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Abstract

Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle

resulting from muscle activity. Because control of muscle is realized at the level of the motor

unit (MU), it seems important to consider the physiological properties of motor units when

attempting to understand and predict muscle fatigue. Therefore, we developed a phenome-

nological model of motor unit fatigue as a tractable means to predict muscle fatigue for a

variety of tasks and to illustrate the individual contractile responses of MUs whose collective

action determines the trajectory of changes in muscle force capacity during prolonged activ-

ity. An existing MU population model was used to simulate MU firing rates and isometric

muscle forces and, to that model, we added fatigue-related changes in MU force, contrac-

tion time, and firing rate associated with sustained voluntary contractions. The model accu-

rately estimated endurance times for sustained isometric contractions across a wide range

of target levels. In addition, simulations were run for situations that have little experimental

precedent to demonstrate the potential utility of the model to predict motor unit fatigue for

more complicated, real-world applications. Moreover, the model provided insight into the

complex orchestration of MU force contributions during fatigue, that would be unattainable

with current experimental approaches.

Author summary

Skeletal muscle fatigue reduces strength during work and play and profoundly impairs

motor function in many neuromuscular disorders. Muscle is composed of groupings of

fibres called motor units and these have an extensive range of characteristics from small,

weak, and fatigue-resistant to large, strong, and highly fatigable. Our model tracks the

fatigue of an entire population of motor units making up a muscle. The model predicted,

with good fidelity, the endurance times for a wide range of tasks and provided new

insights into the complex orchestration of motor unit contributions to muscle force dur-

ing fatigue. The model should have wide application in the fields of ergonomics, rehabili-

tation and exercise to predict and better understand the nature of both motor unit and

whole muscle fatigue.
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Introduction

Muscle fatigue is a temporary decline in the force and power capacity of skeletal muscle result-

ing from muscle activity. Muscle fatigue can adversely affect the lives of workers, athletes,

patients, and the elderly—and is a quotidian (and bothersome) presence in the lives of most

people. Yet, the basic mechanisms underlying muscle fatigue have not been firmly established.

In the periphery, muscle fatigue is thought to arise mainly because of impairments in cross-

bridge function and excitation-contraction coupling brought about by accumulation of metab-

olites and alterations in transmembrane ionic concentrations [1–3]. Centrally, muscle fatigue

is manifest as an impairment in activation of the motor neurons that drive muscle fibers.

There are a number of factors that likely contribute to this impairment, including diminished

output of the higher motor centers that operate on motor neurons, increasing synaptic inhibi-

tion directed to motor neurons, and intrinsic adaptations in motor neurons that make them

progressively less responsive to synaptic excitation during sustained activity [4–7].

Because control of muscle is realized at the level of the motor unit (a motor neuron and the

muscle fibers it innervates), it seems important to consider the physiological properties of

motor units (MUs) when attempting to understand and predict muscle fatigue. Indeed, the

few hundred MUs that make up a typical mammalian muscle usually possess wide ranges of

contractile properties including force capacities, contractile speeds, and fatigabilities. While

convention suggests distinct clustering of MUs (i.e. MU types) based on such contractile prop-

erties, it is more accurate to represent MU characteristics as residing along broad continua

rather than as falling into distinct categories [8]. Control over the diverse population of MUs

making up a muscle is enacted in a highly stereotyped way. With few exceptions, MUs appear

to be recruited in an orderly sequence, from those that exert the weakest forces toward those

that produce the greatest (see [9] for review). Furthermore, there appears to be a tight associa-

tion between force capacity and fatigability of MUs, such that stronger MUs are more fatigable

(ie. fatigue more rapidly) than weaker ones [10–12]. In addition, there is a tendency for weak

MUs to have slower twitches (i.e. longer contraction time) than strong motor units [10]. The

neural mechanisms underlying the orderly recruitment of MUs—from weakest, slowest and

least fatigable, to strongest, fastest and most fatigable—were largely revealed by Henneman

and colleagues and is referred to as the size principle [13–15].

Once recruited, individual MUs increase their firing rate with increased synaptic excitation

over a relatively narrow range of values before saturating at levels that appear to be inversely

related to the MU’s recruitment threshold [16–18]. As such, during a given contraction, MUs

within a muscle can possess a wide range of activities, from those not yet recruited to those

that have reached their maximal firing rates. If the contraction is sustained, MUs will fatigue at

different paces dictated both by their individual firing rates (which can vary over time) and the

intrinsic fatigabilities of their innervated muscle fibers. Because of this complexity, it has been

difficult to predict the time-course of muscle fatigue, even for relatively simple tasks involving

sustained target forces, let alone for tasks in which force levels vary over time and include vary-

ing periods of recovery between contractions. Furthermore, when challenged with different

tasks, a muscle might eventually accumulate the same level of fatigue (loss in overall muscle

force capacity) but do so with very different combinations of fatigue within the individual

MUs.

Therefore, our goal was to develop a phenomenological model of motor unit fatigue, not

only as a tractable means to predict the mechanical aspects of muscle fatigue across a wide

range of tasks, but also to illustrate the varying responses of the individual MUs whose collec-

tive action contributes to the trajectory of changes in muscle force capacity during prolonged

activity. As such, this model will provide a framework for better understanding physiological

A motor unit-based model of muscle fatigue

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005581 June 2, 2017 2 / 30

https://doi.org/10.1371/journal.pcbi.1005581


mechanisms contributing to the fatigue of individual muscles, and will have applications in

ergonomics, rehabilitation, and exercise. While the present paper simulated MU fatigue associ-

ated with sustained, isometric contractions only, this work is the first phase of a more compre-

hensive model to predict MU fatigue and recovery for any task demand time-history.

Results

We used an existing MU population model [19] to simulate rested firing rates and isometric

forces for a muscle composed of 120 MUs, then added fatigue to individual MUs via central

effects on firing rate adaptations and peripheral effects on force capacities and contraction

times. The pool had MU characteristics ranging from those that were small, weak and with

low fatigability to those that were large, strong and highly fatigable (Fig 1). Motor unit forces

were dictated by a force-frequency curve where the input was normalized firing rate (relative

to the MU’s contraction time) and the output was normalized force (relative to the MU’s maxi-

mum tetanic force). For a detailed description of the model and simulations see ’Material and

methods’ section.

Here we use the model to address three main questions that would be difficult to address

experimentally: (1) how do the force contributions of individual MUs vary during contractions

sustained at different target forces? (2) which subpopulations of MUs undergo the greatest

degree of fatigue for different types of contractions? and (3) for different tasks but which reach

the same overall level of muscle-force loss, are individual MUs fatigued to the same degree

across the tasks?

