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ABSTRACT: We performed quantitative metabolic phenotyping of blood plasma in
parallel with cytokine/chemokine analysis from participants who were either SARS-
CoV-2 (+) (n = 10) or SARS-CoV-2 (-) (n = 49). SARS-CoV-2 positivity was
associated with a unique metabolic phenotype and demonstrated a complex systemic
response to infection, including severe perturbations in amino acid and kynurenine
metabolic pathways. Nine metabolites were elevated in plasma and strongly associated
with infection (quinolinic acid, glutamic acid, nicotinic acid, aspartic acid, neopterin,
kynurenine, phenylalanine, 3-hydroxykynurenine, and taurine; p < 0.05), while four
metabolites were lower in infection (tryptophan, histidine, indole-3-acetic acid, and
citrulline; p < 0.05). This signature supports a systemic metabolic phenoconversion
following infection, indicating possible neurotoxicity and neurological disruption
(elevations of 3-hydroxykynurenine and quinolinic acid) and liver dysfunction
(reduction in Fischer’s ratio and elevation of taurine). Finally, we report correlations
between the key metabolite changes observed in the disease with concentrations of proinflammatory cytokines and chemokines
showing strong immunometabolic disorder in response to SARS-CoV-2 infection.

KEYWORDS: biogenic amines, tryptophan, kynurenine, cytokines, host response, SARS-CoV-2, COVID-19, metabolic phenotyping,
phenoconversion

1. INTRODUCTION

In the current COVID-19 pandemic, over 118 million people
have been diagnosed with severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection and over 2.7 million
people have died to date1. The manifestation of SARS-CoV-2
infection ranges from asymptomatic to severe respiratory
illness, sometimes with a variety of complications. The virus
has been reported to cause lymphopenia and systemic
hyperinflammatory responses that result in lung,2,3 heart,4

liver,5,6 and kidney damage7 and can present in the form of
neurological dysfunction,8−10 diabetes,11−13 and stroke.14

While there has been a rapid response from the scientific
community resulting in a surge of SARS-CoV-2/COVID-19
focused research, understanding the exact viral pathogenesis,
metabolic interactions, and mechanisms that underpin an
individual’s disease trajectory remains poor. Understanding
sequential mechanisms of SARS-CoV-2 action is critical to
developing actionable therapeutic interventions to mitigate
adverse outcomes following infection. Furthermore, elucida-
tion of the metabolic host responses will enable the
stratification of individuals who are poor responders to

infection with resulting poor prognosis. Predicting prognosis
post-infection will allow for earlier intervention and increase
the potential for personalized treatments and improved
recovery rates across the population. As with previous
human severe acute respiratory syndrome (SARS) and Middle
East respiratory syndrome (MERS), there is concern that
some of the complex expressions of the disease may have
long-term consequences, where the criteria for “recovery” are
still ill-defined15 and are based mainly on reduction in
respiratory symptoms. However, detection of systemic
biomarkers related to multiple systems gives the potential
for measuring systemic recovery as a well as acute illness.
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Metabolic phenotyping has proved to be a highly
informative approach in systems biology that enriches the
understanding of the metabolic mechanisms of infectious
disease pathogenesis and can facilitate mechanistic under-
standing, patient stratification, and prognosis prediction.16,17

The approach has shown early promise when applied to
SARS-CoV-2 infection, with reports of altered lipid metabo-
lism and perturbations in peripheral amine concentrations in
response to infection,18−21 with similar findings also reported
in previous SARS and MERS coronavirus epidemics.22−24

With the rapid global scientific response, studies have
shown that individuals post-SARS-CoV-2 infection undergo a
metabolic phenoconversion (an altered systemic metabolic
state affecting multiple organs in response to antigen) that is
indicative of a multi-organ viral impact and may be predictive
of infection.21 However, there remains a need to further
understand the systemic role of altered metabolic states in the
human response to SARS-CoV-2 infection, through under-
standing the metabolic mechanisms and inflammatory
relationships involved. To elucidate the systemic effects
further, we analyzed 42 blood plasma metabolites from key
catabolic pathways known to influence human inflammatory
responses. The metabolite panel consisted of amino acids,
biogenic amines, and kynurenines. These metabolic data were
supplemented with a complementary panel of 14 serum
cytokines and chemokines, to characterize the infection and
determine the relationship between inflammatory signatures
and host immune response.
Analysis was performed on a clinical cohort collected from

Western Australia (WA) consisting of four participant groups:
(i) SARS-CoV-2 (+), tested positive for SARS-CoV-2
infection via nasopharyngeal swab polymerase chain reaction
(PCR) test and were admitted to hospital; (ii) SARS-CoV-2
(−) reported to local testing clinics with COVID-like
symptoms but tested negative for the virus and were
subsequently sent home; (iii) healthy controls (HC) recruited
from the community who reported no signs or symptoms of
viral infection and had not been diagnosed with SARS-CoV-2
infection; and (iv) admitted to hospital for treatment for other
conditions and tested negative for the virus in routine hospital
screening during the outbreak.
Using these four groups, we describe the underlying

metabolic signatures and inflammatory relationships that
occur in a host response to an acute SARS-CoV-2 infection.
Understanding such metabolic signatures of infection is
critical to gain mechanistic insights into COVID-19 disease
pathogenesis and patient outcomes. Furthermore, the resultant
signatures may provide value as putative biomarker panels,
which can facilitate patient stratification, augment current
clinical diagnosis strategies, and provide clinically actionable
information.

