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ABSTRACT: Atomically precise thiolate protected Au nanoclusters Au38(SC2H4Ph)24 on
CeO2 were used for in-situ (operando) extended X-ray absorption fine structure/diffuse
reflectance infrared fourier transform spectroscopy and ex situ scanning transmission
electron microscopy−high-angle annular dark-field imaging/X-ray photoelectron spectros-
copy studies monitoring cluster structure changes induced by activation (ligand removal)
and CO oxidation. Oxidative pretreatment at 150 °C “collapsed” the clusters’ ligand shell,
oxidizing the hydrocarbon backbone, but the S remaining on Au acted as poison. Oxidation
at 250 °C produced bare Au surfaces by removing S which migrated to the support (forming
Au+-S), leading to highest activity. During reaction, structural changes occurred via CO-
induced Au and O-induced S migration to the support. The results reveal the dynamics of
nanocluster catalysts and the underlying cluster chemistry.
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A great challenge in nanocatalysis is to produce truly
homogeneous, structurally well-defined, and highly active

nanostructures that can serve for fundamental studies and new
applications. Thiolate-protected metal nanoclusters
(Mn(SR)m) with well-defined structures offer a route toward
creating atomically precise and catalytically active sites,1−4

providing model systems for atomic level studies of catalytic
properties.3,5,6

It is well-accepted that Au clusters (with <100 Au atoms)
supported by metal oxides exhibit excellent catalytic activity for
(low temperature) oxidation4,7−14 and hydrogenation,15−17

especially when compared with larger Au nanoparticles. Au
clusters facilitate reactant activation due to higher adsorption
energies. Nevertheless, the initially well-defined Au cluster
structure may change during pretreatment and reaction, which
is also affected by cluster size and the type of support
material.18−21 Previously, we have studied structural changes of
Au clusters of different size, that is, Aux(SC2H4Ph)y (x = 25,
38, and 144, y = 18, 24, and 60) supported on metal oxides
(CeO2, Al2O3, and SiO2) upon oxidative pretreatment and
liquid phase reaction. In situ X-ray absorption fine structure
spectroscopy (XAFS) and high-energy resolution fluorescence
detected−X-ray absorption spectroscopy (HERFD-XAS) re-
vealed higher cluster stability on CeO2 and SiO2

21−23 than on
Al2O3. Here, we refine the structural picture on cluster
chemistry by in situ/operando extended X-ray absorption fine
structure (EXAFS) and diffuse reflectance infrared fourier
transform spectroscopy (DRIFTS), to directly monitor the

dynamic structure of Au38(SC2H4Ph)24 clusters on CeO2, both
during ligand removal and CO oxidation.
CO oxidation has been repeatedly used to assess the

catalytic properties/active sites of (mainly CeO2) supported
thiolated gold nanoclusters, particularly addressing ligand
effects.14,18,24−28 Two different mechanisms were proposed:
(i) Mars−van Krevelen, with CO adsorbed on Au and active
oxygen provided by CeO2 at the metal/oxide interface,29 which
was supported by Good et al. showing that the reaction of
oxygen from the ceria lattice with CO adsorbed on gold was
the rate limiting step;30 (ii) Langmuir−Hinshelwood, with CO
and O coadsorbed on neighboring Au sites.31 Lopez Acevedo
et al. explained the catalytic activity of thiolate protected gold
nanoclusters with their HOMO−LUMO energy gap, which
matches the binding energy of oxygen on Au.31 Hence, for
Au38(SR)24 clusters only the removal of ligands turns them into
electropositive species that are able to adsorb O2. A
combination of activated adsorbed and lattice oxygen provides
ideal conditions for reaction with adsorbed CO.
Jin and co-workers proposed that not the bulkiness of the

hydrocarbon tails but the ligands at the interface between
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thiolated Au clusters and CeO2 inhibited CO adsorption on Au
and reaction with lattice O, hence adversely affecting CO
oxidation.25 Accordingly, pretreatments removing the ligand
shell should have a positive effect on activity.
Nie et al.27,28 reported for Aun(SR)m/CeO2 (n = 25, 38, m =

18, 24) that partial thiolate (ligand) removal led to higher
activity than complete ligand removal. According to Wu et
al.,26 partial removal of thiol ligands by oxidation around 150
°C enabled CO adsorption on the exposed Au surface,26,27

whereas full removal did not have any further effect.26 Overall,
the effect of thiolate ligands and their removal on the catalytic
activity of Au nanoclusters is still controversially dis-
cussed.1,4,14,18,21,25,30,32

Recently, we have reported a new effect, that is, migration of
thiolate ligands from the Au clusters to the supporting oxide.23

Although the assumption had been that thiolate ligands
“disappeared” into the gas phase upon oxidative activation, S
K-edge XAFS measurements detected that oxidized sulfur
species remained on the support.23 The redistribution and
oxidation of S modified the support, which may also alter its
catalytic function (e.g., by poisoning interface sites or
vacancies).
Herein, we performed more detailed in situ/operando

