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Abstract

Neural oscillations are ubiquitous measurements of cognitive processes and dynamic routing and gating of information. The
fundamental and so far unresolved problem for neuroscience remains to understand how oscillatory activity in the brain
codes information for human cognition. In a biologically relevant cognitive task, we instructed six human observers to
categorize facial expressions of emotion while we measured the observers’ EEG. We combined state-of-the-art stimulus
control with statistical information theory analysis to quantify how the three parameters of oscillations (i.e., power, phase,
and frequency) code the visual information relevant for behavior in a cognitive task. We make three points: First, we
demonstrate that phase codes considerably more information (2.4 times) relating to the cognitive task than power. Second,
we show that the conjunction of power and phase coding reflects detailed visual features relevant for behavioral
response—that is, features of facial expressions predicted by behavior. Third, we demonstrate, in analogy to communication
technology, that oscillatory frequencies in the brain multiplex the coding of visual features, increasing coding capacity.
Together, our findings about the fundamental coding properties of neural oscillations will redirect the research agenda in
neuroscience by establishing the differential role of frequency, phase, and amplitude in coding behaviorally relevant
information in the brain.
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Introduction

Invasive and noninvasive studies in humans under physiological

and pathological conditions converged on the suggestion that the

amplitude and phase of neural oscillations implement cognitive

processes such as sensory representations, attentional selection, and

dynamical routing/gating of information [1–4]. Surprisingly, most

studies have ignored how the temporal dynamics of phase code the

sensory stimulus, focusing instead on amplitude envelopes (but see

[5]), relations between amplitude and frequency [6], or coupling

between frequencies ([7–10]; see [11] for a review). But there is

compelling evidence that phase dynamics of neural oscillations are

functionally relevant [12–16]. Furthermore, computational argu-

ments suggest that if brain circuits performed efficient amplitude-to-

phase conversion [17,18], temporal phase coding could be

advantageous in fundamental operations such as object represen-

tation and categorization by implementing efficient winner-takes-all

algorithms [17], by providing robust sensory representations in

unreliable environments, and by lending themselves to multiplex-

ing, an efficient mechanism to increase coding capacity [18,19]. To

crack the code of oscillatory activity in human cognition, we must

tease apart the relative contribution of frequency, amplitude, and

phase to the coding of behaviorally relevant information.

We instructed six observers to categorize faces according to

six basic expressions of emotion (‘‘happy,’’ ‘‘fear,’’ ‘‘surprise,’’

‘‘disgust,’’ ‘‘anger,’’ ‘‘sad,’’ plus ‘‘neutral’’). We controlled visual

information, by presenting on each trial a random sample of face

information—smoothly sampled from the image using Gaussian

apertures at different spatial frequency bands. The Gaussian

apertures randomly sampled face parts simultaneously across the

two dimensions of the image and the third dimension of spatial

frequency bands (Figure S1 illustrates the sampling process for one

illustrative trial; [20,21]). We recorded the observers’ categoriza-

tion and EEG responses to these samples (see Materials and

Methods, Procedure).

To quantify the relative coding properties of power, phase, and

frequency, we used state-of-the-art information theoretic methods

(Mutual Information, MI, which measures the mutual dependence

between two variables; [22]) and computed three different MI

measurements: between sampled pixel information and behavioral

responses to each emotion category (correct versus incorrect),

between EEG responses (for power, phase, and the conjunction of

phase and power) and behavior, and finally between sampled pixel

information and EEG response (see Figure S2 for the mutual

information analysis framework and Computation: Mutual

Information).

Results

First, to characterize the information that the brain processes in

the cognitive task, for each observer and category, we computed

MI(Pixel; Behavior), the MI between the distribution of grey-level

values of each image pixel (arising from the summed Gaussian

masks across spatial frequency bands, down-sampled from a

3806240 pixels image to a 38 to 24 image and gathered across

trials) and equal numbers of correct versus incorrect categorization
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responses. Figure 1, MI(Pixel; Behavior) illustrates MI on a scale

from 0 to 0.05 bits. High values indicate the face pixels (e.g.,

forming the mouth in ‘‘happy’’) representing the visual informa-

tion that the brain must process to correctly categorize the stimuli

(see Figure S3 for a detailed example of the computation).

