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Cytokines and chemokines are key signaling molecules of the immune system. Recent

technological advances enable measurement of multiplexed cytokine profiles in biological

samples. These profiles can then be used to identify potential biomarkers of a variety of

clinical phenotypes. However, testing for such associations for each cytokine separately

ignores the highly context-dependent covariation in cytokine secretion and decreases

statistical power to detect associations due to multiple hypothesis testing. Here we

present CytoMod—a novel data-driven approach for analysis of cytokine profiles that

uses unsupervised clustering and regression to identify putative functional modules

of co-signaling cytokines. Each module represents a biosignature of co-signaling

cytokines. We applied this approach to three independent clinical cohorts of subjects

naturally infected with influenza in which cytokine profiles and clinical phenotypes

were collected. We found that in two out of three cohorts, cytokine modules were

significantly associated with clinical phenotypes, and in many cases these associations

were stronger than the associations of the individual cytokines within them. By comparing

cytokine modules across datasets, we identified cytokine “cores”—specific subsets of

co-expressed cytokines that clustered together across the three cohorts. Cytokine cores

were also associated with clinical phenotypes. Interestingly, most of these cores were

also co-expressed in a cohort of healthy controls, suggesting that in part, patterns of
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cytokine co-signaling may be generalizable. CytoMod can be readily applied to any

cytokine profile dataset regardless of measurement technology, increases the statistical

power to detect associations with clinical phenotypes and may help shed light on the

complex co-signaling networks of cytokines in both health and infection.

Keywords: innate immunology, cytokines, chemokines, influenza, biomarker

1. INTRODUCTION

Cytokines and chemokines are key signaling molecules of the
immune system, mediating a complex network of interacting

cells that govern the immune response (1, 2). These small

proteins secreted by a broad range of cells, regulate host

responses to infection, trauma and sepsis and are involved in

inflammatory and autoimmune diseases. The role of cytokines in
disease as well as the associations between cytokine production

levels and the occurrence of diseases and their phenotypes has
been extensively studied (3), and many studies have shown that
cytokine signaling is context-dependant (4). Cytokine expression
and dysregulation have been linked with a variety of diseases such
as diabetes (5, 6), Alzheimer’s (7), cancer (8–11), heart disease
(12, 13), and various viral infections including influenza, EBV,
RSV, HIV and dengue (14–18).

Influenza is a respiratory virus that accounts for significant
rates of hospitalizations and deaths, especially among very young
or old individuals (19). Due to the variety of influenza subtypes
and their rapid evolution, influenza causes annual epidemics and
occasional catastrophic pandemics (20, 21). Influenza infection
in humans can result in asymptomatic to serious illness with
symptoms such as fever, myalgia, headache and upper and
lower respiratory symptoms. The respiratory tract infection can
progress to various acute conditions, e.g., pneumonia and acute
respiratory distress syndrome (ARDS) or a “cytokine storm”
causing widespread tissue damage (22, 23). In some cases,
complications are caused by a secondary bacterial infection such
as Staphylococcus aureus.

Cytokine expression in response to influenza infection has
been studied using human blood and nasal samples, immune
cell cultures and animal models (23, 24). Numerous studies
have reported associations of individual cytokines with various
influenza phenotypes and outcomes such as hospitalization and
death. Each study tested a specific subset of cytokines. From these
studies, several prominent cytokines have been repeatedly found
to be associated with illness and symptoms including IL-6, TNF-
α, IL-10, IL-8, IP-10, IFN-γ , and MCP-1 (23–32). Differences in
cytokine expression levels were found between subjects infected
with different Influenza strains, as well as different severity and
symptoms. For example, the H5N1 strains were found to induce
high serum levels of IP-10 and monokine induced by interferon-
γ (MIG) (25, 33) and also higher levels of TNF-α and IFN-β
compared to H3N2 or H1N1 strains (29). Another study reported
hyperactivation of IL-6, IL-8, and MCP-1 in blood of subjects
infected with pandemic H1N1 that developed pneumonia and
in complicated seasonal influenza, but not in milder pandemic
H1N1 infections (28). A significant correlation has been reported

between disease severity and the levels of IL-6, IL-10, and IL-15
(32), and in contrast, IL-17 was lower in more severe patients
(28, 32).

Despite our partial understanding of cytokine biology there
are a variety of therapeutic treatments that target specific
cytokines, which are in wide clinical use to treat autoimmune
diseases and cancer. There are a variety of licensed monoclonal
antibody (Ab) treatments that target cytokines or their receptors.
Examples include: anti TNF-α Abs (34, 35), an anti IL-6 receptor
Ab (35, 36), anti IL-1 Abs (35), anti IL-10 Abs (37), anti IL-23
Abs (38), and anti Herceptin Abs (39). Most notably, Humira-an
anti TNF-α Ab is widely used to treat a variety of autoimmune
diseases and was the best selling drug in 2017 (40).

Since cytokines and chemokines (hereafter referred to as
cytokines) reflect the local or systemic immune state, they have
the potential to serve as indicators of various clinical conditions.
Various studies suggested the use of measurements of circulating
cytokines as biomarkers in order to aid clinicians in patient
prognosis and care (41–46). Furthermore, as the understanding
of cytokine biology improves, new treatment strategies emerge
to leverage this knowledge (47). Several methodologies have
been developed for quantification of secreted cytokines in body
fluid samples, including immunoassays such as ELISA and bead-
based multiplex immunoassays (48), allowing the collection
and analysis of cytokine “profiles”: a broad and unbiased
assessment of cytokine levels that typically includes 10–50
cytokines of interest.

While numerous studies have reported associations between
cytokine levels and various clinical phenotypes, the analysis of
cytokine profiles is often statistically underpowered to detect
such associations, due to the large number of cytokines and
the requirement for multiplicity adjustment. Furthermore, the
relatively high-cost of cytokine profiles limits the sizes of cohorts
for which they are measured. A typical cytokine profile dataset
can have measurements obtained from tens to hundreds of
subjects. These opposing trendsmake it increasingly important to
develop new computational tools for analyzing cytokine profiles
that are statistically efficient and provide interpretable results.

One possible solution for preserving statistical power, is to
select a small subset of cytokines for a primary analysis with
phenotypes, with a secondary/exploratory analysis that includes
all remaining cytokines. For example, in previous work on
cytokine profiles following influenza natural infection we pre-
selected a subset of 11 cytokines for the primary analyses based
on published studies (49).Multiplicity adjustment was performed
across the 11 cytokines pre-selected in our analysis plan. While
this approach identified several significant associations with
phenotypes, it failed to detect other significant associations
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of cytokines that were not selected in the primary set as
we demonstrate below. Furthermore, it required pre-existing
knowledge for selecting the primary set of cytokines, limiting the
ability to discover novel associations.

Another important property of cytokine signaling is its
inherent redundancy (2, 50). Many of the same cytokines may be
simultaneously secreted by different immune cells, and activation
or attenuation of an immune pathway can often be mediated by
multiple cytokines. Therefore, cytokine profiles typically exhibit
high levels of pairwise correlations among cytokines, across
subjects, as previously demonstrated (49, 51). These complexities
pose particular challenges in the interpretation and analysis of
cytokine data by practitioners.