EXAFS/DRIFTS and ex situ scanning transmission electron
microscopy−high-angle annular dark-field imaging/X-ray
photoelectron spectroscopy (STEM-HAADF/XPS) studies of
structural changes of Au38(SR)24/CeO2 upon pretreatment and
CO oxidation. In situ XAFS Au L3-edge spectra of Au38(SR)24/
CeO2 upon different oxidative pretreatment indicated that not
only ligands were removed but also that staples collapsed,
depositing S atoms on the Au surface (poisoning). At higher
temperature, S species migrated from the Au clusters to the
support, creating bare active Au surfaces. During CO
oxidation, further structural changes occurred via CO-induced
Au and O-induced S migration to the support. The complex
temperature dependence of these structural changes and the
formation of Au−S units may explain the conflicting reports in
literature on the effect of pretreatment on catalytic properties.
The atomic structure of Au38(SC2H4Ph)24 was previously

solved by X-ray crystallography,33 with EXAFS confirmation
thereafter.34−36 The Au38(SR)24 nanoclusters consist of a
symmetric biicosahedral structure Au23 core, which is
protected by three monomeric (SR-Au-SR) and six dimeric
staples (SR-Au-SR-Au-SR; Scheme 1).
As mentioned, oxidative catalyst activation is required and

the structural evolution of CeO2 supported Au38(SR)24
nanoclusters were studied by Au L3-edge XAS (Figure 1).

The Artemis package37 using the FEFF8 code38 was applied
for EXAFS data treatment, building a cluster model based on
the known crystal structure. The fitted values of the three key
distances are illustrated in Scheme 1. The Au−Au distance
characterizes neighboring Au atoms (e.g., those in the core).
There are two different Au−S bond distances, one
corresponding to Au0core-S and the other to Au+staple-S.
The cluster’s structural changes upon pretreatment were

evaluated via two main EXAFS parameters: R (distance) and N
(coordination number of neighboring equivalent atoms). Table
S1 and Figure S3 collect the fitting results, while the deduced
structural changes are illustrated in Scheme 2.
As expected, the number of nearest equivalent Au neighbors

(NAu−Au) increased upon pretreatment (2.59 to 5.08 or 8.09),
because of the increasing removal of the ligands, but EXAFS
analysis still suggested that the core structure was preserved.
However, the N values of Au0core-S and Au+staple-S, which are
expected to continuously decrease upon pretreatment, showed

Scheme 1. Au38(SR)24 Nanocluster (Initial) Structure with
Distances Fitted by EXAFS

Figure 1. EXAFS fit (red) in R space of the as-prepared sample, after
pretreatment (150 or 250 °C, in 5% O2 in He) and after CO
oxidation reaction.

Scheme 2. Evolution of the Au38(SR)24/CeO2 Cluster
Structure Derived from EXAFS Fit, after Pretreatment at
150 or 250°C and Subsequent CO Oxidation
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a deviating behavior. Apparently, the structural changes are
more complex than just a simple successive removal of (entire)
ligands.
When Au38(SR)24/CeO2 was pretreated at 150 °C, the Au−

Au and Au−S distances (R) did not change. In line with ligand
removal, N of Au−Au increased and N Au+staple-S strongly
decreased, but N Au0core-S unexpectedly increased. The
removal of the thiolate carbon backbone seems to collapse
the remaining staples, creating new bonds between Au−Au but
also between the outer Au atoms of the cluster core and S
(Au0core-S). Pretreatment at 250 °C almost completely
removed S from the cluster core, as N Au0core-S became
almost zero. However, N Au+staple-S was still 0.45, indicating
creation of Au+-S configurations, which can only be on the
support (staples collapsed at 150 °C not reestablished at
250 °C).
Figure 2 shows catalytic CO oxidation, comparing pretreated

Au38(SR)24/CeO2 with CeO2. Catalytic activity was monitored

by a mass spectrometer (MS) connected to the reaction cell
outlet. Au38(SR)24/CeO2 pretreated at 150 °C showed only
minute activity even at 150 °C. This confirms the structural
model, as Au atoms blocked by S were inaccessible for CO and
O2 adsorption.
In contrast, Au38(SR)24/CeO2 pretreated at 250 °C was

active even below 40 °C, being more than 50-times more
active than the catalyst sample pretreated at 150 °C (pret150).
Again, this confirms the structural model of bare Au surfaces,
as Au+-S species are inactive. The as-prepared Au38(SR)24/
CeO2 catalyst with intact ligands was nearly inactive and also
sintered, losing the cluster monodispersity; therefore, it will
not be further considered here.
In order to investigate reaction-induced structural changes,

the samples were again characterized by EXAFS after CO
oxidation (Table S1 and Figure S3). During reaction on the
catalyst sample pretreated at 250 °C (pret250), the Au core
structure present after pretreatment was preserved, indicated
by the only slightly reduced Au−Au coordination numbers, the
bond distances and EXAFS fitting (minimal change of σ0