We now compare how the parameters of oscillatory frequency,

power, and phase code this information in the brain. For each

observer, expression, electrode of the standard 10–20 position

system, and trial, we performed a Time 6 Frequency decompo-

sition of the signal sampled at 1,024 Hz, with a Morlet wavelet of

size 5, between 2500 and 500 ms around stimulus onset and every

2 Hz between 4 and 96 Hz. We make three points:

(a) The conjunction of phase and power (phase&power) codes more

information about complex categorization tasks than phase and power on their

own. In Figure 2, MI(EEG response; Behavior) measures the

reduction of uncertainty of the brain response, when the

behavioral variable correct versus incorrect categorization is

known. We provide the measure for each electrode of the

standard 10–20 position system over the Time6Frequency space.

Pz, Oz, P8, and P7 had highest MI values of all electrodes,

irrespective of whether the brain response considered was power

(blue box), phase (green box), or the phase&power (red box). The

adjacent MI scales reveal that phase&power was 1.25 times more

informative of behavior than phase, itself 2.4 times more

informative than power. Phase&power was 3 times more

informative than power alone. Henceforth, the analyses focus on

these four electrodes and on phase&power, the most informative

brain measurement for the cognitive task.

(b) Phase&power codes detailed categorization-relevant features of sensory

stimuli. MI(Pixel; Behavior) revealed that the two eyes and the

mouth are prominent features of expression discrimination (see

Figure 1). As explained, with Gaussian masks we sampled pixels

from the face on each trial. Consequently, for all correct trials of

an expression category (e.g., ‘‘happy’’), we can measure at each

pixel location the mutual information between the distribution of

grey-level values of the Gaussian masks across trials and each cell

of the Time 6 Frequency brain response. Figure 3 reports

MI(Pixel; Phase&Power), focusing on Pz, Oz, P8, and P7. The red

box represents, at 4 Hz and 156 ms, following stimulus onset (a

time point chosen for its prominence in face coding [21]), the

color-coded MI value of each face pixel—overlayed on a neutral

face background for ease of feature interpretation (the yellow box

presents mutual information at 12 Hz and 156 ms). The scale is

the adjacent rainbow colors ranging from 0 to 0.03 bits. Electrodes

P7 (over left occipito-temporal cortex) and P8 (over right occipital-

temporal cortex) reveal the highest MI to the contra-lateral eye

(i.e., left eye for P8; right eye for P7). At the same time on Pz and

Oz, the highest MI is to both eyes and to the mouth.

Figure 1. MI(Pixel; Behavior). The top rows of faces illustrate, from top to bottom, each expression of the experiment, the color-coded average MI
(n = 6 observers) for each expression (p,.01 = .0094 bits, corrected, see * on the scale), an overlay of expression and MI for ease of feature
interpretation.
doi:10.1371/journal.pbio.1001064.g001

Author Summary

To recognize visual information rapidly, the brain must
continuously code complex, high-dimensional information
impinging on the retina, not all of which is relevant,
because a low-dimensional code can be sufficient for both
recognition and behavior (e.g. a fearful expression can be
correctly recognized only from the wide-opened eyes). The
oscillatory networks of the brain dynamically reduce the
high-dimensional information into a low dimensional
code, but it remains unclear which aspects of these
oscillations produce the low dimensional code. Here, we
measured the EEG of human observers while we presented
them with samples of visual information from expressive
faces (happy, sad, fear, etc.). Using statistical information
theory, we extracted the low-dimensional code that is
most informative for correct recognition of each expres-
sion (e.g. the opened mouth for ‘‘happy,’’ the wide opened
eyes for ‘‘fear’’). Next, we measured how the three
parameters of brain oscillations (frequency, power and
phase) code for low-dimensional features. Surprisingly, we
find that phase codes 2.4 times more task information than
power. We also show that the conjunction of power and
phase sufficiently codes the low-dimensional facial fea-
tures across brain oscillations. These findings offer a new
way of thinking about the differential role of frequency,
phase and amplitude in coding behaviorally relevant
information in the brain.

Cracking the Code of Oscillatory Activity
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Figure 2. MI(EEG Response; Behavior). MI between behavior and the EEG average response for power, highlighted in the blue box for Pz, P8, P7,
and Oz, phase (green box), and phase&power (red box), computed over the Time 6 Frequency space (p,.01 = .0013, see * on the scale).
doi:10.1371/journal.pbio.1001064.g002
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Figure 3. MI(Pixel; Phase&Power). For electrode Pz, P8, P7, and Oz, the color-coded pixels overlayed on a neutral face represent the average
(n = 6) MI values for each face pixel and phase&power brain responses (see adjacent scale), at two different temporal frequencies (color-coded yellow
and red), 156 ms following stimulus onset (p,.0000001 = .01 bits, uncorrected, see * on the scale). The underlying Time 6 Frequency space
generalizes this analysis to each cell, using feature masks (left eye, mouth, right eye) and RGB coding to represent MI between combinations of these
features (see adjacent schematic faces) and the phase&power EEG response. On Oz, the 4 Hz green strip illustrates high MI to the mouth, whereas the
8 to 24 Hz purple cloud represents MI to two eyes, indicating multiplexing of feature coding.
doi:10.1371/journal.pbio.1001064.g003
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To generalize across Time 6 Frequency, for ease of