Submaximal force trials (20% target)

Fig 2 shows outputs from the model for a simulated sustained 20% force contraction. There

was a progressive force-capacity decline over the course of the trial—necessitating an increase

in excitation (green trace, Fig 2A) from the initial value of 27.9% maximum voluntary excita-

tion (MVE), to 100% MVE at the endurance time of 511.5 s. The increase in excitation was

realized as a gradual increase in firing rates (Fig 2B) up to the assigned maximum rates of

those MUs activated from the outset of the contraction (MUs 1–90) and by recruitment and

subsequent increase in firing rate of the highest threshold MUs (MUs 91–120). In experimen-

tal studies, that have used protocols similar to what was simulated in Fig 2 (i.e. ~20% target

force), MU firing rates also tended to increase with time [20–22], not unlike the results of our

simulations (Fig 2B). Only a few of the highest threshold MUs, simulated in Fig 2, did not

attain their assigned maximal firing rates at the endurance limit because of the countervailing

effects of firing rate adaptation, which was assigned to have a more potent effect on high

threshold compared to lower threshold MUs.

In the absence of firing rate adaptation (gray line, Fig 2A), muscle force at 511.5 s would

have been about 85% higher than that produced in the presence of firing rate adaptation

(black line, Fig 2A) and the endurance time would have been extended by about 40 s. Low

threshold MUs (e.g. MUs 1–20) initiated their activities close to their maximum firing rates

(Fig 2B), which were also close to the normalized firing rates needed for these slow twitch

MUs to attain their maximal force (Fig 1C). As such, and because these MUs were fatigue

resistant (i.e. assigned low fatigability values, Fig 1D), their force contributions (Fig 2C)

remained relatively stable throughout the trial. These low threshold MUs were also the weakest

(see Fig 1B) and, as such, their contribution to overall muscle force was modest. Somewhat

higher threshold MUs (e.g. MU 40–60) also initiated their firing at relatively high rates (Fig

2B) but these units had slightly higher intrinsic fatigability (Fig 1D) and, consequently, their

force decreased gradually throughout the trial.

A motor unit-based model of muscle fatigue
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The highest threshold MUs, recruited from the outset of the trial (e.g. MU80), initially had

relatively low firing rates (Fig 2B). In addition, because these units had comparatively brief ini-

tial contraction times, their initial normalized firing rates were quite low. For example, the ini-

tial firing rate of MU80 was about 13 imp/s (Fig 2B) and it had an initial contraction time of

about 43 ms (0.043 s) (Fig 1B). The product of these two values yields a normalized firing

rate (Eq 4, Methods) of about 0.58, which placed it quite low on the force-frequency curve

Fig 1. Summary of the motor unit and fatigue model parameters. (A) Example of a twitch response indicating the peak twitch force (P) and contraction

time (CT). (B) Inverse relationship between the modeled contraction times and peak twitch forces across the motor units. Values for every 20th MU are

shown. (C) Relationship between normalized firing rate and normalized force. This was modeled to be the same for each motor unit. (D) Direct relationship

between modeled peak twitch force and fatigability across motor units.

https://doi.org/10.1371/journal.pcbi.1005581.g001
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(Fig 1C). As firing rate increased, these MUs moved up the steep portion of the force-fre-

quency curve, leading to an initial increase in their force (Fig 2C) which partially compensated

for the decreasing force from lower threshold MUs to maintain muscle force at the target level

of 20% of maximum (blue trace, Fig 2A). However, because these higher threshold units also

had reasonably high fatigability (Fig 1D), their force output eventually started to decline (e.g.

at ~ 250 s for MU80) and then declined steeply for the remainder of the trial (Fig 2C).

Motor units recruited later in the trial started firing at the minimum rate and then gradually

increased their firing rates as excitation increased (e.g. MU100, Fig 2B). The low starting firing

rates, combined with the brief contraction times of high threshold MUs, placed these units ini-

tially on the far left, linear portion of the force-frequency curve (Fig 1C). Consequently, as

excitation increased, firing rates increased in these units, and force initially increased linearly

(Fig 2C, MU 100) then eventually transitioned into the steeper portion of the force-frequency

curve and, consequently, force then increased more precipitously (from ~ 340–440 s, Fig 2C).

Because these MUs were assigned to have high force capacity (Fig 1B), their force contribution

was substantial. These MUs, however, were also the most fatigable and, as such, their force out-

put then decreased steeply.

Fig 2. Fatigue model outputs for a sustained 20% MVC force. The endurance time of 511.5 s is indicated with the vertical dotted lines. (A) Increased

excitation in response to fatigue. Force capacity is shown with and without firing rate adaptation and the modeled force remains at the target load until the

endurance time. (B) Firing rate of each MU, over the course of the trial. Lines begin when the MU was recruited. Each 20th MU is highlighted and labelled,

but all 120 MUs are shown as lighter lines. (C) Force contribution of each MU. (D) Relative force capacity of each MU (normalized to its rested capacity).

https://doi.org/10.1371/journal.pcbi.1005581.g002
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In addition, because of the imposed ‘onion-skin’ organization (i.e. high threshold MUs

assigned the lowest maximum firing rates, see Methods) and the effects of firing rate adapta-

tion, these high threshold MUs increased firing rate over only a relatively modest range. Even-

tually, the endurance time was reached when no further voluntary increase in any MU’s force

was possible. Fig 2D shows the force capacity of each MU relative to its initial force. At the

endurance limit (~512 s), MU1 had lost only about 5% of its force whereas MUs 20, 40, and 60

had lost ~ 15%, 35%, and 80% of their force, respectively. Interestingly, MUs 66–98 had lost all

their force capacity and were essentially exhausted.

Submaximal force trials (50% target)

Fig 3 shows the simulation of a sustained contraction at 50% of maximum force. Excitation

(green trace, Fig 3A) increased over the trial, at a rate substantially greater than for the 20%

force trial, to maintain the 50% target force in the face of the progressively declining total mus-

cle force capacity (black trace, Fig 3A). At 95.5 s, muscle force capacity dropped below the tar-

get level of 50%, thereby demarking the endurance limit for this trial. If firing rate adaptation

was not included in the simulation (gray trace, Fig 3A), muscle force capacity at 95.5 s was well

above the target force and the endurance time was extended to ~132 s.

Fig 3. Fatigue model outputs for a sustained 50% MVC load with an endurance time of 95.5 s. (A) Increased excitation in response to fatigue. Force

capacity is shown with and without firing rate adaptation and the modeled force remains at the target load until the endurance time. (B) Firing rate of each

MU, over the course of the trial. Lines begin when the MU was recruited. Each 20th MU is highlighted and labelled, but all 120 MUs are shown as lighter

lines. (C) Force contribution of each MU. (D) Relative force capacity of each MU (normalized to its rested capacity). Note the higher y-axis scale (30) than

with the 20% MVC force (22).

https://doi.org/10.1371/journal.pcbi.1005581.g003
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MUs 1–109 were recruited from the outset of the contraction (Fig 3B). Of these, MUs 1–72

initiated their activities already at their assigned maximum firing rates. As a result, the firing

rates of these MUs declined over time due to the influence of firing rate adaptation. Higher

threshold MUs in this group exhibited greater degrees of firing rate adaptation than lower

threshold MUs (e.g. compare MU 60 to MU40, Fig 3B).