2Au−
Au).
However, N Au+staple-S decreased and N Au0core-S increased

during the reaction. As S migration back to the cluster is

unlikely, this suggests that (isolated) Au+staple-S converted to
(agglomerated) Au0core-S on the support and/or that Au+staple-S
dissociated. Additionally, more Au atoms may move to the
support and merge with S species. Migration of Au atoms
under reaction conditions can be explained by CO-induced
atom mobility, as observed before,39−41 which explains the
decrease of N Au−Au. Accordingly, S species are mobile not
only during pretreatment, as shown by our previous XANES
study,23 but also during the catalytic reaction. The two Au−S
species will not contribute to catalytic activity, as S is a strong
poison. During CO oxidation on the less active pret150 sample
with initially S-poisoned Au surfaces, S moved to the support
(decreasing N Au0core-S and increasing N Au−Au) and merged
with CO-mobilized Au atoms (increasing N Au+staple-S).
However, during reaction at 150 °C activity did not increase
significantly. S may be removed from the clusters, but it will
still poison the surrounding ceria.
To address morphological changes, STEM-HAADF images

were acquired for the “as-prepared” catalyst and the catalysts
after CO oxidation (Figure S6). In all cases, Au nanoclusters of
2−4 nm size were identified. Smaller entities, like Au−S
particles formed by migration of Au and S species during
reaction (as indicated by N Au+staple-S) may be present as well
but were beyond detection.
Possible reaction-induced changes in the Au oxidation state

were studied by X-ray photoelectron spectroscopy (XPS)
(Figure S7). For the as-prepared sample, the Au 4f7/2 signal at
84.2 eV is characteristic of ceria supported Au clusters that are
modified by metal−ligand interaction. For ligand-free Au0

nanoclusters on ceria,42,43 a binding energy of 83.8 eV was
reported by Huang et al.23,44,45 After pretreatment and
reaction, the Au 4f signals were shifted to lower binding
energies. For the pret150 catalyst, the small shift agrees with
the collapse of the staples, while for the pret250 sample, the
−0.3 eV shift corroborates the formation of bare Au0 clusters.
To monitor adsorbed species, in situ diffuse reflectance

infrared Fourier transform spectroscopy (DRIFTS) was
performed during CO oxidation. Figure 3 displays temper-

ature-dependent operando DRIFTS measurements of the
highly active Au38(SR)24/CeO2 catalyst pretreated at 250 °C.
Spectra were taken from room temperature to 150 °C (ramp 1
°C/min, then isothermal for 4 h).
CO adsorbed on Au0 (2130 cm−1) was observed below

118 °C, corroborating clean Au surfaces (Figure S8). CO2
formation was already observed at room temperature by MS
(Figure S12) and gas-phase bands between 2300 and 2400
cm−1 (Figures 3a and S9). In the lower wavenumber region
(Figure 3b), the typical monodentate carbonates, frequently

Figure 2. CO oxidation on 2 wt % Au38(SR)24 supported on CeO2
(flow: 3.3% CO, 7% O2, 89.7% He, total flow: 60 mL/min, ramp: 5
°C/min): CO2 MS traces normalized to the catalyst mass and the He
signal, after different pretreatments, and for the pure support.

Figure 3. Operando DRIFTS during CO oxidation on Au38/CeO2
pretreated at 250 °C, from room temperature to 150 °C (background
corrected with pure CeO2 pretreated under the same conditions). (a)
2500−2000 cm−1, (b) 1600−1200 cm−1.
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observed during CO oxidation and bonded to ceria, were
observed via an increasing signal at 1468 cm−1. For sulfation of
CeO2, Waqif et al. reported distinct IR bands of surface SO3
(or S2O7

−2) and SO4 (1x S = O, 3x S−O−Ce),46 which were
also present here (Figures S10 and S11). Bulk SO4 was absent
(missing bands at 1196, 1128 cm−1 in Figure S11).46,47 Surface
SO3 and SO4 increased over time, becoming more pronounced
close to maximum temperature in Figure 3b. Thus, sulfur from
Au−S species, which have migrated to the support during
pretreatment, reacted to surface SO3 and SO4.
The detailed evolution of the structure of Au38(SR)24

nanoclusters supported on CeO2 was monitored upon
pretreatment and CO oxidation. Whereas unpretreated
samples tend to sinter, oxidative pretreatment at 150 °C
collapsed the staples structure. Unlike the hydrocarbon
backbone, sulfur was not removed to the gas phase but
remained on the Au core, thus inhibiting adsorption of CO and
oxygen. Pretreatment at 250 °C fully removed S and created
clean Au0 clusters with intact core structure. The removal of
ligands was beneficial for CO oxidation, which is why the
pret250 sample had the highest activity, being already active at
room temperature. During reaction, mobile Au and S species
formed additional (inactive) Au−S entities. Operando
DRIFTS detected CO adsorption on Au0 below 118 °C, in
addition to carbonates on the ceria support. A slow continuous
transformation to SO3 and SO4 was observed (during ∼6 h),
becoming more pronounced close to the maximum temper-
ature. The current results are particularly relevant for further
studies of cluster chemistry and functionality. It is important to
understand the role and fate of staples/ligands and their
interaction with the support, as this strongly affects catalytic
performance.
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