presentation, we computed three masks extracting pixel locations

from the left eye, right eye, and mouth. We averaged MI values

within each mask, independently for each Time 6Frequency cell.

We then color-coded MI for each feature in RGB color space—

red for ‘‘right eye,’’ green for ‘‘mouth,’’ and blue for ‘‘left eye’’; see

schematic colored faces adjacent to the Time6Frequency plot for

complete color coding. The broad red (versus blue) cloud on

electrode P7 (versus P8) denotes highest MI to the right (versus left)

eye in this Time 6 Frequency region, whereas Pz and Oz

demonstrate sensitivity to the two eyes (in purple) and to the

mouth (in green). To conclude, phase&power codes detailed

categorization-relevant features of the sensory input.

(c) Phase&power coding is multiplexed across oscillatory frequencies.

Theta (4 Hz) and low beta (12 Hz) on both Oz and Pz

demonstrate the remarkable multiplexing property of phase&-

power coding: the idea that the brain codes different information

in different oscillatory bands. In Figure 3, Oz and Pz reveal that

beta encodes two eyes (see the purple RGB code and the yellow

framed faces) when theta encodes the mouth (see the green RGB

code and the red framed faces). Multiplexing is also present to a

lesser degree on P8 and P7. MI values critically depend on the

joint distribution of variables (see Figure S3), and so we turn to

Figure 4 to understand how the variables of phase and power

jointly contribute to the coding of facial features. Figure 4 develops

the red and yellow framed faces of Figure 3, for electrode Pz. At

156 ms, at 4 and 12 Hz, we discretized the distribution of power

and phase neural responses in 363 bins—represented in Cartesian

coordinates as a � Realzb � Imaginary. In each bin, we averaged

the pixel values leading to this range of imaginary numbers. At

12 Hz, what emerges is a phase&power coding of the two eyes (in

red, between 45 and 90 deg of phase) and an encoding of the

mouth (in red, between 270 and 315 deg of phase). At 4 Hz, the

encoding of mostly the mouth and the two eyes (in red) occurs

between 90 and 135 deg of phase. The 4 and 12 Hz colored boxes

in Figure 4 therefore illustrate the prominence of phase coding for

facial features.

Discussion

Here, using the concept of mutual information from Informa-

tion Theory, we compared how the three parameters of neural

oscillations (power, phase, and frequency) contribute to the coding

of information in the biologically relevant cognitive task of

categorizing facial expressions of emotion. We demonstrated that

phase codes 2.4 times more information about the task than

power. The conjunction of power and phase (itself 3 times more

informative than power) codes specific expressive features across

different oscillatory bands, a multiplexing that increases coding

capacity in the brain.

In general, the relationship between our results on the

frequency, power, and phase coding of neural oscillations cannot

straightforwardly be related to the coding properties of more

standard measures of the EEG such as event related potentials

(ERP). However, an identical experimental protocol was run on

the N170 face-sensitive potential [21,23], but using reverse

correlation analyses, not MI. Sensor analyses revealed that the

N170 ERP initially coded the eye contra-lateral to the sensor

considered, for all expressions, followed at the N170 peak by a

coding of the behaviorally relevant information [21], together with

a more detailed coding of features (i.e., with their Higher Spatial

Frequencies) at the peak [23]. Interestingly, distance of behavior-

ally relevant information (e.g., the wide-opened eyes in ‘‘fearful’’

versus the mouth in ‘‘happy’’) to the initially coded eye determined

the latency of the N170 peak (with the ERP to a ‘‘happy’’ face

peaking later than to a ‘‘fearful’’ face). ERPs confer the advantage

of precise timing, leading to precise time course of coding in the

brain, including phase differences across visual categories.