MUs recruited at from the start of the contraction, but with firing rates less than their

assigned maximum (e.g. MU 80, Fig 3B), initially increased firing rates in response to the esca-

lating excitation. However, the rate of firing rate increase was less than the rate of excitation

increase because of the competing effect of firing rate adaptation. MUs with high initial firing

rates (e.g. MU 80) eventually reached their maximal rates, after which time their firing rates

declined due to adaptation. MUs activated from the outset, but with lower initial rates (e.g. MU

100), gradually increased their firing rates but did not reach their maximal firing rates. This fail-

ure to reach maximal firing rates occurred because, over time, the increasing effects of adapta-

tion undercut the effects of increases in excitation. In some cases (e.g. MU 100), a near balance

was struck between these two competing influences leading to a leveling-off in firing rate.

As a consequence of the complex interaction between excitation (tending to drive the pool

of MUs as a collective) and adaptation (an intrinsic effect that influences the firing rates of

individual MUs), an array of firing rate profiles was observed. Indeed, some MUs showed pro-

gressive decreases in firing rate (low threshold MUs), some showed increases followed by

decreases in firing rate, and others showed mainly progressive increases in firing rate. Further-

more, at any point in time, a range of firing rate responses could be observed. For example, at

about mid-way through the contraction (~50 s), some MUs had stable firing rates, some had

slowly decreasing firing rates, others had increasing firing rates, and some units were just

being recruited. Such disparate firing rate responses across motor units have also been

observed in human motor units during fatiguing contractions (e.g. [20,21,23–29]).

Like that for the 20% force contraction, lower threshold MUs (i.e. MU 1–60) showed little

drop in force over the duration of the contraction held at 50% force (Fig 3C). These units were

assigned low values of fatigability (Fig 1D) and, also, exhibited little firing rate adaptation. As

such, their force contributions (although comparatively small) were relatively stable during

this simulation. Higher threshold MUs, that were recruited from the outset and with high ini-

tial firing rates (e.g. MU 80, Fig 3C), showed a progressive decline in force capacity over the

course of the contraction due to both relatively high values of assigned fatigabilities and greater

degrees of adaptation, compared to lower threshold MUs. MUs recruited from the outset at

low rates (e.g. MU 100), and those units recruited after the onset of the contraction, initially

increased their force contribution due to increasing firing rates. Eventually, however, when

diminishing intrinsic excitability (associated with firing rate adaptation) matched or exceeded

the degree of increasing extrinsic excitation, firing rates leveled off or started to decrease (see

Fig 3B). Consequently, force then dropped steeply for these high threshold units that were

assigned the highest fatigability values (Fig 1D).

At the endurance limit, lower threshold MUs (e.g. MUs 1–60) still retained at least 90% of

their force capacity (Fig 3D). The MUs that underwent the largest relative drop in force during

this contraction were MUs 90–100 with only 40–45% of their force capacity remaining at the

endurance limit.

Submaximal force trials (80% target)

For comparison with the 20 and 50% contractions, Fig 4 shows simulation results for a sus-

tained 80% force contraction. From the outset of the contraction, total muscle force capacity

decreased steadily, which was counteracted by a progressive increase in excitation to maintain
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muscle force at the target level (Fig 4A). However, after only about 15 s of activity, maximal

excitation was reached and, as such, the declining total muscle force capacity could no longer

be counteracted and the endurance limit was reached. This endurance time (14.8 s) was only

about 3% of that associated with the 20% force contraction and 15% of the 50% force contrac-

tion. All MUs were recruited at the start of the trial (Fig 3B). Most motor units (MUs 1–103)

initiated their activities at their maximal firing rates. Consequently, their firing rates declined

progressively over the trial because of the effects of firing rate adaptation, the degree of which

varied as a function of MU threshold. In an experimental study, that used a similar target force

as used in this simulation, MU firing rates also tended to progressively decrease with time [30].

Because the highest threshold MUs (MUs 104–120) in the simulation were initially activated

below their maximal firing rates, as excitation increased, their firing rates first increased

toward their maximal rates followed by a gradual decline in firing rate due to adaptation.

Due to the combined effects of firing rate adaptation and peripheral fatigue, MUs activated

from the outset at their maximal rates showed a progressive decline in force (Fig 4C) with the

greatest losses occurring in the strongest (and most fatigable) MUs. Motor units that were acti-

vated initially at rates below their maximum (MUs 104–120) exhibited an initial increase in

Fig 4. Fatigue model outputs for a sustained 80% MVC load with an endurance time of 14.8 s. (A) Increased excitation in response to fatigue. Force

capacity is shown with and without firing rate adaptation and the modeled force remains at the target load until the endurance time. (B) Firing rate of each

MU, over the course of the trial. Lines begin when the MU was recruited. Each 20th MU is highlighted and labelled, but all 120 MUs are shown as lighter

lines. (C) Force contribution of each MU. (D) Relative force capacity of each MU (normalized to its rested capacity). Note the higher y-axis scale (50) than

with the 20% MVC force (22) and 50% MVC force (30).

https://doi.org/10.1371/journal.pcbi.1005581.g004
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force as their firing rates increased, followed by a decline in force as firing rates adapted and

the process of peripheral fatigue continued. At the endurance time, the degree of force capacity

loss (relative to the initial forces) was relatively small for all MUs (Fig 4D). For example, the

MU exhibiting the greatest fatigue (MU107) still retained ~86% of its force capacity at the

endurance time. This contrasted with the 20% force contraction (Fig 2D) in which 28% of the

MUs were completely exhausted. Nevertheless, for the 20%, 50%, and 80% force contractions,

the simulations indicated a complex interplay of force contributions among the MU popula-

tion (Figs 2C, 3C and 4C) with individual forces increasing and decreasing, at varying times

and with different rates, but with the total muscle output maintaining the target force up until

the endurance limit.

Maximum force trial (100% target)

Fig 5 shows simulations associated with a sustained maximum voluntary effort (100% MVE).

The model predicted an immediate decrease in total muscle force capacity with an endurance

time less than 1 s (Fig 5A). To mimic what has been done experimentally for such contractions,

we continued the simulation out to a time of 200 s. Total muscle force declined relatively

steeply over the first ~ 40 s of the contraction, then somewhat less steeply up to about 120 s,

and finally with a more gradual decline in force over the last ~ 80 s of the contraction. Because

voluntary excitation was maximum throughout, muscle force and force capacity were the

same (Fig 5A). At the end of the 200 s contraction, force was down to ~15% of the initial force.

Because excitation was maintained at 100% throughout the contraction, changes in firing

rate (Fig 5B) were caused entirely by firing rate adaptation. Fig 5B also nicely illustrates the dif-

ferential effects of adaptation across the MU population, with low threshold MUs showing lit-

tle adaptation and high threshold units exhibiting marked adaptation.

As expected, the inclusion of adaptation led to a greater decrease in muscle force (black

trace, Fig 5A) as compared to simulations without adaptation (gray trace, Fig 5A), especially in

the first 160 s, after which time there was little difference. This was a consequence of a complex

interaction between normalized firing rate, normalized force (Fig 1C), instantaneous fatigabil-

ity (Eq 10, Methods), and fatigue-related changes in contraction time (Eq 11, Methods). Since

all MUs were recruited at the start of the trial, the effects of firing rate adaptation dominated in

the first 35 s. However, because MU contraction times increased with MU fatigue, this tended

to shift MUs higher on their force-frequency curves, thereby partially offsetting the force loss

associated with declining firing rates due to adaptation. Consequently, the difference in the

degree of force decline between simulations, that included and excluded adaptation, tended to

dissipate in the latter third of the trial.