Motivated by previous work, and the growing abundance of
cytokine profile datasets, we developed CytoMod: a novelmethod
for the analysis of cytokine profiles based on identifying cytokine
modules. The modular-based approach is partly inspired by
similar approaches used for analyzing gene expression data (52–
57). Our proposed method aims to increase statistical power
to detect associations of cytokines with clinical phenotypes by
grouping cytokines into putative functional modules, using a
data-driven clustering approach. Cytokines are grouped based
on their pairwise correlations using hierarchical clustering.
Modules are formed over absolute and adjusted cytokine levels.
Associations are then assessed between cytokine modules and
phenotypes as opposed to individual cytokines (Figure 1). An
earlier version of this method was used to analyze cytokine
profiles of influenza infected children that were admitted to
the intensive care units (51). Here we extended this method
to allow fully automated identification of modules and applied
it to three independent clinical cohorts of natural influenza
infection in which cytokine profiles were obtained and clinical
phenotypes were collected. We found that in two of these
cohorts, cytokine modules were significantly associated with
clinical phenotypes, and in many cases these associations were
stronger than the associations of the individual cytokines within
each of the modules. Applying our method to these three
independent cytokine profile cohorts we identified specific
subsets of cytokines (cytokine “cores”) that clustered together
across the three cohorts, and which were also associated with
clinical phenotypes. These cytokine cores identify subsets of
cytokines that are co-expressed during influenza infection, and
most were also observed in healthy individuals. Our method
can be readily applied to any cytokine profile dataset, and is
publicly available for use using Python code or an interactive
Jupyter Notebook.

2. MATERIALS AND METHODS

2.1. Data
We analyzed cytokine profiles of 611 subjects collected from
three independent studies (49, 51, 58) of subjects naturally
infected with influenza virus as well as healthy controls: (1)
PICFLU-a prospective multi-center study of children admitted
to intensive care units with severe influenza infection (51);
(2) FLU09-a prospective study of children admitted to the
emergency room with influenza like-illness and their household

FIGURE 1 | CytoMod—a modular data driven approach to identify cytokine

modules and assess their associations with clinical phenotypes. Traditionally,

associations between cytokine data (1) and clinical phenotypes (5) are tested

directly using univariate models. CytoMod independently uses absolute

cytokine profiles (1) or adjusted cytokine profiles (2) to generate cytokine

modules (3)-sets of co-signaling cytokines within a given cohort. Modules are

generated using unsupervised hierarchical clustering. Associations are then

tested between module levels (4) and clinical phenotypes (5). By significantly

reducing the number of associations tested CytoMod increases the statistical

power to detect associations. By comparing modules across datasets,

CytoMod can also identify “cores” of cytokines that consistently co-signal

together.

members (49); and (3) The Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)—a
prospective study of influenza infected subjects collected in New
Zealand (58). Influenza positive cohorts included 221, 161, and
87 subjects, respectively, which were all tested and found positive
for influenza (by DFA, PCR, RT-PCR, or culture). The FLU09
study also included 142 healthy control subjects.

PICFLU - The PICFLU study was a prospective multi-center
study of severe influenza infections in children aged 0.06–18.19
years (median 6.97) (51). Blood samples were collected from a
total of 221 children diagnosed with influenza critical illness that
arrived at intensive care units (ICUs) at 35 hospitals between
December 2008 and May 2015. An endotracheal sample was
collected from all subjects that were intubated. Samples were
provided at enrollment (mostly within 24 h of intensive care
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unit admission). Almost half of the enrolled subjects received
vasoactive agents for septic shock and a similar fraction met
criteria for Acute Respiratory Distress Syndrome (ARDS) with
the majority having the severe form. Most subjects (n = 175,
79.2%) were influenza type A positive, while the remaining
cases (n = 46, 20.8%) were influenza type B positive. Eighty-
one subjects (36.6%) had a bacterial coinfection, predominantly
with Staphylococcus aureus, Streptococcus pneumoniae and
Streptococcus pyogenes. Additional information regarding the
design, sampling, and subjects in PICFLU cohort can be found
in Table 1.

FLU09 - The FLU09 study was a prospective study of children
and their household members. It included samples of blood
plasma and nasal swab/lavage from influenza infected subjects
as well as their asymptomatic Influenza-positive household
contacts. Three hundred and three subjects aged 0.05–69.53
years (median 17.23) were enrolled during 2009–2014 and
included 142 healthy householdmembers. A preliminary analysis
of cytokine profiles (49) included only subjects from 2009 to
2011. Most samples were provided at enrollment and only
few were taken within the first week. The cohort included
36 (22.4%) individuals who were hospitalized, four of them
(2.5%) were admitted to the ICU. 5 (3.1%) suffered from febrile

TABLE 1 | Characteristics and clinical information of patients from the analyzed

cohorts.

Cohort PICFLU FLU09 sick FLU09 healthy SHIVERS

Sample size (n =) 221 166 142 87

Age 0.06–18.19 0.05–69.53 0.15–65.19 5–88

(median) (6.97) (6.29) (24.77) (48)

Gender

Male 126 79 35 36

Female 95 87 107 51

Hospitalized 221 36 0 60

Intensive Care Unit 221 4 0 4

Sample type

Blood 215 96 119 87

Airway 93 165 141

Clinical phenotypes &

outcomes

Death 12 1 0 0

ECMO 9 – – –

Pneumonia-ARDS 100 – – –

Shock 103 – – –

Bacterial

Coinfection

81 – – –

SARI – – – 60

Influenza subtype /

strain

A (strain unknown) 29 6 0 16

A H1 92 68 0 0

A H3 53 62 0 45

B 46 27 0 26

Unknown 1 3 0 0

− means the outcome was not tracked in the study.

acute respiratory disease and another single subject (0.006%)
had ARDS and died. Three subjects (1.8%) suffered from a
bacterial coinfection. Study subjects were asked to rank their
symptom severity daily according to a visual analog scale (VAS)
until study completion. The symptoms considered were upper
respiratory tract (URT) symptoms (sore throat, stuffy/runny
nose, sinus fullness/facial pain); lower respiratory tract (LRT)
symptoms (cough, shortness of breath, wheezing); systemic
symptoms (feverishness, fatigue or malaise, headache, body aches
or myalgia, chills, lethargy); gastrointestinal symptoms (nausea,
vomiting, diarrhea). The FLU09 study also included 142 healthy
control subjects for which cytokine profiles were also measured.
These data were analyzed separately in section 3.5. Additional
information regarding the design, sampling and subjects in
FLU09 cohort can be found in Table 1.

SHIVERS - The Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)
study included 87 Influenza infected subjects recruited from 16
sentinel general practices and 4 hospitals (58). Subjects were
enrolled between 2013 and 2015 (aged 12–78 years, median 44.5).
Sixty (68.9%) subjects recruited from hospitals demonstrated
symptoms of Severe Acute Respiratory Illness (SARI), defined as
“an acute respiratory illness with a history of fever or measured
fever of ≥ 38◦C, and cough, and onset within the past 10
days, and requiring inpatient hospitalization” (59), while the
rest suffered from a milder form of Acute Respiratory Illness
(ARI), i.e., do not require hospitalization (59). The majority
of the SARI cases were relatively mild. Four subjects (4.59%)
were admitted to the ICU. Blood specimens were taken from
subjects after their Influenza infection was confirmed and also
2 weeks later. Our analysis only included samples from the
acute phase (first timepoint). Subject samples were analyzed for
cytokines, chemokines, growth factors and other mediators using
bead-based Luminex multiplex assays or ELISA technology. In
a preliminary analysis of the cytokine profiles, we detected
significant differences between the measurements in year 1 and
2 of the study. These were likely caused by two factors: (1) The
sampling strategy was modified between the two study years;
and (2) Different labs quantified cytokines in each study year
(personal communication, Sook-San Wong). We therefore used
year 2 data for generating cytokine modules, but did not include
it in our association analyses with clinical phenotypes presented
below. Additional information regarding the design, sampling
and subjects in SHIVERS cohort can be found in Table 1.