2. METHODS

2.1. Patient Enrollment and Sample Collection

2.1.1. Sample Collection, Perth, Australia. The study
was initiated at Fiona Stanley Hospital by the COVID
Research Response Collaboration25 as part of the Interna-
tional Severe Acute Respiratory and Emerging Infection
Consortium (ISARIC)/World Health Organisation (WHO)
pandemic trial framework (SMHS Research Governance
Office PRN:3976 and Murdoch University Ethics no. 2020/
052, and no. 2020/053). A full description of the cohort

including demographic data (Table S1) is provided in the
Supporting Information.
Plasma samples for metabolite analysis and serum samples

for cytokine and chemokine analysis were collected from 59
individuals who were (i) SARS-CoV-2 (+): individuals who
presented to the hospital reporting symptoms of COVID-19
and, subsequently, tested positive by PCR of nasopharyngeal
swab samples (n = 10); (ii) SARS-CoV-2 (−): individuals
who presented to COVID assessment clinic or hospital
emergency department reporting symptoms of COVID-19
and, subsequently, tested negative (n = 23); (iii) healthy
control (HC): individuals were recruited at a similar time of
SARS-CoV-2 (+) patient sample collection (n = 16); or (iv)
hospitalized individuals receiving care for chronic illnesses
who tested negative during routine screening by PCR of
nasopharyngeal swab samples (n = 10).

2.2. Quantification of Metabolic Phenotyping Panel

Samples were not heat-treated prior to analysis (a common
technique used in the literature to inactivate viruses in
biofluids26) as heating resulted in substantial alterations in
patient metabolite phenotypes.27

Measurement of 42 metabolite concentrations was
performed using ultrahigh-performance liquid chromatogra-
phy−mass spectrometry (UHPLC-MS) based on validated
assays to provide full quantification for amino acids and the
products of tryptophan catabolism.28−30 Full details of both
assays can be found in the Supporting Information and are
described briefly below.

2.2.1. Biogenic Amines and Amino Acids Analysis.
The quantification of biogenic amines and amino acids was
performed according to methods previously reported.29,30 In
brief, 27 amino acids were quantified from 10 μL of plasma.
Sample extraction was completed using a Biomek i5 sample
automation system (Beckman Coulter, Mount Waverley, VIC
3149, Australia). The samples were diluted 1:1 with water, 20
μL of stable isotope-labeled (SIL) internal standards in water
was added, and protein precipitation was performed by the
addition of 90 μL of methanol. After mixing and
centrifugation, 10 μL of the supernatant was transferred into
a Waters 700 μL 96-well plate for derivatization with
AccQTag reagent (Waters Corp., Milford, MA). The
subsequent derivatized samples were diluted 1:4 (v/v) with
water prior to liquid chromatography−mass spectrometry
(LC-MS) analysis.
LC-MS analysis was performed using a Waters Acquity

UPLC (Waters Corp., Milford, MA) coupled to a Bruker
impact II QToF-MS (Bruker Daltonics, Bremen, Germany).
Full instrument settings are described in the Supporting
Information. The resulting raw data files were processed for
peak integrations and the calculation of metabolite concen-
trations using Target Analysis for Screening and Quantifica-
tion (TASQ) software v2.2 (Bruker Daltonics, Bremen,
Germany). Details of additional methods can be found in
the Supporting Information.

2.2.2. Tryptophan Metabolic Pathway Analysis. The
quantification of tryptophan and 14 catabolites of its
metabolic pathway was performed as previously reported.28

In brief, tryptophan metabolites were quantified from 50 μL of
plasma. Sample extraction was completed using a Biomek i5
sample automation system. SIL internal standards (20 μL)
were added to all samples prior to protein precipitation via the
addition of 250 μL of methanol containing 2 mM ammonium
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formate. After mixing, the samples were transferred to a
Phenomenex PHREE phospholipid removal solid-phase
extraction plate (Phenomenex, NSW, Australia). PHREE
plates were then washed with an additional 150 μL of
methanol containing 2 mM ammonium formate. Eluent
collection plates were dried using a SpeedVac vacuum
concentrator (Thermo Fisher, MA). Dried extracts were
resuspended in 100 μL of water with 0.1% formic acid prior to
LC-MS analysis.
LC-MS analysis was performed using a Waters Acquity

UPLC (Waters Corp., Milford, MA) coupled to a Waters
Xevo TQ-XS MS (Waters Corp., Wilmslow, U.K.). Full
instrument settings are described in the Supporting
Information. Peak integration and calculation of resultant
quantification data were performed using the TargetLynx
package in MassLynx v4.2 (Waters Corp., Milford, MA).
Details of additional methods can be found in the Supporting
Information.
2.2.3. Cytokine and Chemokine Analysis. Where

sample volume was sufficient, xMAP cytokine assays were
carried out in 96-well polystyrene microplates using a

Luminex MagPix detection system (Luminex). A total of 34
cytokines and chemokines were quantified using a multiplexed
Human Cytokines and Chemokines 34-Plex ProcartaPlex
Panel 1A (Life Technologies) according to manufacturer’s
instructions. Briefly, capture bead mixes were incubated
overnight with 25 μL of serum sample or metabolite standards
at 4 °C and then washed three times in a wash buffer; all
washes were performed using a Bio-Plex Pro Wash station
(Bio-Rad Laboratories). Detection antibody mixes were then
added and incubated for 30 min at room temperature. The
wells were subsequently washed three times before a reading
buffer was added and incubated for a further 5 min at room
temperature before analysis. Incubation steps were carried out
using an orbital shaker at 500 rpm. Data were acquired and
analyzed using the Luminex xPonent software.

2.3. Statistical Analysis

Supervised multivariate statistical modeling was performed
with the combined set of 42 analytes (amino acids and
tryptophan catabolic metabolites) using orthogonal projec-
tions to latent structure-discriminant analysis (OPLS-DA).
Data were log-transformed and autoscaled prior to modeling.