Fig 5C shows the force contribution of the individual MUs over the course of the 100%

force trial. It is important to note that, at the outset of the trial, before any fatigue had occurred,

the forces produced by the highest threshold MUs were less than their theoretical maximum

forces. For example, MU120 had a capacity to generate 100 times more force than MU1, yet

its initial force at 100% MVE was only 57 times greater than MU1. This was due to: (a) the

imposed ‘onion skin’ organization that limits the maximum firing rates of high threshold MUs

to be less than that of low threshold MUs, and (b) the briefer contraction times of the high

threshold MUs which decreased their normalized firing rates and led to lower forces. This

implies that there is a reserve capacity of force (mostly vested in the highest threshold motor

units) that normally is not accessed even during maximal voluntary efforts. There is substantial

circumstantial evidence that lends support to this idea [31–34].

The initial steep drop in muscle force (Fig 5A) was primarily due to the rapid loss of force

occurring in the highest threshold, strongest MUs (Fig 5C). Those MUs lost force quickly
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because of a combination of greater firing rate adaptation and greater fatigability. After about

60 s, when firing rate adaptation was largely complete for all MUs, MU forces declined rela-

tively steadily although with different slopes for different MUs related to their individual force

capacities. An interesting exception existed with the highest threshold MUs. For example, after

60 s, the slope of force capacity decrease was less for MU120 than for MU100 (Fig 5C). This

was primarily due to the initial greater extent of adaptation for MU120 than MU100, causing a

larger decrease in its firing rate, which combined with its short contraction time to substan-

tially shift it to the left on its force-frequency curve. This, in turn, led to a marked and early

reduction in force output of MU120 such that it produced substantially less force than MU100

at 60 s. Because MU fatigability was partially dependent on normalized force (Eq 10, Methods),

the rate of force decline was less for MU120 than MU100 for much of the contraction. The

rate of total muscle fatigue decreased after ~120 s because many high threshold MUs became

exhausted and could no longer further lose force capacity.

Indeed, after 200 s of sustained maximum voluntary excitation, many high threshold motor

units (MU86-119) had lost virtually all their force generating capacity (Fig 5D) and MU120

generated only ~10% of its initial force. Because these high threshold MUs were also initially

Fig 5. Fatigue model outputs for a sustained 100% MVC load for 200 s. (A) Increased excitation in response to fatigue. Force capacity is shown with

and without firing rate adaptation and the modeled force remains at the target load until the endurance time. (B) Firing rate of each MU, over the course of

the trial. Lines begin when the MU was recruited. Each 20th MU is highlighted and labelled, but all 120 MUs are shown as lighter lines. (C) Force

contribution of each MU. (D) Relative force capacity of each MU (normalized to its rested capacity). Note the higher y-axis scale (57) than with the 20%

MVC (22), 50% MVC (30), and 80% MVC (50) force.

https://doi.org/10.1371/journal.pcbi.1005581.g005
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substantially stronger than the lower threshold units, such large losses in their force were asso-

ciated with the large overall drop in total muscle force capacity during this trial.

Endurance time predictions

Endurance times were determined for a set of simulations (like those shown in Figs 2, 3 and 4)

for target force levels at 15% of maximum, and from 20–100% maximum in 10% increments.

The resulting relation between predicted endurance time and target force is shown in Fig 6

(solid black line). The weighted average values of endurance times, determined experimentally

for six different joints during submaximal contractions [35], and from three joints during

maximum contractions [36–39] are shown in Fig 6.

Overall, there was a good correspondence between predicted and actual endurance times

across a wide range of forces, joints, and studies. Across the nine efforts from 15% to 90%

MVC force, the average and RMS differences between the model-predicted and empirical

Fig 6. The model-predicted endurance times (grey circles) are compared to those from empirical studies (yellow squares). The endurance times

summarized by Frey Law & Avin (2010) were used for contraction levels from 15% to 90% MVC, and a weighted average was calculated at each load

based on the number of means involved. Open diamonds indicate the weighted averages for the ankle (black), knee (blue), trunk (green), shoulder

(purple), elbow (red) and hand (brown). The data of Fig 5 were used to calculate the average duration until a 1% MVC drop with a 100% MVC load for

Jones et al [39] for ankle dorsiflexors (X), Kent-Braun et al [38] for ankle dorsiflexors (+), Bigland-Ritchie et al [36] for knee extensors (blue X) and Bigland-

Ritchie [37] for elbow flexors (red X). The inset graph shows the endurance times on a log scale.

https://doi.org/10.1371/journal.pcbi.1005581.g006
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endurance times were -33.7 s and 52.3 s, respectively. These amounted to -3.9% and 6.0% of

the full range of empirical endurance times (884 s at 15% MVC). The largest absolute differ-

ence in endurance times, between simulated and empirical values, was -112.8 s for the 15%

MVC effort, representing12.8% of the empirical mean of 884 s. For the higher forces of 70, 80

and 90% MVC, there were larger relative differences between the model and empirical means

(see inset, Fig 6). However, the absolute magnitude of these differences never exceeded 24 s.

Comparison of simulated and empirical sustained maximal contractions

Fig 7 shows the simulated force and experimentally measured forces during sustained maximal

contractions. In general, there was a reasonably good match between the simulated and experi-

mental results. In the first 20 s, however, simulated force dropped somewhat more steeply

(1.4% MVC/s) than that recorded experimentally (average of 1.0% MVC across the four exper-

iments). The time at which force had dropped to 50% of maximum was ~70 s for the simula-

tion. That time was quite similar to the ~61 s value averaged from the four experimental

studies that had contractions of sufficient duration to cause at least a 50% decline [36–38,40].

The simulated loss of force beyond 20 s, and until 200 s, paralleled quite closely that of the one

Fig 7. The decline in force capacity with a 100% MVC load, from Bigland-Ritchie et al [36], Bigland-Ritchie [37], Kent-Braun et al [38], Jones et al

[39], and Kennedy et al. [40], are compared to the fatigue model output with and without excitation adaptation.

https://doi.org/10.1371/journal.pcbi.1005581.g007
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experimental study [38] that monitored sustained maximal contractions for 200 s. Neverthe-

less, the force at 200 s in that study was about 25% of the initial force, whereas the simulated

force at that time was ~16% of the initial force.

Multiple force plateaus

Given the reasonable correspondence between simulated force and experimental findings, we

were encouraged to carry out further simulations involving somewhat unconventional tasks to

highlight the potential of the model to predict fatigue under more complex circumstances. Fig

8 shows a simulation involving a ‘staircase’ task in which the force was maintained for 32 s at

progressively increasing 20% MVC plateaus with a brief ramp increase in force between pla-

teaus. The endurance time for this task was 101.5 s and occurred during the third plateau

when the 60% MVC target could no longer be maintained (Fig 8A). The first plateau (20%

MVC) was maintained with very little change in force capacities of the active MUs (Fig 8C)

requiring only a subtle increase in excitation. As such, the firing rates of the MUs active

during the first plateau (MUs 1–90) changed little (Fig 8B) and only one new unit (MU91) was

recruited (at ~15 s into the trial).