However, we do not know whether this coding occurs over one

or multiple sources of a network that might oscillate at different

temporal frequencies (as suggested here between theta and beta),

for example to code features at different spatial resolutions (as

suggested in [19] and [24]). In sum, the complex relations between

EEG/MEG data, the underlying cortical networks of sources,

their oscillatory behaviors, and the coding of behaviorally relevant

Figure 4. Mutual Information: The complex plane. For electrode Pz, the boxes develop the corresponding color-coded boxes in Figure 3. The
red (4 Hz) and yellow (12 Hz) boxes represent the pixel mask values associated with a 363 discretization of the distribution of complex numbers. For
each box, at 156 ms, for each correct trial we averaged the pixel values leading to this range of imaginary numbers—coded on an arbitrary scale
between a low value of yellow (reflecting absence of this pixel in this range) and a high value of red (reflecting presence of this pixel in this range).
The yellow box illustrates a phase&power coding of the two eyes (in red) between 45 and 90 deg of phase and a coding of the mouth (in red)
between 270 and 315 deg of phase. The red box illustrates the coding of all three features (in red) between 90 and 135 deg of phase.
doi:10.1371/journal.pbio.1001064.g004
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features at different spatial resolutions open a new range of

fundamental questions. Resolving these questions will require

integration of existing methods, as none of them is singly sufficient.

In these endeavors, the phase and frequency multiplexing

coding properties of neural oscillations cannot be ignored.

Materials and Methods

Participants
Six observers from Glasgow University, UK, were paid to take

part in the experiment. All had normal vision and gave informed

consent prior to involvement. Glasgow University Faculty of

Information and Mathematical Sciences Ethics Committee pro-

vided ethical approval.

Stimuli
Original face stimuli were gray-scale images of five females and

five males taken under standardized illumination, each displaying

seven facial expressions. All 70 stimuli (normalized for the location

of the nose and mouth) complied with the Facial Action Coding

System (FACS, [25]) and form part of the California Facial

Expressions (CAFE) database [26]. As facial information is

represented at multiple spatial scales, on each trial we exposed

the visual system to a random subset of Spatial Frequency (SF)

information contained within the original face image. To this end,

we first decomposed the original image into five non-overlapping

SF bands of one octave each (120–60, 60–30, 30–15, 15–7.5, and

7.5–3.8 cycles/face, see Figure S1). To each SF band, we then

applied a mask punctured with Gaussian apertures to sample SF

face information with ‘‘bubbles.’’ These were positioned in

random locations trial by trial, approximating a uniform sampling

of all face regions across trials. The size of the apertures was

adjusted for each SF band, so as to reveal six cycles per face. In

addition, the probability of a bubble in each SF band was adjusted

so as to maintain constant the total area of face revealed (standard

deviations of the bubbles were 0.36, 0.7, 1.4, 2.9, and 5.1 cycles/

degree of visual angle from the fine to the coarse SF band).

Calibration of the sampling density (i.e., the number of bubbles)

was performed online on a trial-by-trial basis to maintain

observer’s performance at 75% correct categorization indepen-

dently for each expression. The stimulus presented on each trial

comprised the randomly sampled information from each SF band

summed together [27].

Procedure
Prior to testing, observers learned to categorize the 70 original

images into the seven expression categories. Upon achieving a

95% correct classification criterion of the original images,

observers performed a total of 15 sessions of 1,400 trials (for a

total of 21,000 trials) of the facial expressions categorization task

(i.e., 3,000 trials per expression, happy, sad, fearful, angry,

surprised, disgusted, and neutral faces, randomly distributed

across sessions). Short breaks were permitted every 100 trials of

the experiment.

In each trial a 500 ms fixation cross (spanning 0.4u of visual

angle) was immediately followed by the sampled face information,

as described before (see Figure S1). Stimuli were presented on a

light gray background in the centre of a monitor; a chin-rest

maintained a fixed viewing distance of 1 m (visual angle

5.36u63.7u forehead to base of chin). Stimuli remained on screen

until response. Observers were asked to respond as quickly and

accurately as possible by pressing expression-specific response keys

(seven in total) on a computer keyboard.

EEG Recording
We recorded scalp electrical activity of the observers while they

performed the task. We used sintered Ag/AgCl electrodes

mounted in a 62-electrode cap (Easy-Cap) at scalp positions

including the standard 10–20 system positions along with

intermediate positions and an additional row of low occipital

electrodes. Linked mastoids served as initial common reference

and electrode AFz as the ground. Vertical electro-oculogram

(vEOG) was bipolarly registered above and below the dominant

eye and the horizontal electro-oculogram (hEOG) at the outer

canthi of both eyes. Electrode impedance was maintained below

10 kV throughout recording. Electrical activity was continuously

sampled at 1,024 Hz. Analysis epochs were generated off-line,

beginning 500 ms prior to stimulus onset and lasting for 1,500 ms

in total. We rejected EEG and EOG artefacts using a [230 mV;

+30 mV] deviation threshold over 200 ms intervals on all

electrodes. The EOG rejection procedure rejected rotations of

the eyeball from 0.9 deg inward to 1.5 deg downward of visual

angle—the stimulus spanned 5.36u63.7u of visual angle on the

screen. Artifact-free trials were sorted using EEProbe (ANT)

software, narrow-band notch filtered at 49–51 Hz, and re-

referenced to average reference.

Computation: Mutual Information
In Information Theory [28,29], Mutual Information MI(X;Y )

between random variables X and Y measures their mutual

dependence. When logarithms to the base 2 are used in Equation

1, the unit of mutual information is expressed in bits.

MI X ; Yð Þ~
X
y[Y

X
x[X

p x,yð Þlog2

p x,yð Þ
p xð Þp yð Þ

� �
ð1Þ

The critical term is p(x,y), the joint probabilities between X and

Y. When the variables are independent, the logarithm term in

Equation 1 becomes 0 and MI(X;Y) = 0. In contrast, when X and Y

are dependent MI(X;Y ) returns a value in bits that quantifies the

mutual dependence between X and Y. Derived from the measure

of uncertainty of a random variable X expressed in Equation 2 and

the conditional uncertainty of two random variables X and Y

(Equation 3),

H Xð Þ~{
X
x[X

p xð Þlog2p xð Þ ð2Þ

H Y DXð Þ~{
X
x[X

X
y[Y

p x,yð Þlog2

p xð Þ
p x,yð Þ

� �
ð3Þ

Mutual Information measures how much bits of information X

and Y share. It quantifies the reduction of uncertainty about one

variable that our knowledge of the other variable induces

(Equation 4),

MI X ; Yð Þ~H(X ){H X DYð Þ~H(Y ){H Y DXð Þ: ð4Þ

Here, we use Mutual Information to measure the mutual

dependence between the sampling of input visual information from

faces and the oscillatory brain responses to these samples and

between the same input information and behavior (see Figure S2 for

Cracking the Code of Oscillatory Activity
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an overall illustration of our framework; see Figure S3 for a detailed

development of the computations between face pixels and correct

versus incorrect behavioral responses). For all measures of MI, we

used the direct method with quadratic extrapolation for bias

correction [22]. We quantized data into four equi-populated bins,

a distribution that maximizes response entropy [22]. Results were

qualitatively similar for a larger number of bins (tested in the range of

4 to 16). Below, we provide details for the computation of mutual

information with behavioural and EEG responses, including number

of trials taken into consideration for the MI computations and the

determination of statistical thresholds of mutual information.

Behavioral Mutual Information, MI(Pixel; Behavior)
On each of the 21,000 trials of a categorization task, the

randomly located Gaussian apertures make up a three-dimen-

sional mask that reveals a sparse face. Observers will tend to be

correct when this sampled SF information is diagnostic for the

categorization of the considered expression. To identify the face

features used for each facial expression categorization, we

computed mutual information, per observer, between the grey

levels of each face pixels and a random sample of correct matching

the number of incorrect trials (i.e., on average 5,250 correct trials

and 5,250 incorrect trials). For each expression, we then averaged

mutual information values across all six observers, independently

for each pixel. To establish statistical thresholds, we repeated the

computations 500 times for each pixel, after randomly shuffling

the order of response—to disrupt the association between pixel

values and categorization responses. For each of the 500

computations, we selected the maximum mutual information

value across all pixels. We then chose as statistical threshold the

99th percentile of the distribution of maxima. This maximum

statistic implements a correction for multiple comparisons because

the permutation provides the null distribution of the maximum

statistical value across all considered dimensions [30]. Behavioral

mutual information is reported as the top row of faces in Figure 1.

EEG Mutual Information
Here, we examined two different measures: MI(EEG Response;

Behavior) and MI(Pixel; EEG Response). MI(EEG Response;

Behavior) computed, for each electrode, subject, and expression,

the mutual information between correct and incorrect trials and

the power, phase, and phase&power of the Time 6 Frequency

EEG signal. For this computation, we used the same number of

trials as for Behavior MI (i.e., on average 5,250 correct trials and

5,250 incorrect trials). As with behavior, for each electrode and

type of EEG measurement, we averaged the mutual information

values across subjects and expression. To establish statistical

thresholds, we repeated the computations 500 times, permuting

the trial order of the EEG Time6Frequency values and identified

the 500 maxima each time across the entire Time 6 Frequency

space. We identified the statistical threshold as the 99th percentile

of the distribution of maxima (see Figure 2).