Figure 1. Overview of the study workflow including metabolite and cytokine analysis of blood plasma and serum collected from SARS-CoV-2
(−), healthy control, and SARS-CoV-2 (+) individuals. Image was created using BioRender.com.
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Figure 2. OPLS-DA model visualizations. Scores plot showing training sample set of SARS-CoV-2 (+) n = 10 and SARS-CoV-2 (−) n = 23 (A);
note: only nine samples are visible due to two patients having similar prediction scores. Where available, a second timepoint of SARS-CoV-2 (+)
was projected for model validation (n = 5) in addition to healthy controls (n = 16) (B); a longitudinal hospitalized case study where five time-
points were collected and projected into the model (C); projection of 10 individuals who were hospitalized and underwent a routine SARS-CoV-
2 PCR testing and were diagnosed as SARS-CoV-2 (−) (D); predictive component loadings are shown in subplot (E).
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All computations were performed with statistical programming
language R. Multivariate analysis was performed using the
MetaboM8 package.31 The Cliff’s delta statistic was applied to
the 42 measured metabolites to assess group differences (i.e.,
SARS-CoV-2 (−) vs SARS-CoV-2 (+)). Absolute Cliff’s delta
scores were interpreted as 1, indicating maximum difference
and zero indicating no difference.
Mann−Whitney U tests were performed on each of the 42

measured metabolites between two groups, SARS-CoV-2
(−)/HC and SARS-CoV-2 (+). To control the false discovery
rate (FDR), q-values32 were generated from the Mann−
Whitney p-values using the method proposed by Benjamini
and Hochberg.33 The Mann−Whitney effect size estimates (r)
were applied to account for the bias from the small sample
size. Estimates were interpreted as >0.50, 0.30 to <0.50, and
0.10 to <0.30 corresponding to large, moderate, and small.
Statistical significance was accepted at the level of α = 0.05.
For the panel of 14 cytokines, pairwise univariate analysis

was completed using a two-sided Mann−Whitney U test to
compare between the HC and SARS-CoV-2 (+) groups
(Table S1). Again, to control the false discovery rate (FDR), q
values were generated using the Benjamini and Hochberg
method33 and effect size estimates were generated using the
Mann−Whitney (r) test.
A hierarchical agglomerative cluster analysis was performed

using Euclidean distances and Ward’s minimal variance
method as an objective function. Results were displayed
using a circular dendrogram, with black and gray text colors
indicating q-values below and above the significance threshold
of 0.05, respectively. A Spearman’s correlation analysis was
performed with cytokines and metabolite variables; the
correlation coefficients are displayed in a heatmap, with

rows and columns ordered according to clustering results.
Prior to clustering, cytokine variables were log-transformed to
approach normal distribution.
All statistics and data visualizations were generated in R

(v.4.0.3) and R Studio (v.1.3.959).

3. RESULTS

To elucidate the underlying biochemistry of the host response
to this complex mosaic disease, we focused our analysis on the
relationship between SARS-CoV-2 infection, distinct metabol-
ic pathways (i.e., amino acids and tryptophan catabolism)
using a targeted panel of 42 metabolites, and the host
inflammatory response through the measurement of 14
cytokines and chemokines (Figure 1).
To identify the metabolic signature associated with acute

SARS-CoV-2 infection, supervised orthogonal projection to
latent structure-discriminant analysis (OPLS-DA) was per-
formed on metabolite data generated from SARS-CoV-2 (−)
(n = 23) and SARS-CoV-2 (+) (n = 10) groups (Figure 2A).
The OPLS-DA classified the two groups with AUROC = 0.94
(R2X = 0.15, R2Y = 0.78, Q2 = 0.42). Model loadings with
metabolites of importance are presented in Figure 2E. The
Cliff’s delta eruption plot (Figure 3) shows the combined
biogenic amines and tryptophan metabolites and the
comparative effect size differences between the SARS-CoV-2
(−) and SARS-CoV-2 (+) groups. The plot emphasizes
increased levels of neopterin, quinolinic acid, glutamic acid,
kynurenine, and taurine in SARS-CoV-2 (+), whereas lower
levels of tryptophan and histidine appear to drive the
differences between the SARS-CoV-2 (−) and SARS-CoV-2
(+) groups.

Figure 3. Eruption plot of the combined biogenic amines and tryptophan datasets for the SARS-CoV-2 (−) and SARS-CoV-2 (+) samples,
formed from the Cliff’s delta (abscissa) and the OPLS-DA loadings (ordinate). Variables are color-coded for statistical significance.
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To test the predictivity of the model, data acquired from
samples collected at a second timepoint from a subset of the
SARS-CoV-2 (+) group (n = 5) and samples collected from
healthy controls (n = 16) were then projected onto the model,
with 100% of the additional samples classified correctly
(Figure 2B). Following the observed agreement between
SARS-CoV-2 (−) and healthy controls, the two groups were
combined for the subsequent univariate analysis. A SARS-

CoV-2 (+) case study where multiple timepoints (n = 5) were
collected over a period of 19 days from the same individual
were projected to observe longitudinal disease trajectory until
hospital discharge (Figure 2C).
The model was further examined by projecting a group of

hospitalized participants who were either admitted for
COVID-19-like symptoms, but subsequently tested negative
for the virus and were discharged without treatment (n = 4),

Table 1. Univariate Analysis of the SARS-CoV-2 Phenotyping Panel for 42 Quantified Amino Acid and Biogenic Aminesa

metabolite

SARS-CoV-2
(−) median
concentration

(μM)

SARS-CoV-2
(+) median
concentration

(μM)

median
concentration
difference
(μM)

lower 95%
confidence
interval

upper 95%
confidence
interval

Mann−
Whitney p

value BH q value

Mann−
Whitney

effect size (r)

quinolinic acid 1.10 × 100 2.50 × 100 1.30 × 100 −3.50 × 100 −7.10 × 10−1 2.80 × 10−5 7.20 × 10−4 5.50 × 10−1

glutamic acid 5.60 × 101 1.30 × 102 7.80 × 101 −1.50 × 102 −4.40 × 101 4.40 × 10−5 7.20 × 10−4 5.40 × 10−1

histidine 8.40 × 101 5.40 × 101 −3.00 × 101 1.60 × 101 3.70 × 101 5.20 × 10−5 7.20 × 10−4 5.40 × 10−1

tryptophan 5.10 × 101 4.10 × 101 −9.30 × 100 5.40 × 100 1.90 × 101 2.00 × 10−4 2.10 × 10−3 5.00 × 10−1