Fig 8. Fatigue model outputs for a series of progressively higher force plateaus, involving 32 seconds of 20, 40 and 60% separated by 5 s linear

ramps from one level to the next. Endurance time was 101.5 s. (A) Increased excitation in response to fatigue. Force capacity is shown with and without

firing rate adaptation and the modeled force remains at the target load until the endurance time. (B) Firing rate of each MU, over the course of the trial.

Lines begin when the MU was recruited. Each 20th MU is highlighted and labelled, but all 120 MUs are shown as lighter lines. (C) Force contribution of

each MU. (D) Relative force capacity of each MU (normalized to its rested capacity).

https://doi.org/10.1371/journal.pcbi.1005581.g008
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The increase in excitation necessary to attain the second plateau (40% MVC) was accompa-

nied by ~13 imp/s increase in firing rate in MUs that were active during the first plateau (Fig

8B), plus recruitment of an additional 15 MUs (MUs 92–106). However, this increase in firing

rate had little effect on force generated by the lowest threshold MUs (Fig 8C) because their fir-

ing rates were already high enough to place them on the plateau of the force-frequency curve

(Fig 1C). For example, during the transition from the 20% to 40% plateau, MU40 started with

a contraction time of ~63 ms and increased its firing rate from 23.7 to 33.6 imp/s. At 23.7 imp/

s, the normalized firing rate is 23.7 imp/s x 0.063 s = 1.49, which is associated with a force out-

put of ~100% of maximum for that MU (Fig 1C). As such, increasing the firing rate to 33.6

imp/s had a negligible effect on force for MU40. However, the increased firing rate of higher

threshold (and faster contracting) MUs (e.g. MU80), did translate into marked increases in

force. Those increases, combined with the recruitment of higher threshold (and stronger)

MUs, enabled the 40% target to be attained. Those units contributing the greatest amount of

force during the 40% plateau were also relatively more fatigable (e.g. MU 80). As their force

started to decline during the sustained 40% plateau (Fig 8C), excitation progressively increased

(Fig 8A). The increased excitation caused firing rates to increase in those MUs (60–106) that

had not yet reached their maximal firing rates (Fig 8B). It is interesting to note that the slope of

the firing rate increase varied systematically across these MUs during this time (Fig 8B). The

lower threshold MUs (e.g. MU 80) had steeper slopes than higher threshold MUs (e.g.

MU100). This was a consequence of firing rate adaptation being greater for higher threshold

MUs, compared to lower threshold MUs, which more potently attenuated the increases in fir-

ing rate in these MUs during increased excitation. The increased excitation during the 40%

plateau also led to the recruitment of three additional MUs (Fig 8B).

The increase in excitation needed to achieve the 60% MVC target resulted in increases in

firing rates in those MUs that had not yet saturated (MUs 72–109) and the recruitment of all

the remaining MUs but MU120 (Fig 8B). Force then dropped off relatively steeply in some

high threshold MUs (e.g. MU100, Fig 8C) because these MUs were assigned high fatigability

values (Eq 9) and they were no longer capable of increasing firing rate. This force loss was par-

tially compensated for by increasing firing rates of the most recently recruited MUs and the

recruitment of the last unit (MU120, Fig 8B). The increases in firing rate in these high thresh-

old, strong and highly fatigable MUs led to an initial and brief escalation in their force (Fig 8C)

followed by a steep decline, such that the muscle’s maximum force capacity eventually fell

below the target force (at ~102 s). The MUs most impaired by this task, in terms of loss in

force capacity at the end of the trial, were MUs 66–101 (Fig 8D). There were no exhausted

MUs and the MU exhibiting the greatest fatigue (MU93) still retained ~65% of its force capac-

ity at the endurance limit.

Three initial forces to the same fatigue level

A second set of somewhat unconventional tasks involved using target forces of 15%, 50% and

85% MVC but, in each case, the simulation was continued until muscle force had decreased

below15% of maximum. As such, each case was associated with the same degree of total muscle

fatigue (ie. 85%, as conventionally defined) but brought about by different ‘paths’. We were

interested to know whether these different routes to the same level of total muscle fatigue

would have differential effects on the MU population.

As shown in Fig 9A, force was maintained at the 85% MVC target (blue trace) for only

about 10 s before declining and eventually dropping to 15% MVC at a time of 206.5 s. Like-

wise, force was maintained at the 50% target (green trace) for about 95 s before decaying to

15% MVC at a time of 234.5 s. For the 15% MVC target (red trace), force was maintained at
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Fig 9. The total muscle and motor unit capacities for initial target forces of 15, 50 and 85% until total

muscle capacity decreased to 15% MVC (ie. 85% muscle fatigue for each trial). (A) Fatigue model outputs

for total muscle capacity. Arrows indicate when force fell below 15% MVC. (B) Final force capacity of each MU,

normalized to its rested capacity, when total muscle capacity reached 15% MVC for each initial force condition

(shown with a vertical arrow in 9A).

https://doi.org/10.1371/journal.pcbi.1005581.g009
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that level for 774.0 s. Fig 9B shows the remaining relative force capacity of each MU, at the

time force dropped below the 15% MVC target, for each of the three cases. Despite the same

85% decrease in muscle force capacity, the profiles of fatigue across the MU population were

strikingly different for the three cases. The 15% target trial (red symbols) resulted in substan-

tially greater fatigue in the lower threshold MUs compared to the other two cases, but with less

fatigue in the highest threshold MUs. On the other hand, for the 85% target trial (blue sym-

bols), the degree of fatigue was greater (i.e. lower force capacities) for the high threshold MUs

as compared to the other two cases, but with less fatigue in the lower threshold MUs. In addi-

tion, the sets of MUs that became completely exhausted differed for the three different cases:

MUs 56–102, MUs 83–113, and MUs 86–118 for the 15%, 50%, and 85% target force trials,

respectively.

Discussion

We developed a model to predict the time course of total muscle fatigue based on the changing

force capacities of individual MUs in response to a wide range of task demands. The method

was based on a MU population model [19] to which peripheral and central fatigue effects were

added. The model accurately estimated endurance times for sustained isometric contractions

across a wide range of target levels (Fig 6). In addition, simulations were run for situations that

have little experimental precedent to demonstrate the potential utility of the model to predict

motor unit fatigue for more complicated, real-world applications. Moreover, the model pro-

vided insight, into the complex orchestration of MU contributions during fatigue, that would

be unattainable with current experimental approaches and, perhaps, difficult to envision based

on detailed knowledge of the physiological properties of individual MUs.

Comparison with other models

Many models have been published that predict the mechanical aspects of muscle fatigue [41–

43]. For example, the three-compartment model of muscle fatigue developed by Liu et al. [43]

has been used effectively by several investigators to predict fatigue for a variety of tasks (e. g.