2.2. Adjustment for Mean Cytokine
Concentration
To obtain the relative concentration of cytokines with respect to
the overall level of cytokine secretion within each subject,
cytokine concentrations were adjusted as follows: for a
given cytokine, the levels for all subjects were regressed
against the mean cytokine concentration. The adjusted
cytokine concentrations were defined as the residuals from
the regression. Formally, the adjusted values represent the
level of unexplained deviation of that cytokine, from the
expected cytokine level, given the average cytokine level of the
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subject. The full adjustment procedure for each Cytokinej is
as follows:

1. Compute the mean cytokines level for each subject in the
dataset. Construct a vector of the means (with the length of
the sample size).

2. Construct a regression model for Cytokinej, such that the
vector of the means is used as a predictor for Cytokinej’s level
in the sample, defined as the response variable:

Cytokinej = β0j + β1j ·Mean+ ǫj.

3. For each sample compute the expected Cytokinej level using
the regression model defined in II. Calculate the residue of
the regression as:

Cytokinejadjusted = Cytokinej − Cytokinejexpected.

As shown in Fiore-Gartland et al. (51) and above, adjustment
can reveal interesting information about the relative deviation in
cytokine levels in different individuals, which cannot be observed
when analyzing absolute cytokine concentrations.

We note that the CytoMod adjustment procedure utilizes the
values of all cytokines in a given dataset and may therefore
be sensitive to the specific cytokines that were measured.
To quantify the sensitivity of the adjustment procedure to
cytokine selection, we conducted the following analysis: Subsets
of cytokines were randomly selected from the original set of
37 cytokines in the PICFLU dataset; their size ranged between
2 and 36 cytokines. For the size of 36 cytokines, 37 subsets of
cytokines were drawn, each containing the entire set of cytokines
except for a single cytokine that was left out in each. For each
subset size between 2 and 35, 50 different subsets of cytokines
were randomly drawn. For each subset the adjustment procedure
was conducted over the selected subset and the Spearman
correlation was computed between the adjusted cytokine values
of this subset, and their corresponding adjusted values over
the entire set of 37 cytokines. Figure S1 presents the average
median correlation across all 50 subsets, where the median
was computed for each subset across all cytokines tested. We
found that when drawing subsets of more than 10 cytokines, the
average correlation to the original adjusted dataset was >0.95.
Furthermore, when drawing subsets of 25 cytokines, the average
correlation was 0.9899. This suggests that our adjustmentmethod
is robust given a sufficiently large set of cytokines.

2.3. Clustering
CytoMod is a modular approach for cytokine analysis that
clusters cytokines based on pairwise correlations, to both amplify
the signal they share and aid in interpretation by grouping
putatively co-signaling molecules. Cytokines are grouped
using a hierarchical clustering technique which iteratively pairs
cytokines (and groups of cytokines) with similar behavior to
generate a series of nested clusters. The clustering hierarchy
can be represented by a tree-like graph (dendrogram) in which
branches indicate the similarity between the formed subgroups
of cytokines. By slicing the tree at a certain level we can obtain
a set of distinct clusters. The dendrogram allows to graphically

portray the clusters hierarchy and visualize the structure and data
distribution in a manner that is intuitive for both computational
and non-computational practitioners (55, 56, 60).

In this study, cytokine measurements from each dataset
were clustered independently of the others. Measurements of
different compartment samples in the same study were clustered
independently due to notable differences in signaling patterns
as shown in two different studies (49, 51). Importantly,
clustering is performed over cytokines and not over subjects,
to obtain groups of cytokines with similar expression profiles
across subjects. Clusters were formed based on the correlation
of adjusted and absolute cytokine levels, separately. Complete-
linkage agglomerative hierarchical clustering was used to group
cytokines (variables) with the Pearson’s correlation coefficient as
the distance metric. Complete linkage, which joins subclusters
iteratively based on the closest maximum distance between
pairs of variables in the subclusters, was used because it tends
to form compact clusters. Since the approach suffers from
sensitivity to minor perturbations in the data (56), we employed a
bootstrap clustering method that was previously applied to gene
expression data (61) in order to increase cluster robustness. The
bootstrapping includes repetition of the clustering procedure on
multiple perturbed subsets of the data, each formed by randomly
drawing subject samples (with replacement) from the dataset.We
repeated the clustering procedure on subject-level bootstrapped
datasets 1,000 times. We recorded the number of times that
each pair of cytokines clustered together across these 1,000
runs. The final hierarchical clustering was performed on this
matrix of reliability fractions. Conceptually this can be thought
of as a bootstrap estimate of cluster membership, simulating
the reliability of each pair of cytokines to belong to the same
cluster in repeated experiments on perturbed data under the
same conditions.

The number of clusters (K) for each dataset was determined
using the Tibshirani “gap statistic” heuristic method (62), which
computes themarginal decrease in intracluster distance (ICD) for
different K values, compared to the expected decrease under a
null reference distribution of the data, assumed to be comprised
of a single cluster. The estimate of the optimal K is the K for
which the ICD falls the farthest below the reference curve while
also taking into account the estimated deviation of the sampling
distribution and simulation error (denoted by S). K is chosen as
the first K that satisfies

Gap(K) ≥ Gap(K + 1)− Sk+1.

In our implementation we chose to test K values between 1 and
11 and generate a reference dataset by shuffling each feature
(cytokine) independently of the others with 200 repetitions.
For both real and null data distances between cytokines were
defined using Pearson’s correlation coefficient. For the real
dataset bootstrapped clustering was performed as described
above. To constrain the number of modules to be smaller than
6, and at least 2, in cases where the estimated best K found
was not in these bounds or the condition was not satisfied
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for all K between 1 and 11, we chose K between 2 and 6
for which

max
K

Gap(K)−
(

Gap(K + 1)− Sk+1

)

.

We chose to limit the number of clusters to 6 in order to
reduce the formation of small (and possibly singleton) clusters.
This threshold also affects the increase in statistical power for
detecting associations, since as the number of clusters grows,
more hypotheses will be tested and the adjusted p-values will
decrease accordingly.

Finally, each cluster was used to calculate module scores for
each subject in each dataset. Module scores were computed as
the mean value of all cytokines that belong to the module after
standardizing cytokine values to mean zero and unit variance.

2.4. Associations With Clinical Phenotypes
The primary analysis of cytokine modules included tests for
associations with the clinical measures of disease severity
available for each dataset using regression. All non-binary input
and output variables were mean centered and variance scaled
to unit variance. Logistic regression was used for all binary
response variables and strength of effect was defined by an odds-
ratio per unit increase in log-cytokine titer. For continuous
response variables we used linear regression and strength of
effect was defined using the log-cytokine regression coefficient
(beta). Regression models controlled for the effects of variables
that were previously used in each of the studies (49, 51, 58), as
detailed in section 3.3. P-values for the coefficients describing
the associations of cytokines and symptom scores were adjusted
for multiple hypothesis tests within each cohort, compartment
and adjustment method. P-values for the coefficients between
module scores and symptom scores were also adjusted, separately
from the cytokine coefficients. We report associations using two
types of multiplicity adjustment methods: (1) false-discovery
rate (FDR) using the Benjamini Hochberg procedure (63); (2)
Family-wise error rate (FWER) using the Bonferroni-Holm
method (64). Only associations with FDR-adjusted q ≤ 0.2
are shown. Associations that were significant using the more
stringent FWER-adjusted p-value were marked using asterisks
in each figure. All of the associations discussed below were
FWER significant.