MI(Pixel; Phase&Power) computed, for each subject, expression,

and face pixel (down-sampled to 38624 pixel maps), the mutual

information between the distribution of each face pixel grey-level

value and the most informative of the brain responses, phase&-

power Time 6 Frequency responses, for correct trials only. That

is, an average of 15,750 trials per subject. To establish statistical

thresholds, given the magnitude of the computation, we computed

z scores using the pre-stimulus presentation baseline (from 2500

to 0 ms) to estimate mean and standard deviation. In Figure 3, .01

bits of mutual information correspond to a z score of 55.97, so all

mutual information values this number of bits (see the level

marked with an asterisk in Figure 3) are well above an uncorrected

threshold of .0000001 (itself associated with a z score of 5).

Figure 2 indicated two clusters of maximal MI in all three measures

(Power, Phase, and Phase&Power) at a latency of 140–250 ms in two

frequency bands (4 Hz and 12–14 Hz). We averaged the MI

measures, for each cluster, electrode, and subject, and subjected

these MI averages to a two-way ANOVA with factors electrode (P7,

P8, Pz, and Oz) and measure (Power, Phase, and Phase&Power).

Both clusters revealed a significant main effect of electrode (F(1, 3)

= 8.38, p,0.001 for 4 Hz and F(1, 3) = 79.34, p,0.001 for 12–

14 Hz) and measure (F(1, 2) = 44.24, p,0.001 for 4 Hz and F(1, 2)

= 104.77, p,0.001 for 12–14 Hz). Post hoc t test confirmed that

MI(Phase&Power) is significantly higher than MI(Phase) (p = 0.013),

which itself is significantly higher than MI(Power) (p = 0.003).

Supporting Information

Figure S1 Illustration of the bubbles sampling procedure. The

original stimulus is decomposed into five non-overlapping bands of

Spatial Frequencies (SF) of one octave each (120–60; 60–30; 30–15;

15–7.5; 7.5–3.8 cycles per face). We sampled information from

each SF band using a mask punctured with Gaussian apertures.

These were randomly positioned trial by trial to approximate a

uniform sampling distribution of all face regions across trials. We

adjusted the size of the apertures for each SF band so as to maintain

constant the total area of the face revealed across trials (standard

deviations of the bubbles were.36, .7, 1.4, 2.9, and 5.1 cycles/deg of

visual angle from fine to coarse). We calibrated the sampling

density (i.e., the number of bubbles) on a trial-per-trial basis to

maintain a 75% correct categorization performance independently

for each expression. The stimulus presented on each trial com-

prised information from each SF band summed together.

(TIF)

Figure S2 Mutual Information (MI) Framework. Pixel. Reduced

38 6 24 pixels space used for analysis (see Figure S1 for a full

description of the information sampling used in the actual

experiment). EEG response. On each trial, we recorded the observer’s

EEG response. With a size 5 Morlet wavelet, we performed a Time

6 Frequency decomposition (with a 7.8 ms time step between

2500 to 500 ms around stimulus onset and with a 2 Hz step

between 4 and 96 Hz). Behavior. On each of the 3000 trials per

expression (illustrated for ‘‘happy’’), we recorded the observer’s

correct versus incorrect responses to the sampled information.

Computation of MI. Across the 3,000 trials per expression, for each

pixel we summed the Gaussian apertures across spatial frequency

bands and collected the distributions of resulting grey-level values

associated with correct and incorrect responses. We then computed

MI between the pixel values reflecting the Gaussian apertures and

correct versus incorrect responses, MI(Pixel; Behavior). We also

computed MI between behavior and the EEG response, MI(EEG

Response; Behavior), independently for power, phase, and the

conjunction of phase&power. Finally, we computed MI between the

pixels values and the EEG response, MI(EEG Response; Behavior).

(TIF)

Figure S3 Detailed Illustration of the Computation of MI(Pixel;

Behavior). For one observer, expression ‘‘happy,’’ we provide the

full computation of mutual information using two face pixels (P1

and P2) and an equal number of correct (c) and incorrect (i)

categorization responses. Note that if the computation had been

between face pixels and EEG parameters, we would have had four

rows (one per bin of, e.g., amplitude or phase) in the matrix of joint

probabilities, not two (for correct and incorrect).

(TIF)
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