[44–47]). However, that approach essentially simplifies muscle physiology to one type of MU

and assumes MUs are fully rested, fully activated, or completely fatigued.

Other models have been developed that predict the responses of groups of MUs (e.g.

[48,49]) or individual MUs [50–52]). For example, the Dideriksen model [50] was a pioneering

effort that used changes in metabolite concentrations within muscle as a key factor driving

alterations in MU contractility and neural drive during fatigue. Such a mechanistic model was

necessarily complex and, as such, the output of the model generally presented only the net

effect of prolonged activity on total muscle capacity. Because our model was less complex,

while still accounting for individualized responses for an entire MU population, it could make

accurate predictions about total muscle fatigue (Fig 6) and readily display the interplay of force

contributions among the constituent MUs during a wide variety of fatiguing tasks (Figs 2, 3, 4,

5 and 8).

There were also some differences in the physiological representations of the Dideriksen

et al. [50] model as compared to the present model. The Dideriksen model employed a ‘cross-

over’ scheme to predict MU firing rates, wherein higher threshold MUs ultimately discharge at

higher rates than low threshold MUs. While there are some data to support this type of organi-

zation [53,54], many findings suggest a nested ‘onion-skin’ organization (as used here) in MU

firing rate profiles [16–18,23,55,56]. Another difference between the two models is in the

degree of fatigability of different MUs. In the Dideriksen model, none of the MUs would have

been classified as ‘fatigable’ according to conventional criteria of Burke et al. [10] (i.e. fatigue
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index values < 0.25). In our model, the highest threshold and most fatigable MUs had fatigue-

index values as low as 0.1, consistent with the original data of Burke et al. [10]. However, ques-

tions remain as to how well data obtained from cat hindlimb MUs (e.g. [10]) might generally

represent the properties of human MUs [9,57,58].

A third distinction between the two models relates to the implementation of adaptation of

firing rates during sustained activity. The Dideriksen model did not account for intrinsic

changes in excitability of motor neurons associated with spike frequency adaptation. Such

adaptation, however, is a well-established property of motor neurons [59–69]. Furthermore,

such intrinsic changes in excitability may partially explain the observed differences in firing

responses across MUs (i.e. some with decreasing firing rates while others are recruited and

increasing their firing rates) during fatiguing contractions that would be otherwise difficult to

account for with broadly distributed sources of synaptic input [25,29,70].

Predictions

The ability of the model to reveal the intricate interplay of MU contributions during fatigue

provided interesting predictions and insights. For example, the model predicted that low-force

contractions, sustained to their endurance limit, induce more fatigue across the MU popula-

tion than high-force contractions (compare Figs 2D and 4D). This prediction has implications

for rehabilitation medicine, as it suggests that relatively weak contractions could provide a

potent exercise stimulus for much of the MU population without the risks associated with

intense, high-force contractions.

In addition, the model predicted that loss in force capacity was always more pronounced

among the upper-middle range of motor units (from ~ MU60 –MU 110) while both the lowest

threshold and highest threshold MUs subpopulations were less impaired across a wide range

of tasks (Figs 2D, 3D, 4D, 5D, 8D and 9B). Relative to low threshold MUs, the greater fatigue

in the upper-middle range of MUs occurred simply because they were intrinsically more fati-

gable than the low threshold MUs, while being active for practically the same durations. On

the other hand, greater fatigue in the upper-middle range of MUs, compared to the highest

threshold MUs, was due to their more prolonged involvement in many of the tasks (e.g. Figs

2B, 3B and 8B) and because they tended to sustain higher levels of absolute force (provoking

greater fatigue) than the highest threshold MUs (e.g. Figs 4C and 5C). The highest threshold

MUs, despite their intrinsic capability to generate the largest forces, never achieved their full

force capacities because of the limits placed on their maximum firing rates. The physiological

mechanisms underlying such firing rate saturation are not yet known despite several recent

investigations into this phenomenon [71–75]. In addition, firing rates decreased more precipi-

tously for the highest threshold MUs than other MUs (e.g. Fig 4B) due to greater firing rate

adaptations. Such reductions in firing rate led to lower forces and, thereby, lessened their

fatigue compared to the upper-middle threshold group of MUs.

Another prediction involved simulations of sustained 15%, 50% and 85% MVC force. The

model predicted marked differences in MU fatigue when the total force capacity decreased to

the same level of 15% MVC (i.e. 85% fatigue) (Fig 8). Although all three cases led to large sub-

sets of MUs that were exhausted, the specific MUs in each subset differed depending on the

initial target force. Furthermore, the degree of fatigue, in those units still capable of producing

force at the endurance limit, varied substantially across the three conditions. Therefore, despite

an equivalence in the degree of muscle fatigue, based on the prevailing definition of fatigue (a

reduction in muscle force/power capacity), the physiological status of the motor unit popula-

tion was quite different under the three conditions. Such differences could have important

implications, for example, in determining the subpopulations of MUs receiving the greatest
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exercise stimulus in the context of strength or endurance training and for how the muscle

responds to ensuing demands and recovery in the context of physical work occurring within

an industrial setting.

The recent development of high-density multi-electrode arrays [76–79], combined with

sophisticated decomposition algorithms [55,80,81], enables tracking of a large numbers of

MUs during a wide range of contractions (e.g. [56,82,83]). Such technology should make it

possible to evaluate some of the predictions made here, particularly with regards to patterns of

MU activity. Unfortunately, however, few methods are presently available that can readily

measure changes in force capacity of MUs during fatiguing contractions.

Limitations

One limitation of the present model is that it did not account for differences in the constella-

tion of MU properties making up different muscles and/or occurring in different individuals.

Instead, we opted here for a ‘one size fits all’ approach that, nevertheless, did make good pre-

dictions of endurance times for a wide range of muscles (Fig 5). However, because the model

is flexible and all parameters are readily altered, one could easily carry out simulations of

fatigue associated with different types of situations, such as might occur with muscles having

different fiber type compositions, particular neuromuscular diseases, or with aging.

Another limitation of the present model is that it simulates isometric force only. This is a

critical limitation, as most behaviors involve dynamic muscle activity. This is an especially

challenging limitation to overcome because there are so little experimental data involving

lengthening and shortening contractions in individual MUs. In this regard, perhaps mechanis-

tic models of fatigue (e.g. [50,52]) combined with Hill-type models of contractile dynamics

MUs [84] could, from first principles, make good predictions about fatigue arising during

tasks involving movement.

A further limitation of the present model is that we used only one of a number of neural

mechanisms that can contribute to central fatigue (see [6]). For simplicity, diminished intrin-

sic excitability (associated with firing-rate adaptation) served as a representative mechanism

underlying central fatigue. As such, fatigue-related alterations in descending drive (e.g.

impaired motor cortical output) and sensory feedback (e.g. increased inhibition associated

with activation of metabolite-sensitive receptors in muscle) were not explicitly simulated in

the model. Nevertheless, there is a significant body of experimental work that has concluded,

for example, that feedback from metabolite-sensitive receptors does not appear to significantly

inhibit motor neurons during fatigue [85–88]. In addition, reduced excitability of motor neu-

rons during fatigue does not appear to be due to diminished peripheral excitatory input [89].