nicotinic acid 4.10 × 10−3 2.50 × 10−2 2.10 × 10−2 −4.30 × 10−2 −6.50 × 10−3 6.50 × 10−4 4.60 × 10−3 4.90 × 10−1

aspartic acid 4.00 × 100 8.30 × 100 4.30 × 100 −6.30 × 100 −1.30 × 100 4.20 × 10−4 3.50 × 10−3 4.80 × 10−1

neopterin 1.40 × 10−2 3.70 × 10−2 2.30 × 10−2 −4.10 × 10−2 −6.70 × 10−3 1.00 × 10−3 6.00 × 10−3 4.70 × 10−1

kynurenine 2.20 × 100 3.10 × 100 9.00 × 10−1 −2.50 × 100 −4.50 × 10−1 1.90 × 10−3 9.00 × 10−3 4.40 × 10−1

phenylalanine 6.40 × 101 8.20 × 101 1.80 × 101 −4.10 × 101 −6.00 × 100 1.90 × 10−3 9.00 × 10−3 4.30 × 10−1

3-hydroxykynurenine 4.70 × 10−2 7.60 × 10−2 2.90 × 10−2 −5.30 × 10−2 −8.00 × 10−3 3.30 × 10−3 1.40 × 10−2 4.20 × 10−1

indole-3-acetic acid 1.90 × 100 1.20 × 100 −6.90 × 10−1 2.70 × 10−1 1.20 × 100 3.60 × 10−3 1.40 × 10−2 4.20 × 10−1

taurine 6.50 × 101 1.00 × 102 4.00 × 101 −6.60 × 101 −8.60 × 100 7.40 × 10−3 2.60 × 10−2 3.80 × 10−1

citrulline 3.60 × 101 2.50 × 101 −1.10 × 101 2.40 × 100 1.80 × 101 1.10 × 10−2 3.60 × 10−2 3.60 × 10−1

serotonin 1.70 × 10−1 8.90 × 10−2 −7.60 × 10−2 −1.20 × 10−3 1.50 × 10−1 5.40 × 10−2 1.60 × 10−1 2.80 × 10−1

alanine 3.30 × 102 4.20 × 102 8.90 × 101 −1.80 × 102 4.00 × 100 7.20 × 10−2 2.00 × 10−1 2.60 × 10−1

xanthurenic acid 1.50 × 10−2 8.00 × 10−3 −7.10 × 10−3 −9.50 × 10−4 1.40 × 10−2 7.60 × 10−2 2.00 × 10−1 2.60 × 10−1

ethanolamine 7.30 × 100 8.90 × 100 1.60 × 100 −2.20 × 100 3.80 × 10−1 9.90 × 10−2 2.40 × 10−1 2.40 × 10−1

arginine 8.00 × 101 5.90 × 101 −2.10 × 101 −6.90 × 100 3.60 × 101 1.30 × 10−1 3.00 × 10−1 2.20 × 10−1

α-aminobutyric acid 1.80 × 101 2.60 × 101 7.40 × 100 −1.10 × 101 1.90 × 100 1.40 × 10−1 3.00 × 10−1 2.20 × 10−1

lysine 1.80 × 102 2.20 × 102 4.00 × 101 −1.00 × 102 1.80 × 101 1.80 × 10−1 3.80 × 10−1 1.90 × 10−1

proline 1.80 × 102 2.20 × 102 4.20 × 101 −8.50 × 101 1.60 × 101 2.00 × 10−1 4.10 × 10−1 1.80 × 10−1

threonine 1.30 × 102 1.20 × 102 −1.40 × 101 −1.40 × 101 4.40 × 101 2.10 × 10−1 4.10 × 10−1 1.80 × 10−1

3-hydroxyanthranilic
acid

7.10 × 10−2 6.80 × 10−2 −3.30 × 10−3 −7.80 × 10−3 3.70 × 10−2 2.30 × 10−1 4.20 × 10−1 1.70 × 10−1

aminoadipic acid 1.80 × 100 2.40 × 100 5.20 × 10−1 −1.30 × 100 3.90 × 10−1 2.80 × 10−1 4.80 × 10−1 1.60 × 10−1

asparagine 5.30 × 101 5.10 × 101 −1.40 × 100 −3.00 × 100 1.30 × 101 2.80 × 10−1 4.80 × 10−1 1.60 × 10−1

isoleucine 6.40 × 101 6.80 × 101 4.10 × 100 −1.80 × 101 9.40 × 100 3.10 × 10−1 4.80 × 10−1 1.50 × 10−1

nicotinamide
riboside

6.60 × 10−1 7.20 × 10−1 6.10 × 10−2 −4.90 × 10−1 1.50 × 10−1 3.10 × 10−1 4.80 × 10−1 1.50 × 10−1

1-methylhistidine 5.20 × 100 5.40 × 100 2.30 × 10−1 −2.80 × 100 6.90 × 10−1 3.40 × 10−1 5.20 × 10−1 1.40 × 10−1

kynurenic acid 4.00 × 10−2 2.90 × 10−2 −1.10 × 10−2 −1.80 × 10−2 1.80 × 10−2 3.70 × 10−1 5.40 × 10−1 1.30 × 10−1

ornithine 6.90 × 101 9.20 × 101 2.30 × 101 −4.30 × 101 1.70 × 101 4.00 × 10−1 5.40 × 10−1 1.20 × 10−1

picolinic acid 3.60 × 10−2 3.00 × 10−2 −5.70 × 10−3 −8.20 × 10−3 1.90 × 10−2 4.00 × 10−1 5.40 × 10−1 1.20 × 10−1

glutamine 6.70 × 102 6.50 × 102 −1.90 × 101 −9.10 × 101 1.70 × 102 4.70 × 10−1 6.20 × 10−1 1.10 × 10−1

3-methylhistidine 6.80 × 100 4.60 × 100 −2.20 × 100 −3.10 × 100 5.50 × 100 5.00 × 10−1 6.40 × 10−1 9.90 × 10−2

5-hydroxyindole
acetic acid

5.50 × 10−2 5.90 × 10−2 3.90 × 10−3 −2.30 × 10−2 1.60 × 10−2 6.50 × 10−1 7.80 × 10−1 6.70 × 10−2

leucine 1.20 × 102 1.20 × 102 1.70 × 100 −2.80 × 101 2.40 × 101 6.50 × 10−1 7.80 × 10−1 6.70 × 10−2

glycine 2.20 × 102 2.20 × 102 8.70 × 10−1 −5.40 × 101 3.30 × 101 7.40 × 10−1 8.60 × 10−1 5.00 × 10−2

valine 2.30 × 102 2.20 × 102 −8.90 × 100 −2.90 × 101 5.00 × 101 7.60 × 10−1 8.60 × 10−1 4.60 × 10−2

serine 1.00 × 102 9.90 × 101 −9.40 × 10−1 −1.80 × 101 2.40 × 101 7.80 × 10−1 8.60 × 10−1 4.30 × 10−2

tyrosine 6.70 × 101 7.30 × 101 5.70 × 100 −1.60 × 101 1.40 × 101 8.20 × 10−1 8.80 × 10−1 3.50 × 10−2

methionine 2.40 × 101 2.60 × 101 1.70 × 100 −4.60 × 100 5.70 × 100 8.70 × 10−1 9.20 × 10−1 2.50 × 10−2

nicotinamide
adenine
dinucleotide

4.80 × 10−3 5.00 × 10−3 1.50 × 10−4 −2.60 × 10−3 2.40 × 10−3 9.20 × 10−1 9.30 × 10−1 1.60 × 10−2

4-hydroxyproline 1.10 × 101 1.10 × 101 1.80 × 10−1 −4.50 × 100 3.20 × 100 9.30 × 10−1 9.30 × 10−1 1.40 × 10−2

aStatistical comparisons were performed with the Mann−Whitney U test. To control the false discovery rate (FDR), q values were generated from
the Mann−Whitney U test p values using the method proposed by Benjamini and Hochberg. Boxplots of the data are presented in Figures 4 and
S1.
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or were receiving treatment for a range of multiorgan diseases
(n = 6), including collapsed lung, diverticulitis, and
cardiovascular disease and tested negative for SARS-CoV-2

infection in routine hospital screening. The individuals who
were incorrectly admitted for COVID-19 clustered with the
SARS-CoV-2 (−) group in the model. However, the

Figure 4. Two group boxplot comparisons of the plasma metabolites that were present at significantly different concentrations in the Mann−
Whitney univariate testing (p < 0.05). The SARS-CoV-2 (−) and HC groups were combined into a single group for univariate analysis based on
their similarity in the OPLS-DA multivariate models (Figure 2). Fischer’s ratio was calculated as the ratio of branched-chain amino acids to
aromatic amino acids. The remaining nonsignificant metabolites are presented as two group box plots in Figure S1. Additional three group
boxplots representing HC, SARS-CoV-2 (−), and SARS-CoV-2 (+) groups as separate entities are presented in Figures S2 and S3.
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Figure 5. Metabolic pathway associations of significantly different metabolites in COVID-19. (A) Alterations in amino acid metabolism associated
with SARS-CoV-2 (+) infection. Blue boxes indicate a significant decrease in SARS-CoV-2 (+) patients; red boxes indicate a significant increase
(p < 0.05) in SARS-CoV-2 (+) patients. (B) Schematic presentation of the kynurenine pathway of tryptophan metabolism. Blue boxes indicate a
significant decrease in SARS-CoV-2 (+) patients; red boxes indicate a significant increase (p < 0.05) in SARS-CoV-2 (+) patients; bold boxes
indicate metabolites previously associated with neurotoxicity; dashed boxes indicate metabolites with neuroprotective properties; faded boxes
indicate metabolites not measured in this analysis. Abbreviations: IFN-γ, interferon-γ; IFN- α, interferon-α; TNF-α, tumor necrosis factor-α;
AHR, aryl hydrocarbon receptor; TPH1; tryptophan hydroxylase 1; TPH2, tryptophan hydroxylase 2; DDC, 3,4-dihydroxyphenylalanine (DOPA)
decarboxylase; MAOA, monoamine oxidase A; MAOB monoamine oxidase B; IDO1, indoleamine-2,3-dioxygenase 1; IDO2, indoleamine-2,3-
dioxygenase 2; TDO2, tryptophan2,3-dioxygenase; KF, kynurenine formamidase; KAT, kynurenine aminotransferase; KMO, kynurenine 3-
monooxygenase; KYNU, kynurenine hydroxylase; HAAO, 3-hydroxyanthranilic acid dioxygenase. Image created with BioRender.com.
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hospitalized patients receiving treatment for other diseases
were projected alongside the SARS-CoV-2 (+) group (Figure
2D).
From the panel of 42 metabolites investigated, 13 were

univariately significant (p < 0.05 Mann−Whitney U test, with
the false-discovery rate controlled by the Benjamini−
Hochberg method) between the SARS-CoV-2 (−)/HC and
SARS-CoV-2 (+) groups (Table 1). Higher concentrations of
quinolinic acid (p = 2.81 × 10−5), glutamic acid (p = 4.45 ×
10−5), nicotinic acid (p = 6.50 × 10−4), aspartic acid (p = 4.22
× 10−4), neopterin (p = 1.00 × 10−3), kynurenine (p = 1.93 ×
10−3), phenylalanine (p = 1.90 × 10−3), 3-hydroxykynurenine
(p = 3.28 × 10−3), and taurine (p = 7.38 × 10−3), while lower
concentrations of histidine (p = 5.16 × 10−5), tryptophan (p =
2.03 × 10−4), indole-3-acetic acid (p = 3.56 × 10−3), and
citrulline (p = 1.10 × 10−2) were observed in the SARS-CoV-
2 (+) group (Figure 4 and Table 1). Amino acid and
tryptophan pathway schematics highlight the significantly
altered metabolites in Figure 5A,B, respectively.
Furthermore, key metabolite ratios demonstrated significant

changes between the SARS-CoV-2 (−)/HC and SARS-CoV-2
(+) groups (Table 2 and Figure 4). The quinolinic acid/
kynurenic acid ratio (p = 2.80 × 10−6), 3-hydroxykynurenine/
kynurenic acid ratio (p = 2.30 × 10−4), kynurenine/
tryptophan ratio (p = 2.61 × 10−4), and phenylalanine/
tyrosine ratio (p = 9.42 × 10−3) were found to be increased in
the SARS-CoV-2 (+) group, while the glutamine/glutamic
acid ratio (p = 6.03 × 10−6) and branch chain amino acid/
aromatic amino acid ratio (Fischer’s ratio, p = 1.02 × 10−2)
were decreased in the SARS-CoV-2 (+) group.
Hierarchical clustering of the 42 metabolites revealed seven

individual clusters (clusters A−G, Figure 6), which were
grouped based on metabolite similarity and association with
SARS-CoV-2 infection. Of significance, cluster B comprised
aspartic acid, glutamic acid, phenylalanine, and taurine; cluster
C comprised 3-hydroxykynurenine, quinolinic acid, nicotinic
acid, kynurenine, and neopterin; and cluster F comprised
citrulline, histidine, tryptophan, and indole-3-acetic acid.
Following the identification of a metabolic signature of

SARS-CoV-2 infection, the relationship with host inflamma-
tory cytokine and chemokine response in COVID-19 was
explored. Soluble immune mediators were investigated for
differences between the HC and SARS-CoV-2 (+) groups.
The SARS-CoV-2 (−) group did not undergo cytokine and
chemokine analysis due to sample availability. Univariate
Mann−Whitney U tests revealed higher concentrations in the
SARS-CoV-2 (+) group of IL-1 RA (p = 1.03 × 10−2), IP-10
(p = 1.37 × 10−2), SDF-1α (p = 2.58 × 10−2), IL-8 (p = 2.58
× 10−2), TNF-α (p = 3.04 × 10−2), MIP-1β (p = 3.17 ×
10−2), and MCP-1 (p = 3.17 × 10−2) (Table S2 and Figure
S1). Correlation analysis revealed metabolic/soluble immune
mediator relationships in the host response to SARS-CoV-2
infection and are described in detail in Figure 7. Of specific
interest, metabolites from clusters B and C were positively
associated with SDF-1α and MIP-1β (neopterin and phenyl-
alanine); IP-10, RANTES, and IL-18 (kynurenine and 3-
hydroxykynurenine); and IFN-γ and MCP-1 (kynurenine and
3-hydroxykynurenine). Negative correlations in the dataset
were observed between cluster F and SDF-1α, MIP-1β, IP-10,
and IL-1RA (citrulline and histidine). T
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4. DISCUSSION
The current study sought to describe key metabolic pathways
that underpin host responses to SARS-CoV-2 infection and
identify critical cytokine and chemokine relationships that
occur during infection. Four groups of participants were
classified from our sample cohort.
Multivariate OPLS-DA modeling of the metabolite panel

revealed that individuals infected with SARS-CoV-2 displayed
a phenotypic signature compared to the SARS-CoV-2 (−)
group (Figure 2A). The result indicated that a systemic
phenoconversion occurs, which can be detected and
quantified using the mass spectrometry approach described.
This concept of a phenoconversion is supported by the
subsequent projection of data acquired from samples of
healthy volunteers alongside secondary timepoint samples
collected from the SARS-CoV-2 (+) group. The healthy
controls were classified with the SARS-CoV-2 (−) group in
the model, while the second timepoints are all classified with
the SARS-CoV-2 (+) group in the model (Figure 2B).
Interestingly, multiple timepoints from an individual case
study mapped onto the model showing an apparent metabolic
journey through infection, from admission at timepoint 1 with
initial symptoms, peaking in the metabolic space at timepoint
3 (day 12) and shifting back toward the healthy metabolic
space on hospital discharge at timepoint 5 (day 19) (Figure
2C).
When projecting data onto the model collected from

hospitalized individuals, two distinct groups were formed

(Figure 2D). The first was classified with the SARS-CoV-2
(−) samples in the model. These samples were subsequently
revealed to be individuals admitted to hospital with presumed
COVID-19 disease but tested negative for SARS-CoV-2 and
were discharged. The remaining samples clustered with the
SARS-CoV-2 (+) group and were revealed to be individuals
receiving hospital treatment for additional conditions, and had
tested negative for SARS-CoV-2 in routine hospital screening.
The similarity between the signature and the multiorgan
nature of disease within the patients detailed in Figure 2D
seems to indicate and support the fact that COVID-19
presents as a complex mosaic disease. Further studies are
required to investigate infected individuals in tandem with
those with multifactorial diseases to further understand if a
specific unique phenotype of SARS-CoV-2 infection occurs or
if it is a result of the overall systemic impact of the disease.
Following multivariate modeling, hierarchical cluster and

correlation analyses (Figures 6 and 7) were completed on the
metabolic and cytokine data acquired within the dataset. This
analysis revealed key metabolite clusters that were perturbed
during the course of infection, along with metabolite/cytokine
associations that are part of the host response. The resultant
clusters again indicated a systemic multiorgan impact of
infection, supporting previously reported clinical observations
in the disease. For example, recent studies have highlighted an
increasing trend of neurological complications associated with
SARS-CoV-2 infection.8−10 Interestingly, cluster C demon-
strated increases in quinolinic acid and 3-hydroxykynurenine
in SARS-CoV-2 (+) patients, both metabolites have been
reported to exhibit neurotoxic properties in vitro.34−37

Furthermore, the ratio between both metabolites and the
neuroprotective kynurenic acid was also found to increase in
the SARS-CoV-2 (+) group, both of which have specifically
been referred to as neurotoxic ratios in the literature.38,39

Quinolinic acid is thought to be a neuronal excitotoxin, acting
as an agonist for glutamate receptors exciting neurons;
exaggerated stimulation leads to neuronal damage through
multimechanistic neurotoxicity,35,36,40 while 3-hydroxykynur-
enine is thought to exert its neurotoxicity through the
formation of free radicals.40 This unfavorable balance of
metabolites with potential neurotoxic properties has pre-
viously been reported following central nervous system (CNS)
infections including encephalitis and viral meningitis34,41 as
well as diseases of neurodegeneration, including Parkinson’s
disease,38 Alzheimer’s’ disease,42 and Huntington’s disease.43

The most consistently reported persistent neurological
symptoms with SARS-CoV-2 infection are anosmia and
ageusia, also common features of Parkinson’s disease,44

together with persistent fatigue following infection.45 Fatigue
is the most common symptom in systemic lupus erythema-
tosus (SLE), which has remarkable similarity in the
kynurenine metabolism perturbations noted here.46 Of
added interest, although not found to be significant, the
concentration of serotonin was observed to be lower in SARS-
CoV-2 (+) individuals (Figure S1). Considering the
implication of the tryptophan metabolic pathway in
depression and the reported persistent symptoms of
COVID-19 syndrome including depression, anxiety, and
fatigue, this finding also may be associated with long-lasting
neuropsychiatric consequences. Furthermore, both quinolinic
acid and 3-hydroxykynurenine correlated with the chemokine
MCP1/CCL2 (Figure 7), a mediator responsible for leukocyte
attraction and neuroinflammation in the CNS.47 The presence

Figure 6. Hierarchical cluster analysis (HCA) visualized as a circular
dendrogram grouping individual metabolites detected in amino acid
and tryptophan assays. Label coloring is based on the univariate
analysis between SARS-CoV-2 (−)/HC and SARS-CoV-2 (+);
(Table 1, q-value). Black text indicates q-value of <0.05; arrows
indicate directionality of plasma concentration change in SARS-CoV-
2 (+) patients.
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of MIP-1β, another chemoattractant immune regulator,
demonstrated significantly higher concentrations in the
SARS-CoV-2 (+) group (Table S2 and Figure S4), which
indicates that MIP-1β may also participate in the neuro-
inflammatory response to viral infection. These chemokine
correlations hint at a deeper systemic metabolic role in the
host infection response for both quinolinic acid and 3-
hydroxykynurenine.
Cluster C also contains kynurenine and neopterin, both of

which were found in these data at higher concentrations in the
SARS-CoV-2 (+) group compared to the HC and SARS-CoV-

2 (−) groups. IDO is a key enzyme thought to regulate
immune response in the peripheral system48 and act as a
mechanistic indicator of the overall antimicrobial activity of
interferons.49,50 Furthermore, IDO has been shown to
undergo upregulation following the release of IFN-γ by
monocytes, macrophages, and T-cells following viral in-
fection.51,52 IFN-γ was also present at significantly higher
concentrations in the SARS-CoV-2 (+) group, and therefore,
activation of IDO by the interferon may help explain the
observations of higher concentrations of kynurenine and its
neurotoxic catabolites discussed previously. Additional support

Figure 7. Correlation heatmap of cytokines and chemokines (n = 14) and plasma metabolites (n = 42). Spearman’s correlation coefficients were
calculated for each metabolite and soluble immune soluble mediators. Row represents clustering order from Figure 4, indicated by colored
parenthesis. Column order is determined from Euclidean distances using Ward’s clustering method.
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of IDO activation is provided by the kynurenine/tryptophan
ratio, which is significantly increased with SARS-CoV-2
infection. Furthermore, the IFN-γ relationship with cluster C
continues with neopterin, as the interferon induces the
production and release of the metabolite in monocytes and
macrophages. Neopterin, therefore, is thought to be a marker
of the degree of cellular immune activation.53 In these data,
both kynurenine and neopterin concentrations correlated with
IFN-γ (Figure 5), indicating an intertwined relationship in the
inflammatory host response to SARS-CoV-2 infection.
Furthermore, RANTES, IP-10, IL-18, and IL-8 are associated
with inflammatory and cytotoxic T cells and were strongly
associated with 3-hydroxykynurenine, kynurenine, and neo-
pterin, indicating that these circulating cytokines reflect the
severity of the respiratory infection.
Cementing its role as a key metabolic cluster in response to

infection, cluster C also contained nicotinic acid. Nicotinic
acid, increased in SARS-CoV-2 (+), is part of the kynurenine
pathway (Figure 5B) and is thought to influence the immune
response, with reported anti-inflammatory properties in
monocytes and macrophages, which express nicotinic acid
receptors.54 The amine derivative of nicotinic acid, nicotina-
mide, has recently been reported to be disrupted in the
following SARS-CoV-2 infection,55 supporting the observa-
tion. Interestingly, nicotinic acid has been reported to be a
mechanistic metabolite in response to dyslipidemia by raising
high-density lipoprotein (HDL) and lowering low-density
lipoprotein (LDL), very-low-density lipoprotein (VLDL), and
triglycerides via activation of peroxisome proliferator-activated
receptors (PPARs),56 which in turn play a role in the
regulation of energy homeostasis. However, although
dyslipidemia has been reported in SARS-CoV-2 infection, it
was found to accompany low HDL and high LDL,21,57

therefore suggesting that the increase in nicotinic acid may be
part of a wider host compensatory mechanism to normalize
HDL and LDL concentrations.
Previous analysis of the WA SARS-CoV-2 (+) cohort, using

an integrated multiplatform metabolic phenotyping approach,
revealed dyslipidemia and lipoprotein abnormalities and also
indicated a hepatic impact of viral infection.21 This appears to
be supported by the metabolites found in cluster B (Figure 6),
which contained phenylalanine, taurine, glutamic acid, and
aspartic acid. Higher concentrations of phenylalanine, taurine,
glutamic acid, and aspartic acid have been reported as
indicators of liver disease, including hepatic fibrosis,58 acute
hepatic failure,29,59 and hepatic encephalopathy.60,61 This is
further supported in these data by observations of a lower
Fischer’s ratio in the SARS-CoV-2 (+) group. Fischer’s ratio is
the molar ratio of branched chain to aromatic amino acids,
which is an important clinical calculation for assessing liver
metabolism and hepatic function.61 Observations of hepatic
abnormality are consistent with previous studies of SARS-
CoV-1, MERS-CoV, and SARS-CoV-2, indicating that liver
injury may be occurring during the infection period with a
high prevalence of abnormal aminotransferase enzymes.
Systemic elevations in taurine are known to be associated
with hepatotoxicity caused by a variety of drugs and model
toxins62 and in cardiac ischemia.63

The metabolites from cluster B are also associated with
proinflammatory cytokines and chemokines including SDF-1α,
MIP-1β, IP-10, and RANTES (Table 2), all of which are
involved in the promotion of inflammatory immune responses.
This relationship is likely mediated by the metabolic

influences of neopterin in instances of systemic inflammation.
As previously discussed, proinflammatory stimuli lead to the
upregulation of neopterin, which impacts the bioavailability of
the enzymatic co-factor tetrahydrobiopterin (BH4), subse-
quently disrupting the conversion of phenylalanine to tyrosine
by phenylalanine 4-hydroxylase (PAH).64 This relationship is
reflected in these data, with a significantly higher phenyl-
alanine/tyrosine ratio present in the SARS-CoV-2 (+) group
(Table 1 and Figure 4). Such interlaced interactions add
further evidence to the complex metabolic−cytokine relation-
ships and mechanisms at play in the systemic host response to
SARS-CoV-2 infection.
As a further complication, both quinolinic acid and

kynurenic acid are known to modulate glutamic acid function,
with increases in quinolinic acid resulting in cellular glutamic
acid release.65 A substantial glutamic acid release may also
explain the significantly lower glutamine/glutamic acid ratio
observed in the SARS-CoV-2 (+) group in these data. This
relationship between glutamic acid and glutamine is also
pivotal in the regulation of homeostasis in immune cells,
including T-cells and astrocytes within the CNS,66 where it
acts as an immunomodulator, with the upregulation of
glutamate receptors on their surface upon their activation.67,68

The glutamine/glutamic ratio is often cited in support of the
concept of “immunometabolism”, with the rate of glutamine
consumption increased by immune cells when placed under
catabolic conditions such as sepsis.69

Finally, cluster F (Figure 6) contains indole-3-acetic acid
and the amino acids tryptophan, histidine, and citrulline are
detected at lower concentrations in the SARS-CoV-2 (+)
group compared with the HC and SARS-CoV-2 (−)
individuals. As previously discussed, tryptophan is catabolized
to kynurenine via the enzyme indoleamine 2,3-dioxygenase
(IDO) (Figure 3B)an important enzyme thought to
regulate immune response in the peripheral system48 and
the antimicrobial activity of interferons.49,50 The majority of
indole-3-acetic acid is reported to be a product of tryptophan
catabolism by the gut microbiome;70 however, in vitro
experiments have demonstrated endogenous mammalian
production.71 Indole-3-acetic acid has previously been
associated with SARS-CoV-2 infection;55 however, its role in
the host phenotypic response remains unclear. Histidine has
been associated with inflammation and oxidative stress and
has been reported to influence the inflammatory cascade and
have anti-inflammatory and antisecretory properties.72 Histi-
dine has been shown to inhibit oxidative stress and
downregulate TNF-α and, in the present study, was shown
to be negatively associated with TNF-α. Arginine is an
important initiator of immune response through catabolic
production of nitric oxide (NO) by inducible nitric oxide
synthases (iNOS) producing citrulline as a byproduct. Low
plasma citrulline levels have previously been associated with
acute respiratory distress syndrome in patients with severe
sepsis.73 Decreased bioavailability in arginine and citrulline
during inflammation can impede activation of T-lymphocytes
and macrophage anti-inflammatory responses through reduced
capacity to support iNOS activity in SARS-CoV-2 (+)
patients. This may have implications for vascular function
and endothelial cell function with reduced NO from immune
cells attributing to immune suppression.74 Recently, Adusu-
milli and colleagues suggested NO for therapeutic use, as it
has demonstrated promise in similar respiratory disease
models.75 It is plausible that NO could improve pulmonary
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vascular function in SARS-CoV-2 infection, through the
vasodilation of blood vessels and increasing the amount of
blood flow to alveoli, which in turn may improve oxygenation.

5. CONCLUSIONS

Enhanced knowledge of the molecular mechanisms that
underpin host−virus interactions in SARS-CoV-2 infection is
critical to both clinical management and improved diagnostic
tools that can stratify patients into risk categories or who
require urgent intervention. These data support the concept of
COVID-19-induced metabolic phenoconversion and demon-
strate the importance of interrogating an individual’s
metabolic phenotype to elucidate the systemic impact of
infection. The identification of complex metabolic and
systemic relationships that associate with the host response
to viral infection offer insights into specific pathways that are
directly influenced during acute infection.
The longitudinal case study demonstrates a time course

pattern of infection using the metabolic phenotype, suggesting
that such measures could be critical in the evaluation of long-
term health impact of the virus. In particular, the significant
metabolic imbalance between those metabolites previously
reported to be associated with neurotoxicity (quinolinic acid,
3-hydroxykynurenine) and those reported to act as neuro-
protective (kynurenic acid) and neurotransmitter (glutamic
acid) molecules observed in these data following SARS-CoV-2
infection warrants further investigation, as it may be a pathway
of mechanistic significance where SARS-CoV-2 infection leads
to secondary neurological complications. Furthermore, this
may become of particular relevance as more research and
details emerge around the ever-increasing numbers of “long-
COVID” syndrome, where individuals experience debilitating
symptoms many months post-infection and the possibility of
using amino acid and other lipid and lipoprotein markers76,77

as a means of assessing functional recovery in long-term
patients.
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