2.5. Defining Cytokine Cores
Cytokine measurements from each dataset were clustered into
modules as described in section 2.3. Since airway samples were
available only for two out of three studies, clustering comparison
was only performed for the blood samples results. Comparison
was performed for the absolute and adjusted clusters separately.
For each we recorded the number of times each pair of cytokines
clustered together in all three blood datasets. Cytokine cores were
defined as groups of cytokines that clustered together across all
three datasets. It should be noted that these cores may be refined
when additional cytokine profile datasets are available.

Cytokine cores associations with phenotypes were calculated
as described in section 2.4. A subject’s score for each core was
calculated based on themean cytokine concentration of cytokines

within the core, after standardizing each cytokine to mean zero
and unit variance. P-values for the coefficients describing the
associations of cytokines and phenotype scores were adjusted
for multiple hypothesis tests within each presented dataset
separately. P-values for the regression coefficients calculated for
the core scores were adjusted separately than the coefficients
calculated for individual cytokines. Individual cytokine p-values
were adjusted across all cytokines and not only for the cytokines
included in the core cytokine set.

Finally, we calculated pairwise Pearson correlations between
cytokine cores within each blood dataset, i.e., PICFLU, SHIVERS,
FLU09 and FLU09-healthy. P-values for the correlation
coefficients were adjusted for multiple hypothesis tests within
each dataset. The correlations were presented alongside each
other in order to highlight trends across all datasets.

3. RESULTS

We applied CytoMod to cytokine profiles of three independent
cohorts (see section 2.1 for details) of consented subjects
naturally infected with influenza virus: (1) PICFLU—a
prospective multi-center study of children admitted to intensive
care units with severe influenza virus infection (51); (2)
FLU09—a prospective study of children presenting to the
emergency room with influenza like-illness and their household
members (49); and (3) Southern Hemisphere Influenza and
Vaccine Effectiveness Research and Surveillance (SHIVERS)—a
prospective study of influenza virus infected New Zealanders
(58). The cohorts included 221, 161, and 87 subjects, respectively,
who all tested positive for influenza. The FLU09 study provided
an additional cohort of 142 healthy control volunteers that were
not included in the main analyses and were analyzed separately
in section 3.5.

To allow a direct comparison between the different
cohorts, we limited our analysis to 37 cytokines that were
measured from the blood of subjects in all three studies.
These cytokines were also used to profile nasal wash from
FLU09 subjects and endotracheal aspirates of PICFLU subjects.
Cytokine concentrations (pg/mL) and subject ages were log-
transformed for all analyses. Cytokine measurements from
each study were analyzed independently of the others due
to differences in subject characteristics and measurement
methods. Measurements from different compartments (e.g.,
blood, nasal) were also analyzed separately due to notable
differences in signaling patterns, as shown previously (49, 51).
In total, five datasets were analyzed: FLU09 plasma, FLU09
nasal wash, PICFLU serum, PICFLU endotracheal aspirates
and SHIVERS serum. We also analyzed an additional
dataset of healthy controls that were sampled in the FLU09
study (49).

3.1. Generating Cytokine Modules
To capture the underlying correlation structure induced by co-
signaling cytokines, we developed a clustering-based approach

to group cytokines into data-driven modules. Each module,

represents a group of cytokines that co-vary across individuals

within a given cohort. Modules are therefore defined separately
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for each cytokine dataset. The similarity between each pair

of cytokines is defined by their Pearson correlation coefficient
across all subjects, within a cohort. The similarity matrix is
computed separately for each compartment, based on previous
observations that found relatively low levels of correlations
between cytokines across compartments as compared to
within compartment similarities (49, 51). We computed the
cytokine pairwise similarity matrices for each of the five
datasets used in this study as outlined above (Figure 2A and
Figures S2A, S3A, S4A, S5A). To define cytokine modules, we
used an unsupervised hierarchical clustering algorithm that
groups cytokines based on their pairwise similarity. Importantly,
the algorithm does not incorporate any information regarding
clinical phenotypes (i.e., clusters are not defined based on
outcomes). The number of clusters was automatically selected.
Specifically, we used complete-linkage agglomerative hierarchical

clustering and the number of clusters (K) for each dataset
was determined using the Tibshirani “gap statistic” method
(62) (Figure 3A and Figures S6A–C), which selects the number
of clusters based on the marginal decrease of within-cluster
distances (see methods). Since minor perturbations of the data
could affect the clusters obtained, a reliability score over each
pair of cytokines was defined by computing the fraction of
times a pair of cytokines were assigned to the same cluster
over 1,000 randomly perturbed datasets (Figure 3B; see section
2.3). The final cytokine modules were defined over this pairwise
reliability matrix. Cytokine values within each module were
standardized (zero mean and unit variance) to ensure that
each was given equal weight within a module. Given a set of
cytokine modules, a subject-specific score was computed for
every module defined by the mean cytokine concentration of all
cytokines in the module, cytokine modules were subsequently

FIGURE 2 | Cytokine levels are highly correlated to each other and to the mean cytokine level of each subject. (A) Pairwise Pearson’s correlations among the absolute

plasma cytokine levels in the FLU09 cohort. Cytokines were sorted along both axes using hierarchical clustering (complete-linkage). (B) Correlations between cytokine

levels and mean cytokine levels for each subject. (C) Pairwise Pearson’s correlations between cytokines following adjustment to the mean cytokine level (see Methods

for details). Cytokines were sorted along both axes using complete-linkage.
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FIGURE 3 | Defining cytokine modules on the FLU09 adjusted plasma cytokine profiles. (A) Automated selection of the optimal number of modules. The Tibshirani

gap statistic is used to automatically determine the optimal number of modules. The cytokine profiles are clustered into K = 1− 11 clusters and the optimal K is

selected. The plot shows the δ gap statistic, defined as Gap(K)−
(

Gap(K + 1)− Sk+1
)

for K = 1− 11. The optimal number of modules (K=6) is selected by identifying

the first value of K for which this measure is positive, while also constraining it to vary between 2 and 6. (B) Heatmap of cytokine modules - Complete linkage

clustering over the Pearson pairwise correlation similarity measure is used to cluster cytokines into K modules, where K is decided using the gap statistic. A clustering

reliability score is computed over 1, 000 samplings of subjects that are sampled with replacement. The score for each pair of cytokines represents the fraction of times

they clustered together across 1, 000 random samples. The reliability score of K = 6 is presented here. The final modules are then constructed by clustering the

pairwise reliability scores, and are represented by the colored stripes below the clustering dendrogram.

used to detect associations between cytokine concentrations and
clinical phenotypes.

3.2. High Correlation Among Cytokines
Motivated Adjustment for Mean
Concentration
The high positive correlation among the majority of cytokines
in each compartment (or dataset) was also reflected in the
significant positive correlations between each cytokine
and the mean cytokine level within each subject (51)
(Figure 2B and Figures S2B, S3B, S4B, S5B). Thus, subjects
with a high concentration of one cytokine were relatively

likely to have high concentrations of most of the other
cytokines. We hypothesized that overall levels of immune
activation (e.g., absolute number of immune cells in the
blood) drive absolute cytokine concentrations. A high level

of immune activation could therefore obscure cytokines

expressed at relatively low levels. Furthermore, the absolute
cytokine concentration could also be affected by technical

artifacts such as sampling variability introduced by sample
collection methods. Therefore, we developed an approach

for adjusting cytokine measurements for the mean level
within each sample using regression (detailed in section

2.2). An adjusted cytokine measurement reflects the level of
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unexplained deviation of that cytokine in a specific sample,
from the expected cytokine level according to its association
with the mean estimated across all samples. Correlations
among cytokines after the adjustment can be substantially
different, revealing associations that were previously obscured
by the strong correlation with the mean (Figure 2C and
Figures S2C, S3C, S4C, S5C). Therefore, following our previous
work modules were constructed and analyzed using both
absolute and adjusted cytokine concentrations separately for
each dataset (51).

3.3. Modules Based on Absolute Cytokine
Levels Were Associated With Influenza
Clinical Phenotypes in Two Cohorts
For each study, we evaluated the association between each
absolute cytokine module and the relevant clinical phenotypes
recorded in the study, using linear or logistic regression models
(detailed in section 2.4). Regression models controlled for
the effects of age and other variables, as previously chosen
for each of the three cohorts (49, 51, 58). For purposes
of comparison, we also evaluated the association of each
absolute individual cytokine with the phenotypes. P-values
for the coefficients describing the associations of modules
and cytokines with clinical phenotypes were adjusted for
multiple hypothesis tests within each figure presented (i.e.,
across cytokines or cytokine modules, but within cohort,
compartment and absolute/adjusted module set). The P-
values for the module and cytokine coefficients were adjusted
independently. Family-wise error rate (FWER)-adjusted p-values
using the Bonferroni-Holm method (64) were calculated and
are presented in each figure using asterisks. Only associations
with a false-discovery rate (FDR)-adjusted q ≤ 0.2 are shown
[using the Benjamini’ Hochberg procedure (63)]. However,
only associations with FWER-p ≤ 0.05 were considered
statistically significant.

FLU09 - The associations with clinical phenotypes in
influenza-positive FLU09 absolute datasets were calculated
using linear regression adjusted for age (Figures 4A,C
and Tables S1, S3). Modules and cytokines were tested for
associations with several clinical phenotype groups recorded in
the study (detailed in section 2.1): upper respiratory tract (Upper
RT) symptoms, lower respiratory tract (Lower RT) symptoms,
systemic symptoms, gastrointestinal symptoms, total symptoms
and (log) viral-load (log-VL). Significant positive associations
were observed with the absolute plasma modules. For example,
absolute Blood Sample 3 module (BS3) was positively associated
with total and systemic symptoms, and absolute BS4 was
associated with lower RT symptoms (regression coefficients
of 0.529, 0.605, 0.322, and FWER p-values of 0.0035, 0.0037,
0.0304, respectively). Individual cytokines within these modules
were also significantly associated as follows: BS3 cytokines EGF,
GRO and IP-10 positively associated with total symptoms and
IP-10 also associated with systemic symptoms; the BS4 cytokine
Fractalkine (FKN) was positively associated with lower RT
symptoms. While most of the regression coefficients of these
cytokines were slightly higher than those of their modules, the

statistical significance of the absolute associations after FWER
adjustment was stronger for the modules than the individual
cytokines in 4 of 5 (significant) cases; only the significance of the
Fractalkine association was stronger than that of the BS4 module
to which it belongs. In addition, IL-10 was significantly associated
with both upper and lower RT, while the BS2 module to which
it belonged was not significantly associated with any symptoms.
This increase in statistical significance is directly attributable
to the reduction in the number of statistical tests across which
multiplicity adjustment is applied. In the absolute-module set
analysis of the nasal wash samples, the majority of cytokines
clustered together into one module (NW2), perhaps due to
high immune activation at the site of infection. Absolute NW2
was significantly positively associated with upper RT symptoms
(regression coefficient 0.46, FWER p = 0.029), however, NW2
cytokine IL-6 had a stronger significant positive association
with the same phenotypes. It should be noted that all of the
previously reported cytokine associations with symptom scores
identified using data from years 1 to 2 of the FLU09 study
(using an FDR threshold of 0.2) (49), were re-confirmed in
our current analysis using the complete cohort from years 1
to 5 (Figure S9), and additional associations were found in the
current analysis.

PICFLU - Positive significant correlations were also observed
in the absolute PICFLU serum associations with clinical
phenotypes portrayed in Figure 5A and Table S5. These
associations, calculated using logistic regression, were adjusted
for age and bacterial coinfection (see section 2.1 for details).
The absolute BS3 module was positively associated with both
shock and ECMO or death (odds ratio 2.75, 2.04, FWER p-
values 0.00002, 0.0286, respectively). The BS3 cytokines IL-
6 and IP-10 had an association with shock, while IL-8 and
MCP-1 had an association with both shock and pneumonia-
ARDS. The BS3 association with ECMO or death was significant
while none of the individual cytokines in the module were
significantly associated. The strength of the association with
shock for all individual BS3 cytokines was weaker than for
the module as a whole. On the contrary, absolute IL-8
and MCP-1 had a significant association with pneumonia-
ARDS, while the absolute BS3 module did not. The PICFLU
absolute endotracheal samples did not have any significant
associations with outcomes (FWER-p > 0.05; Figure S7A

and Table S7).
SHIVERS - Due to differences in sampling strategy during

the first and second years of the study, associations with
phenotype were calculated only for subjects from the first year
of the SHIVERS study (n = 52). Logistic Regression models
included adjustment for age, ethnicity and sampling time. No
significant associations were detected among absolute individual
serum cytokines, with severe acute respiratory illness (SARI)
(Figure S8A and Table S9). However, we note that univariate
associations previously reported for this cohort (58), which
were not adjusted for multiplicity testing across cytokines, were
in overall agreement with the cytokine associations reported
here for FLU09. In particular, EGF, GRO, sCD40-L and MCP-
1, all clustered together in SHIVERS to absolute module BS3
and positively correlated with SARI in the SHIVERS previous
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FIGURE 4 | FLU09 cytokine associations with clinical phenotypes. Associations were identified using linear regression controlling for patients age using both absolute

and adjusted plasma samples (A,B), and absolute and adjusted nasal wash samples (C,D). Modules of covarying cytokines were constructed separately for absolute

and adjusted cytokine measurements from plasma or nasal wash samples. We then tested associations with several clincal phenotypes described in section 2.1:

upper respiratory tract (URT) symptoms, lower respiratory tract (LRT) symptoms, systemic symptoms, gastrointestinal symptoms and log viral load (VL). Each cytokine

or module is indicated along the rows, grouped by their assigned module. Heatmap color indicates the direction and magnitude of the regression coefficient between

cytokine or module level with a given clinical phenotype. Only associations with false-discovery rate (FDR)-adjusted q-value ≤ 0.2 are colored. Asterisks indicate

family-wise error rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

analysis. In our current analysis of FLU09 these cytokines belong
to the absolute BS3 module, which was positively associated
with total and systemic symptom scores. In addition, Fractalkine,
VEGF, TNF-α and GCSF belong to the BS4 absolute module in
FLU09 which was positively associated with lower respiratory
tract symptom scores (LRT). They were also previously reported
to be positively associated with SARI in SHIVERS. In particular,
Fractalkine was also significantly associated with LRT scores
In FLU09 and had an odds-ratio of 16.52 for SARI in
SHIVERS (58).

3.4. Adjustment for Mean Cytokine Level
Reveals Negative Associations Between
Modules and Clinical Phenotypes
While none of the absolute concentrations of cytokines or their
modules were negatively associated with clinical phenotypes, we

found several significant negative associations using cytokines
and cytokine modules that had been adjusted for the mean
cytokine concentration. Interestingly, some, but not all of
the significant positive associations that were identified using
absolute cytokine concentrations were also significant after
adjustment for the mean.

FLU09 - as seen in Figure 4B, the adjusted BS1 module
containing FLT3L, IL-13, IL-1β , IL-4, IL-5, IL-7, IL-9, and
TNF-β was found to be significantly negatively associated
with total and systemic symptoms (regression coefficients –
0.557, –0.582, FWER p-values 0.0011, 0.008, respectively, as
detailed in Table S2). Individual cytokines in this module were
predominantly negatively associated with symptom scores, some
with FDR ≤ 0.2, however, none of these associations were
significant after FWER adjustment. The adjusted nasal wash
modules did not have any significant positive associations
with symptom scores (Figure 4D and Table S4). A single
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FIGURE 5 | PICFLU serum cytokine associations with clinical phenotypes

identified using logistic regression while controlling for patients age and

bacterial coinfection. Modules constructed of covarying cytokines [absolute (A)

and adjusted (B) measurements separately] from serum samples, were tested

for associations with the clinical phenotypes described in section 2.1: shock,

pneumonia-ARDS and ECMO or death. Each cytokine or module is indicated

along the rows, grouped by their assigned module. Heatmap color indicates

the direction and magnitude of the regression coefficient between cytokine or

module level with a given clinical phenotype with and without the complication.

Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are

colored. Asterisks indicate family-wise error rate (FWER)-adjusted p-values

with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

significant negative association was found between adjusted
EGF concentrations and viral load (regression coefficient -0.281,
FWER-p= 0.0157).

PICFLU - The adjusted BS4 module containing EGF, Eotaxin,
FGF-2, Fractalkine (FKN), GRO, IFN-α2, IL-12-P70, IL-7, MDC,
and sCD40-L was negatively associated with shock, pneumonia-
ARDS and ECMO or death (odds ratio 0.463, 0.598, 0.494,
FWER-p = 0.0002, 0.0155, 0.0283, respectively; Table S6). The
adjusted concentration of EGF (member of BS4) was also found
to be negatively associated with ECMO or death (OR = 0.211,
FWER-p 0.043), albeit more weakly that of the BS4 module. No
other individual adjusted cytokines were found to be negatively

associated with clinical phenotypes. The adjusted BS3 module,
which contained a similar group of cytokines to that of the
absolute BS3 module, had positive associations with shock,
pneumonia-ARDS and ECMO or death (odds ratio 3.01, 1.75,
2.46, FWER p-values 0.000002, 0.0095, 0.0042, respectively). The
BS3 adjusted cytokines IL-6 and IP-10 were associated with
shock, while IL-8 and MCP-1 were associated with both shock
and pneumonia-ARDS. As with the absolute cytokine analysis,
adjusted BS3 was associated with ECMO or death, while none of
its constituents were associated on their own. The significance of
all adjusted BS3 member cytokines with shock was weaker than
themodule’s; the significance of the adjusted IL-8 associationwith
pneumonia-ARDS was also weaker than that of BS3. However,
the significance of the association of adjusted MCP-1 with
pneumonia-ARDS was stronger than that of its module BS3.

SHIVERS - While no significant associations were detected
among adjusted individual serum cytokines, we found that
the adjusted BS6 module was positively associated with severe
acute respiratory illness (SARI) (Figure S8B and Table S10).
Furthermore, IL-4, IL-13, and TNF-β were part of the adjusted
BS1 module of SHIVERS and were also in the adjusted BS1
module of FLU09 that was negatively associated with total and
systemic symptom scores, as well as negatively associated with
SARI in the previous report on SHIVERS (58).

3.5. Subsets of Cytokine Clusters Were
Similar Across Datasets
We next asked whether cytokine modules were consistent across
datasets, i.e., were there cytokine “cores”—clusters of cytokines
that were consistently correlated during influenza infection. Since
airway samples were available only for two out of three cohorts,
this analysis was only performed using blood sample (serum
or plasma) modules. To identify cytokine cores, we tallied the
number of times that each pair of cytokines clustered together
across the three blood datasets (Figures 6A,B). Cytokine cores
were defined as groups of cytokines that clustered together in
all three datasets. Cytokine cores were defined separately for
the absolute and adjusted cytokine modules (Table 2). There is
overall agreement between the absolute and adjusted cytokine
cores. The most striking difference is the division of IP-10,
MCP-1, IL-8, and MIP-1α into two different subsets.

To determine whether the cytokine cores were unique to
influenza infected subjects, we constructed modules of adjusted
and absolute plasma samples provided by 142 healthy volunteers
in the FLU09 study. We found that overall, cytokine cores were
consistent across influenza-infected and healthy controls with
two exceptions: in the absolute cores, GCSF did not cluster
together with other core-6 cytokines and cores-4 and -6 were not
identified in the adjusted modules of healthy controls.

3.6. Core Modules Were Also Associated
With Clinical Phenotypes
Each absolute or adjusted core was composed of cytokines that
clustered together into the same module in all three cohorts
(Tables 3, 4). For example, adjusted core-2 was composed of
IL-12-P40, IL-15 and IL-2, which were members of PICFLU
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FIGURE 6 | Defining cytokine cores. By leveraging information across cytokine profile datasets, we can identify cytokine cores—subsets of cytokines that consistently

co-signal across all three blood datasets used in this study. Heatmaps of the number of times each pair of cytokines clustered together in all three cohorts, for

adjusted (A) and absolute (B) blood sample data independently. Cytokine names are colored by cytokine cores.
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TABLE 2 | Cytokine cores identified in absolute and adjusted blood samples

independently.

Adjusted blood cores Absolute blood cores

(1) GRO, MDC, sCD40-L, EGF (1) GRO, MDC, sCD40-L

(2) IL-2, IL12-P40, IL-15 (2) IL-2, IL-12-P40, IL-15

(3) IL-1β, IL-4, IL-13 (3) IL-1β, IL-4, IL-13, IL-3

(4) MIP1-β, TNF-α (4) MIP1-β, TNF-α

(5) IP-10, MCP-1, IL-8, MIP1-α (5) IP-10, MCP-1

(6) GCSF, IL-6 (6) GCSF, IL-6, IL-8, MIP-1α

(7) IL-7, IL-9

TABLE 3 | Modules that construct the absolute cytokine cores by dataset.

Absolute core PICFLU FLU09 SHIVERS

(1) BS4 BS3 BS3

(2) BS1 BS2 BS2

(3) BS1 BS1 BS1

(4) BS5 BS4 BS3

(5) BS3 BS3 BS3

(6) BS3 BS4 BS3

(7) BS5 BS1 BS2

adjusted BS1, FLU09 adjusted BS5 and also SHIVERS adjusted
BS5. We noted that most adjusted and some of the absolute
cores (Figure 6) were composed of cytokines that were members
of modules that exhibited strong associations with clinical
phenotypes. For example, adjusted core-1 contained GRO,MDC,
sCD40-L, and EGF, members of the PICFLU adjusted module
BS4 (Figure 5B), which was negatively correlated with poor
clinical phenotypes. Surprisingly, they were also members of
the adjusted module BS3 from FLU09 (Figure 4B), which in
contrast had mostly positive associations (significant only in the
absolute measurements). Adjusted core-3 contained IL-1β , IL-
4, and IL-13 that were part of the FLU09 adjusted module BS1,
which was negatively associated with several symptom scores.
Adjusted core-5 contained IP-10, MCP-1, IL-8, and MIP-1α
that were part of FLU09 adjusted BS3 mentioned above, and
also of adjusted PICFLU module BS3 which had significant
positive associations with all phenotypes. Absolute core-5 and
absolute core-6 cytokines were part of FLU09 and PICFLU
absolute modules that had significant positive associations with
phenotypes (Figures 4A, 5A).

We then tested for associations between the cytokine cores
and clinical phenotypes, using the same methodology described
above. A subject’s score for each core was calculated based
on the mean cytokine concentration of cytokines within the
core, after standardizing each cytokine to mean zero and unit
variance. Figure 7 portrays the associations to clinical outcomes
and symptoms for absolute and adjusted blood cytokines of
influenza-positive FLU09 and PICFLU subjects, respectively.
P-values for the coefficients describing the associations of
cytokines and symptom scores were adjusted for multiple

TABLE 4 | Modules that construct the adjusted cytokine cores by dataset.

Adjusted core PICFLU FLU09 SHIVERS

(1) BS4 BS3 BS3

(2) BS1 BS5 BS5

(3) BS1 BS1 BS1

(4) BS3 BS4 BS3

(5) BS3 BS3 BS3

(6) BS3 BS4 BS4

hypothesis tests within each presented dataset separately. P-
values for the regression coefficients calculated for the core scores
were adjusted independently of the coefficients calculated for
individual cytokines. Individual cytokine p-values were adjusted
across all cytokines and not only for the cytokines included in the
core cytokine set.

FLU09 - None of the adjusted plasma FLU09 cores were
significantly associated with clinical symptoms, but trends were
in agreement with the module associations (Figure 7 and
Tables S11, S12). However, absolute cores were associated with
symptoms: absolute core-1 was associated with total symptoms;
core-4 was associated with lower and upper RT symptoms;
and core-5 was associated with total and systemic symptoms.
Each core’s corresponding module was similarly associated with
symptoms: BS3 which contained absolute core-1 and core-5
cytokines was associated with total and systemic symptoms; BS4
which contained absolute core-4 cytokines was associated with
lower RT symptoms but not with upper RT symptoms (while
core-4 itself was associated with both).

PICFLU - Significant associations were found with both
absolute and adjusted cores (Figure 7 and Tables S13, S14).
Absolute core-5 was positively associated with shock, absolute
core-6 was positively correlated with shock and ECMO or death.
Absolute core-5 and core-6 cytokines were members of absolute
module BS3, which was also positively associated with shock
and ECMO or death. Three adjusted cores, originating in two
different modules, were associated with outcomes: adjusted core-
1 was negatively associated with shock and ECMO or death,
adjusted core-5 was positively associated with shock, pneumonia-
ARDS and ECMO or death, and adjusted core-6 was positively
associated with shock. Adjusted BS4 which contained adjusted
core-1 cytokines was associated with all outcomes, while core-1
was negatively, but not significantly associated with pneumonia-
ARDS after FWER adjustment. Adjusted BS3 which contained
adjusted core-5 and -6 cytokines was positively associated with
all outcomes.

SHIVERS - In the SHIVERS cohort, neither the absolute
or adjusted cores were significantly associated with the SARI
phenotype. The lack of associationmay be due in part to the small
sample size in the first year of the study (n= 52).

3.7. Correlations Among Core Modulations
Were Consistent Across Cohorts
We computed correlations between cores within each of the
blood cytokine profile datasets, including the FLU09 healthy
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FIGURE 7 | Cores constructed from groups of covarying cytokines (absolute and adjusted measurements separately) as detailed in section 3.5. Associations

between cytokine cores and clinical phenotypes are shown for FLU09 (A,C) and PICFLU (B,D) for both raw and adjusted cytokine levels. Blood cytokine cores

associations with phenotypes were estimated using regression while also controlling for other variables as described in section 3.3. Each cytokine or core is indicated

along the rows. Heatmap color indicates the direction and magnitude of the regression coefficient. For each individual cytokine FDR and FWER adjustments are

shown are controlled over all 37 cytokines. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error rate

(FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

controls (see section 2.5 for details). Overall we found mostly
positive significant correlations between absolute cores that were
consistent across all datasets, with a few notable exceptions:
cores-1 and -7 and cores-3 and -4 (Figure 8A).

We also computed pairwise correlations for the adjusted cores
(Figure 8B). Similarly to the absolute cores, overall correlations
between cores were consistent across datasets except for one pair
of cores (core-1 and core-5).

4. DISCUSSION

Here we presented CytoMod—a data driven approach for
analyzing cytokine profiles and their association with clinical
phenotypes. Our approach leverages the inherent redundancy

of cytokines to form modules—clusters of cytokines whose
signals correlate across a cohort of individuals. CytoMod is an
unsupervisedmethod—i.e., it does not use any information about
clinical phenotypes or outcomes to identify cytokine modules.
Using cytokine modules increases the statistical power to detect
associations with clinical phenotypes, by amplifying the signal
within a module relative to the noise, as well as reducing the
number of tests subject to multiplicity adjustment. It also allows
for the identification of data-specific co-signaling cytokines,
which may provide clues about the underlying immunological
pathways. A preliminary version of CytoMod was applied in the
analysis of the PICFLU cohort (51). Importantly, the method
presented here includes automated selection of the number of
modules using the gap-statistic heuristic. Indeed, when applied
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FIGURE 8 | Pairwise Pearson correlations between absolute (A) and adjusted (B) blood cytokine cores within each dataset, presented with vertical stripes from left to

right: PICFLU, SHIVERS, FLU09, and FLU09-healthy. Heatmap color indicates the correlation coefficient. P-values for the coefficients were adjusted for multiple

hypothesis tests within each dataset separately. Only associations with false-discovery rate (FDR)-adjusted q ≤ 0.2 are colored. Asterisks indicate family-wise error

rate (FWER)-adjusted p-values with ***, **, and * indicating p ≤ 0.0005, 0.005, and 0.05, respectively.

to the PICFLU cohort, it identified different numbers of modules
than those analyzed in our previous work.

To our knowledge CytoMod is the first method for the
analysis of cytokine profiles and clinical phenotypes that utilizes
modules identified within cytokine expression data. In the age
of multi-omics approaches, novel strategies for the integration
of multiplex data with clinical outcome information can assist
in the identification of complex pathological alterations of
physiological networks. CytoMod only requires a dataset of
cytokine measurements and (optionally) clinical phenotypes.
Importantly, it does not assume that modules necessarily capture
biological function.

CytoMod is based on unsupervised clustering which can help
uncover inherent structures within a given dataset. Our work
is related to previous work on methods for cluster analysis of
variables (65–67), which groups together variables which are
strongly related to each other and hold similar information.
CytoMod can also be viewed as a dimensionality reduction
method for cytokine profiles. There are a variety of other
methods for dimensionality reduction that have been widely used
for visualization and analysis of biological data. These include
methods such as Principal Components Analysis (PCA) (68, 69),
Linear Discriminant Analysis (LDA) (70), Factor Analysis (71)
and t-sne (72). Most of these methods project the samples
into a low-dimensional space by creating new features from
linear combinations of the original features. In this new space
the original coordinates (or features/cytokines) are not retained,
thereby reducing the ability to draw biological interpretation.
In contrast, our modules retain interpretability by grouping
together individual cytokines that are co-expressed and can be
further studied to allow gaining new insights into the underlying
biological processes that generate these structures.

We applied CytoMod to three independent cohorts of
influenza-infected subjects. The analyses of SHIVERS and
FLU09 datasets presented here included previously unpublished

data from additional study years, as well as data from healthy
volunteers. To allow comparisons between the cohorts, we
limited the number of cytokines analyzed to a subset of 37
cytokines that were quantified in all three cohorts. We found that
in two of these cohorts, modules were significantly associated
with clinical phenotypes, and in most cases the associations
were stronger than those of individual cytokines within the
module. Specifically, we found that across all modules in these
two datasets, the association of the module with outcomes
was more significant than that of an individual cytokine in
14 out of 22 cases in which the cytokine’s association was
significant. Furthermore, in 6 cases, a module had a significant
association with a phenotype while non of its cytokines had any
significant association.