Furthermore, some evidence indicates that the motor cortex is relatively unimpaired during

voluntary fatiguing contractions [90]. On the other hand, there is compelling data indicating

diminished intrinsic excitability of motor neurons during fatigue [91]. As such, it seemed rea-

sonable to use reduced intrinsic excitability as a proxy for central fatigue in the present model.

However, there are sure to be differences in the relative contributions of various central fatigue

mechanisms that depend on the muscle group involved (e.g. [92]) or task [70,93].

And finally, an additional limitation with the present version of the model is that does not

include recovery from fatigue. In real world situations, muscle fatigue usually does not occur

in isolation—it is influenced by previous bouts of muscle activity and the degree of intervening

rest. This issue is particularly relevant to physical ergonomics, a field that has produced many

analysis tools to determine the acceptability of an isolated task, but almost no methods are

available to estimate muscle fatigue and injury risk associated with the typical case of workers

performing a combination of different subtasks, including brief periods of rest, as part of their
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whole job. In its next version, our fatigue model will be expanded to include both the fatigue

and recovery of MUs, so that the effects of combined efforts can be assessed. This addition

could assist in determining the acceptability of whole jobs and/or for optimizing task alloca-

tion and sequencing. The model could also then be used to design exercise and rehabilitation

programs that set demand magnitudes and work/rest ratios to optimize the exercise stimulus,

given the particular physiological state of the motor unit population.

Material and methods

An existing MU population model was used to simulate MU firing rates and isometric muscle

forces (see [19] for details). To that model, we added fatigue-related changes in MU force, con-

traction time, and firing rate associated with sustained voluntary contractions. Our goal was to

develop a tractable model that could be readily implemented to estimate changes in overall

force capacity of the whole muscle and of 120 individual MUs associated with a wide range of

fatiguing tasks, including those relevant to exercise protocols, occupational tasks, and rehabili-

tation programs. As such, rather than model the specific (and numerous) cellular processes

governing fatigue-related adaptations (e.g. [50,52,94,95]), we simulated changes in MU and

muscle properties based largely on those that have been described empirically. The model was

implemented in the MATLAB environment (The MathWorks, Natick, MA) and the code can

be downloaded at: https://goo.gl/Frmw8w. The authors can be contacted for further informa-

tion and/or updates to the model or code.

Motor unit pool

The model presented here represents only one of many plausible schemes to simulate MU

activity and force. Consequently, parameter selections were meant to be generally representa-

tive, but not definitive, characterizations of any specific skeletal muscle. The model enables

users to readily specify parameters needed to simulate a variety of MU organizations. For the

present study, the simulated muscle consisted of a pool of 120 MUs. MU twitches were mod-

eled as the impulse response of a critically damped 2nd order system (Fig 1A). Each MU, i, was

assigned a unique twitch amplitude and twitch contraction time. The distribution of MUs

based on twitch amplitude, P, was determined using the exponential function [19]:

PðiÞ ¼ e½ lnðRPÞ ði � 1Þ = ðn� 1Þ � ð1Þ

where ln is the natural logarithm, RP is the desired range of twitch forces across the pool, and

n is the number of MUs in the pool (i.e., 120). For these simulations, RP was assigned a value

of 100. Such a representation yields a distribution with many weak MUs and relatively few

strong MUs. Maximum MU forces were normalized to the force of MU(1) such that the force

of MU(1) was 1.0 and MU(120) was 100.0 force units. Contraction times were assigned as an

inverse function of twitch amplitude (see [19]) for specific formulation) and ranged from 30

ms for the strongest unit, MU(120), to 90 ms for the weakest, MU(1) (Fig 1B).

All MUs within the pool received the same level of excitatory drive (E) that could vary as a

function of time (t). The amount of excitatory drive needed to recruit each MU, referred to as

’recruitment threshold excitation’ (RTE(i)), was also determined as an exponential function

that assigned many MUs to have low thresholds and few to have high thresholds, using:

RTEðiÞ ¼ e½ lnðRRÞ ði � 1Þ = ðn� 1Þ � ð2Þ

where RR is the desired range of recruitment thresholds and was set to 50 for the present simu-

lations. A MU, therefore, was recruited when the excitatory drive equaled or exceeded its

assigned recruitment threshold excitation (RTE(i)). Therefore, and in general accordance with
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the size principle, weaker MUs (i.e. those with low twitch forces) were recruited at lower levels

of excitation than stronger MUs.

At threshold excitation, MUs discharged at a minimum firing rate (minR) of 8 impulses

(imp)/s. Firing rate (R) increased linearly with increased excitation up to an assigned maxi-

mum rate (maxR(i)) for each MU, beyond which no further increases in rate occurred (i.e. fir-

ing rate saturated). The slope (i.e. the gain, g) of increased firing rate with excitation was set to

be the same for all MUs (1 imp/s for each unit increase in excitation) and firing rate was mod-

eled as:

Rði; tÞ ¼ g½EðtÞ � RTEðiÞ� þ minR ð3Þ

Based on considerable experimental findings, maximum firing rates (maxR(i)) were mod-

eled as an inverse function of recruitment thresholds, yielding a nested or ‘onion skin’ arrange-

ment of firing rates across the MU population (e.g., [18,56]). In the present model, maxR was

assigned to be 35 imp/s for MU(1) and decreased uniformly to 25 imp/s for MU(120). For

excitation levels above that needed to bring a MU to its assigned maximum rate, firing rate

was maintained at maxR(i). Maximum excitation (Emax) to the MU pool was defined as the

amount of excitation needed to bring the highest threshold MU to its assigned maxR(i). Rear-

ranging Eq 3 to solve for the excitation (E) associated with this situation yields: Emax = RTE

(120) + (maxR(120)—minR)/g = 50 + (25–8)/1.0 = 67 excitation units, such that the last MU is

recruited at 50/67 = 74.6% of Emax.

Force-frequency relation

The relation between MU (or whole muscle) force and firing frequency generally exhibits a sig-

moid form [96,97]. The specific shape of the force-frequency relation depends on contractile

speed, in that MUs with long duration contraction times attain tetanic fusion (i.e. plateau on

the sigmoid) at lower rates than do MUs with brief contraction times [98–100]. If, however,

the MU stimulus frequency or firing rate (R(i,t)) is normalized to the inverse of the twitch con-

traction time (1/CT(i)), force-frequency curves are similar for most MUs [19,99]. The normal-

ized firing (or stimulus) rates (NR) can be represented as:

NRði; tÞ ¼ Rði; tÞ= ½1=CTðiÞ� ¼ Rði; tÞ x CTðiÞ ð4Þ

A composite linear and sigmoidal relationship (see Fig 1C) was used to estimate normalized

force (NF) as a function of normalized firing rate (NR), as originally derived by Fuglevand et al

[19] but simplified to:

for NRði; tÞ � 0:4; NFði; tÞ ¼ 0:3 NRði; tÞ ð5Þ

for NRði; tÞ > 0:4; NFði; tÞ ¼ 1 � e� 2 NRði;tÞ3 ð6Þ

The instantaneous force (F) of each MU was then scaled as a function of its assigned twitch

force, P(i):

Fði; tÞ ¼ NFði; tÞ PðiÞ ð7Þ

The total muscle force was then calculated simply as the linear sum of all 120 individual

MU forces at any given time.
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Fatigue—Peripheral factors

Force capacity. There are numerous factors that can diminish the force capacity of indi-

vidual MUs during prolonged activity [1–3,6,7,101,102]. Furthermore, the relative contribu-

tions of these various factors to fatigue depend on the characteristics of the task and the type of

MU [70,93,103]. As such, it is difficult to represent the nuance and complexity of fatigue while

also keeping the parameter space of a model within reasonable limits. To strike a balance

between physiological fidelity and tractability, we lumped fatigue factors into one of two gen-

eral categories: peripheral and central. Peripheral factors include those affecting function of

the axon, neuromuscular junction, sarcolemma, excitation-contraction coupling, and the con-

tractile apparatus itself. Central factors refer to those that affect the excitability of, and synaptic

input to, motor neurons.

Peripheral factors are selectively challenged when motor axons or motor neurons are artifi-

cially activated with repetitive pulses of electrical stimulation. Burke and colleagues [10] car-

ried out one of the most thorough examinations of such peripheral fatigue across a population

of MUs in a mammalian muscle (cat medial gastrocnemius). In that study, isometric force was

recorded from individual MUs during repetitive intermittent stimulation (1 train/s, 40 Hz

train, 33% duty cycle) for several minutes. Fatigue resistance (fatigue index) was quantified as

the ratio of force produced at 2 minutes of stimulation to that at the outset of the fatigue proto-

col. Across the population of MUs, there was a large range of fatigue resistances. In general,

MUs that produced the weakest tetanic forces were markedly fatigue resistant whereas the

strongest MUs exhibited substantial fatigability.

For purposes of our model, ’fatigability’ will refer to the rate of MU fatigue and this was

based on the data of Burke et al. [10]. To do this, Burke’s fatigue-index (FI) values were con-

verted into an average percent force loss per unit time using the following:

fatigability ¼ ½ð1:0 � FIÞ = 2 min� � 100 ð8Þ

From Fig 5 of Burke et al. [10], we estimated that the weakest MU had a fatigue index value

of ~0.995 (ie. 0.5% drop in capacity) whereas the strongest MU had a fatigue index value of ~

0.10 (ie. 90% drop in capacity). Using Eq 8, this yielded fatigability values of 0.25%/min (or

0.0042%/s) for the weakest MU and 45%/min (or 0.75%/s) for the strongest MU. This repre-

sents a 180-fold range of fatigability across the population.

One challenge related to directly applying such fatigability values in the present model was

that the Burke study involved intermittent excitation whereas, here, we were simulating fatigue

associated with sustained contractions. Generally, fatigue (when calculated over the entire task

duration) increases with duty cycle for intermittent contractions and is greatest for sustained

contractions for both single motor units [104,105] and for whole muscle [106–109]. To adjust

fatigability values derived from intermittent contractions (i.e. Burke et al. [10]) to that associ-

ated with continuous contractions, we used a statistical model [110] that predicts fatigability

for any combination of contraction intensity and duty cycle. Looft’s model was based on a

meta-analysis of 47 human fatigue studies involving intermittent and sustained isometric con-

tractions of ankle, knee, elbow, and hand muscles. Using duty cycles of 100% (i.e. sustained

contraction) and 33% (i.e. Burke fatigue protocol) and a contraction intensity of 100% (i.e.

maximal tetanic contraction), the Looft model predicted that fatigue would be 3.1 times

greater for a sustained contraction compared to one that has a 33% duty cycle. Consequently,

we simply multiplied the fatigabilities of the weakest and strongest MUs in Burke’s data by 3 to

obtain fatigability values of 0.0125%/s and 2.25%/s, respectively, to represent the nominal fati-

gabilities associated with continuous maximal contractions.
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Nominal fatigabilities (FAT) were assigned to each MU(i) in the modeled population such

that weak (early recruited) MUs had low fatigability and strong (later recruited) MUs large

fatigability using:

FATðiÞ ¼ FATð1Þ � e½lnðRFRÞ ði� 1Þ = ðn� 1Þ� ð9Þ

where FAT(1) is the nominal fatigability of the first MU (0.0125%/s) and RFR is the range of

fatigabilities across the entire population (180 fold). Fig 1D shows nominal fatigabilities (from

Eq 9) plotted as a function of twitch forces (from Eq 1) for all MUs in the modeled population.

For an individual MU, fatigability will likely depend also on its instantaneous force relative

to its own maximum force capacity. In whole muscle, higher frequencies of stimulation (that

produce higher forces) are known to provoke greater rates of fatigue than lower stimulus fre-

quencies [111,112]. Importantly, fatigue rates, evoked using different stimulus frequencies (50

Hz and 80 Hz) that initially produce the same level of force (both producing near maximal

force, i.e. a normalized force of ~1.0), are practically the same[112]. Such findings imply that

fatigue rate is at least roughly related to normalized force. At the level of single MUs, Sander-

cock et al. [105] continuously stimulated cat hindlimb MUs at one of two frequencies: 10 Hz

and 80 Hz. Based on pre-fatigue force-frequency curves (provided only for fast twitch MUs),

10-Hz stimulation initially produced a normalized force of about 0.05 whereas 80-Hz stimula-

tion produced a normalize force of about 0.9, an ~18 fold difference [105]. The fatigue rate for

a fast MU during continuous10-Hz stimulation (estimated from Fig 2C, [105]), was ~ 0.47% /s

whereas during 80-Hz, the fatigue rate was estimated as 8%/s, ~17 times higher than at 10 Hz.

Therefore, at least for this limited sample, fatigue rate was closely related to the normalized

force exerted at the outset of the contraction.

Consequently, the instantaneous fatigability was calculated in the model as the product of

the assigned nominal fatigability (Eq 9) and the normalized force (NF, Eqs 5 and 6, Fig 1C)

developed by a MU, which, in turn, depends on the instantaneous firing rate and contraction

time of the unit (Eq 4), as:

FATði; tÞ ¼ FATðiÞ x NFði; tÞ ð10Þ

Contraction time. Sustained contractions not only can lead to a loss in force capacity but

also can contribute to a decrease in contractile speed as reflected in an increase in twitch con-

traction time (CT). Such changes in CT alter the normalized firing rate (Eq 4), which in turn

changes the level of force exerted by a MU (Fig 1C). Because fatigability depends on the instan-

taneous force exerted by a MU (Eq 10), it was important to model fatigue-related changes in

contraction time.

Unfortunately, there are little data characterizing changes in MU CT associated with sus-

tained (or intermittent) fatiguing contractions. The information that is available generally

indicates that MUs that exhibit the greatest force loss also show the greatest slowing in contrac-

tile speed [11,113,114]. To simulate changes in CT during fatigue for the present model, we

relied on data from Shields et al [115] that showed changes in twitch CT and tetanic torque

during 180 s of electrical stimulation in acutely and chronically paralyzed human soleus. