adopted a multi-atlas label fusion method – STEPS, along

with an efficient non-rigid registration algorithm and other pre-

processing techniques such as brain extraction and intensity non-

uniformity correction using N3, to create an integrated framework

for brain structural parcellation of mouse brain MR data.

Previous studies have shown successful applications of such

multi-atlas segmentation propagation techniques in a clinical

context, to detect volumetric variation of brain structures such as

ventricles and hippocampi [9,20]. In this study, the results denote

that with a relatively limited number of available atlases in the

database when compared with clinical studies, the structural

parcellation of pre-clinical data can be significantly improved

when compared to previous approaches [12,13]. We have also

demonstrated the ability of our framework to use existing atlas

databases to parcellate images acquired at different sites. We also

tested its ability to detect brain structure volumetric changes in

genetically modified pathological animal model.

In order to assess the pre-clinical relevance of the proposed

framework, further work could include statistical power analysis.

For example, would the improved method be able to detect the

same amount of change by using fewer samples, or what level of

subtle change can be detected using the new method with the same

amount of data? van Eede et al. have recently proposed a method

to generate artificial deformation field which was originally used to

test registration sensitivity [50], which would be a good method to

generate simulated volume changes.

Parameter Optimisation Related Issues
The optimised STEPS parameters were chosen based on the

average Dice similarity coefficient over all the structures and

across all samples in the atlas database. However, one should note

that the Dice similarity coefficient is intrinsically biased towards

large structures (e.g. hippocampus and neocortex), while small

structures (e.g. external capsule, anterior commissure) are more

sensitive to local registration errors and inter-atlas morphological

variation. However, studies interested in parcellating only certain

structures can obtain the optimised parameter combinations

following this framework by considering only the Dice similarity

coefficient for the specific structures of interest.

When dealing with new data, there is likely to be no manual

segmentation associated with the data. As a result, it is impossible

to improve the parameters for the pipeline further in order to

reach the underlying optimal parcellation. However, as shown in

Figure 2, the parameter optimisations near the optimal value

reach a plateau. It indicates that our pipeline is resistant to

parameter variation around the optimal combination. As a result,

small deviations of the parameter values have a small impact on

Figure 5. The structural parcellation result of applying our multi-atlas framework to a new dataset. (A) The MR image from an NUS
mouse atlas which is treated as a new dataset. (B) MR image of the unlabelled image overlaid with corresponding manually labelled anatomical
structures considered as gold standard. (C) The same MR images overlaid with the structural parcellation result after applying our multi-atlas
framework. Top row: coronal view, bottom row: axial view.
doi:10.1371/journal.pone.0086576.g005
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the overall segmentation performance. On the other hand, when

applying the pipeline to a set of unseen data from another study,

the parcellation error derived from image registration would

increase. Within the two parameters of interest, the ‘‘Kernel

standard deviation’’ of LNCC- is directly related to the image

registration error, while the number of selected atlas is more

related to the statistical power of the label fusion. It is shown in

Figure 2 that the parameter ‘‘Kernel standard deviation’’ has less

effect in the segmentation accuracy when compared to the number

of selected atlases. We speculate thus that the optimised

parameters obtained through the leave-one-out validation will

not be too distant from the underlying optimal parameter when

applying to the new data.

Image Registration Related Issues
Most image similarity measurements used in registration

algorithms are governed by high contrast edges, and the

registration accuracy in regions with low contrast is limited. For

the neighbouring anatomical regions that lack contrast in between,

the registration algorithm will have to rely on the regularisation

term rather than on image features for accurate matching [31,51].

This can lead to a decrease in segmentation performance. In

addition, the atlases used for the proposed multi-atlas framework

are limited in number and are T2* weighted, which might impede

their direct application to images acquired with different contrast.

However, the normalised mutual information used in this

framework for image similarity measurement has been shown to

be less dependent on image contrast, and is currently commonly

used to compare image similarity between multi-modal images

[52].

Current Limitation of Mouse Brain Study
Compared to human brain MRI segmentation studies

[14,20,21], the availability of mouse brain atlas databases is

lacking, and as such, the performance of label fusion techniques is

subsequently limited. To the best of our knowledge, there are

currently only two in vivo multi-atlas mouse brain MRI databases

that are publicly available [3,5]. The number of available

databases, as well as the number of atlases in each database, is

Figure 6. Validation on the ability of the multi-atlas framework
to parcellate structures of the new dataset. The new dataset is
adopted from the NUS mouse atlas [5] with the corresponding manual
labels regarded as gold standard. 12 manually segmented structural
labels were included in the comparison which appeared in both of the
two atlas databases. Previously obtained optimised parameter combi-
nation for the MRM NeAt atlas database were used to calculate the Dice
similarity coefficient. Two-tailed paired t-tests were performed, with
multiple comparisons of 24 structures corrected with false discovery
rate set to 0.05. Error bars representing standard deviation (*: significant
difference was discovered between single-atlas method and STEPS
algorithm; #: significant difference was discovered between STAPLE
and STEPS algorithm).
doi:10.1371/journal.pone.0086576.g006

Figure 7. Sample images comparing the parcellation result of
our framework and the single-atlas based methods. The selected
slices demonstrated that despite some local misalignments in the
single-atlas based method (as shown in red arrows). The STEPS label
fusion algorithm in our framework successfully preserved the correct
local registration in different regions. Structural parcellations are
overlaid on the original image (in both coronal and sagittal view, a).
(b) Structural parcellation using the proposed framework. (c) Structural
parcellation result of a single-atlas based method with part of the
cerebellum mis-segmented. (d) Another structural parcellation result of
single-atlas based method with the edge between olfactory bulb and
cortex mis-segmented.
doi:10.1371/journal.pone.0086576.g007
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far from ideal. Although Chakravarty et al. [27] improved the

segmentation accuracy by introducing an artificial intermediary

multi-atlas database from a single-atlas, it does not address the

problem of insufficient data and morphometric variability.

It has been shown that label fusion algorithms benefit from an

increase in atlases, as the statistical power increases with sample

size [8]. The brain has similar structural layout across two

hemispheres. Studies have shown that by including the flipped

mirror images of the atlases to double the database size, the

structural parcellation result can be improved [20,21,45,46]. This

might arguably be an alternative solution to the problem of limited

atlas numbers in the database. However, when testing on the

MRM NeAt atlas database, the improvement of such process is

limited (data shown in supplementary material ‘‘File S1. Mirroring

process’’). This might be due to the small number of atlases

available in the database, which reduces the chance to get better

local morphological match from the flipped images for the label

fusion algorithm to benefit from, while additional registration error

is introduced at other regions due to the brain asymmetry.

Furthermore, MRI has been used to measure the asymmetry of

adult mouse brains [53], and a recent study using optogenetics

conducted by Michael et al. also showed differences between the

left and right hippocampal plasticity [54]. Given such lateraliza-

tion of the brain, further validation is still necessary to assess the

anatomical viability of such flipping process.

Within the field of clinical research, there are well documented

and standardised protocol of manual parcellation [55–57], the

amount of equivalent available information for mouse brain MRI

is however limited. The unclear nature of the anatomical

standardisation and vague definitions of the segmentation protocol

also reduces consistency between human raters. Furthermore,

manual segmentations are considered the gold standard to

evaluate segmentation accuracy, and are used for comparison to

assess the performance of automatic segmentation methods. This

makes the intra- and inter-rater labelling variability crucially

important as it represents the theoretical performance upper limit

for an automatic method. Such variability has not been fully

assessed in mice, which makes it difficult to determine the potential

improvement that an algorithm can achieve. Most of the available

publications about mouse brain MRI atlas construction, either

in vivo or ex vivo, single-atlas based or multi-atlas based, lack clear

guidance about the protocol for manual segmentation

[3,26,34,58]. However, efforts are being made to address this.

Bai et al. included a detailed protocol for manual segmentation of

Figure 8. Statistical comparison of the structural volume difference between groups of Tc1 Down Syndrome mouse and wild type.
Volumetric comparison on the a) unnormalised data; b) data normalised by total intracranial volume. A two-tailed paired t-test was performed on
each of the 40 structures. Multiple comparisons are corrected with false discovery rate q = 0.05. Error bars representing standard deviation.
(*: significant difference was discovered between the wild type and the transchromosomic group.).
doi:10.1371/journal.pone.0086576.g008
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every structure that is parcellated in the in vivo atlas they released

in the supplementary material [5]. More recently, Ullmann et al.

from the Australian Mouse Brain Mapping Consortium described

a detailed segmentation protocol on the minimal deformation atlas

for ex vivo MR images on the C57BL/6J mouse, which provided

further information for segmenting sub-regions of the neocortex,

hippocampus, cerebellum, and basal ganglia which would be a

good guideline for future investigations [4,39,40,59]. Those studies

will eventually lead to a standardised consensus protocol for

manual segmentation of mouse brain MRI.

Table 1. Statistical significant result on the volumetric comparison between groups of Tc1 Down Syndrome mouse and wild type,
result obtained both from our multi-atlas framework as well as the single-atlas based method using all atlases in the database.

Before normalisation After normalisation

Discovery? STEPS A1 A2 A3 A4 A5 A6 A7 A8 A9 STEPS A1 A2 A3 A4 A5 A6 A7 A8 A9

Hippocampus (Left) * * * * *

External Capsule (Left) * *

Caudate Putamen (Left) * * * * * * *

Ant Commissure (Left)

Globus Pallidus (Left)

Internal Capsule (Left)

Thalamus (Left) * * *

Cerebellum (Left) * * * * * * * *

Superior Colliculi (Left)

Ventricles (Left)

Hypothalamus (Left)

Inferior Colliculi (Left)

Central Gray (Left)

Neocortex (Left) * * * * * * * * * * * *

Amygdala (Left)

Olfactory Bulb (Left) * * *

Brain Stem (Left) * * *

Rest of Midbrain (Left)

Basal Forebrain Septum
(Left)

Fimbria (Left) * * * *

Hippocampus (Right) *

External Capsule (Right) * * * * * * * *

Caudate Putamen (Right)

Ant Commissure (Right)

Globus Pallidus (Right)

Internal Capsule (Right) * * * *

Thalamus (Right) * * * * * * * * * * *

Cerebellum (Right)

Superior Colliculi (Right)

Ventricles (Right)

Hypothalamus (Right)

Inferior Colliculi (Right)

Central Gray (Right) * * * * * * * * * * *

Neocortex (Right)

Amygdala (Right) * * * *

Olfactory Bulb (Right) * * *

Brain Stem (Right)

Rest of Midbrain (Right)

STEPS: structural label obtained from the result of our framework using STEPS label fusion algorithm. A1–A9: structural label obtained from the result of single-atlas
based segmentation method on each one of the atlas in the MRM NeAt database. A two-tailed paired t-test was performed on each of the 40 structures. Multiple
comparisons are corrected with false discovery rate q = 0.05. Error bars representing standard deviation. (*: significant difference was discovered between the wild type
and the transchromosomic group.).
doi:10.1371/journal.pone.0086576.t001
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describes the process and experimental result of including the

flipped mirroring images of the atlases to double the database size.

This might arguably be an alternative solution to the limited atlas

number in the database, and have been shown to improve the

structural parcellation result [20,21,45,46].
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