In our previous analysis of FLU09, we analyzed only 11
pre-selected cytokines using data from years 1 to 2. In our
current manuscript, we analyzed data from the entire study
(years 1–5). We identified novel associations between modules
and clinical phenotypes. Specifically, the adjusted BS1 module
containing FLT3L, IL-13, IL-1β , IL-4, IL-5, IL-7, IL-9, and TNF-
β was found to be significantly negatively associated with total
and systemic symptoms. Out of these cytokines, only IL-1β
was included in the previous analysis. In addition, we found
novel associations of the absolute EGF, GRO, FKN levels that
were not previously reported. In the analysis of the PICFLU
study, which only included children admitted to the ICU with
influenza infection, we found that the serum module BS3 is
significantly associated with Shock and ECMO/death outcomes.
Interestingly, this module contains IL-6, IL-8, and MCP-1, which
have been previously reported to be hyperactivated in subjects
with severe influenza infection (28). No significant associations
with clinical phenotypes were detected in the SHIVERS cohort,
though this may be due in part to its small sample size (n =

52), and sampling variability (58) which further limits the ability
to detect associations. Interestingly, we note that univariate
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associations previously reported for this cohort (58), which were
not adjusted for multiplicity testing across cytokines, were in
overall agreement with the module associations reported here for
FLU09 and in some cases with the cytokine cores.

We focused here on analyzing cytokine associations with
outcomes that were significant following a stringent FWER
adjustment procedure. In fact, all of the previously reported
FDR-adjusted FLU09 associations based on data from years
1–2 (49) were also significant using FDR-adjustment on the
complete years 1–5 dataset, and three of them were also FWER
significant (when adjusted across all 37 cytokines analyzed
here). These findings suggest that many of the associations with
FDR q-values ≤ 0.2 may also be worth further exploration
(Figure S9). The fact that many individual cytokines within
FWER significant modules have associations with clinical
phenotypes with the less stringent FDR q-value threshold
of 0.2, while only a few of them have FWER significant
associations, demonstrates the increase in statistical power
provided by the modular cytokine approach. The CytoMod
method considers both absolute and adjusted cytokine levels,
since immune cells may be sensitive both to absolute and
relative cytokine concentrations (73–75). While some positive
associations with clinical phenotypes were observed using both
the absolute and adjusted cytokines and modules, we found
that significant negative associations with clinical phenotypes
were found only with the adjusted modules. This is likely due
to the fact that adjustment to the overall cytokine expression
level may uncover differences in cytokine levels that are
expressed at relatively low levels. Specifically, we found that
the adjusted BS1 module in FLU09 was negatively associated
with total and systemic symptoms, and that the adjusted
BS4 module in PICFLU was negatively associated with the
clinical phenotypes of shock, pneumonia-ARDS and ECMO-
death. Interestingly, some of the BS4 cytokines were positively
associated to FLU09 symptom scores when considering the
less stringent FDR q-value ≤ 0.2. These results highlight
the importance of analyzing both absolute and adjusted
cytokine levels.

By analyzing three independent cohorts of subjects naturally
infected with influenza, we were able to identify cytokine
“cores”—subsets of cytokines that consistently clustered together
across datasets. Cores were extracted from the modules directly
and were identified without using any information about
clinical outcomes or subject demographics. Interestingly, the
majority of these cores clustered together in the set of 142
healthy controls from the FLU09 study, suggesting that these
cores may represent sets of co-signaling cytokines. Some
of these cores include cytokines that have been reported
to have similar roles: For example: (1) adjusted core-3
which includes IL-1β , IL-4, and IL-13 contribute to epithelial
repair mechanisms (4); (2) IP-10, MCP-1, IL-8, and MIP-
1α which belong to adjusted core-5 are chemokines that are
key inflammatory mediators (1); (3) IL-2, IL-15, and IL-12-
p40 in adjusted and absolute core-2 are involved in T-cell
activation (76, 77).

While we found that the cytokine cores were significantly
associated with clinical phenotypes, the associations of the

cytokine modules that were defined separately for each dataset
were overall stronger. This is not surprising for two reasons:
(1) using the strict definition of cores used here (co-clustering
in all 3 datasets), cores are typically smaller than data-driven
modules and are more sensitive to measurement noise; (2) Data
driven modules of a specific cohort may also be affected by
other covariates which may be specific to that cohort, and are
not captured by the cytokine “cores” which are created using
multiple datasets.

We analyzed correlations between cytokine cores, and
compared these across datasets in both the absolute and
adjusted datasets.We found that overall, the correlations between
different cytokine cores were consistent across the three datasets,
as well as in a cohort of healthy controls. However, we found one
notable exception: adjusted core-1 and core-5 were negatively
associated only in the PICFLU dataset. This is also reflected in
the fact that core-1 (EGF, GRO, MDC, and sCD40-L) was weakly
positively associated with outcome in a cohort of mild influenza
infection (FLU09) and was negatively associated with outcome of
severe influenza infection (PICFLU).

The existence of cytokine cores, and their association with
clinical phenotypes despite a variety of differences between the
cohorts suggest that these cores may represent stable underlying
cytokine modules that consistently co-signal during influenza
infection, and in some cases also in a healthy state. Cytokine
cores may relate to specific functions and underlying biological
processes that govern the complex cytokine signaling network.
Nonetheless, defining robust cytokine cores requires large scale
analysis of multiple cytokine datasets. As additional cytokine
profile datasets are generated and made publicly available,
cores can be dynamically re-defined, including defining “softer”
probabilistic cores based on frequency of co-occurrence across
many datasets and conditions. Identification of consistent
cytokine subsets may provide a basis for the selection of
biomarkers and the development of targeted immune assays,
as part of a novel approach for developing future point-of-care
diagnostic tests based on cytokine measurements that may be
used for many different infections.

CytoMod groups cytokines intomodules so that each cytokine
belongs to a single module. We hypothesize that similar to genes,
each cytokine may play several functional roles under different
immune contexts. This would be best captured by “soft” modules,
in which each cytokine may belong to more than one module.
Once a sufficiently large number of cytokine datasets are analyzed
such softer modules may be identified and annotated, similar
to annotations of gene modules (52, 57). Our analysis of three
datasets should be viewed as a first step in this direction.

CytoMod can be applied to any cytokine profile dataset
and does not make any assumptions regarding the specific
technology that was used to quantify cytokines. Furthermore,
the modular approach allows identification of co-signaling
cytokines across study years, even if the specific kit used to
quantify cytokines was changed during the study, or other
changes to the study were implemented. This is due to the
fact that correlations are computed between cytokines across
study subjects. Indeed despite significant differences between
the cytokine measurements in years 1 and 2 of the SHIVERS
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study, we used both years to generate cytokine modules for
this dataset.

In summary, using a modular approach to analyze cytokine
profile datasets provides two major advantages: (1) It increases
statistical power to detect associations with clinical phenotypes;
and (2) By comparing modules obtained from different
independently sampled datasets, we can identify cytokine cores
- sets of consistently co-signaling cytokines. By aggregating
cytokine information across datasets, this approach may
help identify inherent, and condition-specific groupings
of cytokines, providing the basis for future mechanistic
molecular studies. A Python implementation code of CytoMod
can be found at https://github.com/liel-cohen/CytoMod
as well as in an interactive Jupyter Notebook available at
https://nbviewer.jupyter.org/github/liel-cohen/CytoMod/blob/
master/cytomod_notebook.ipynb.
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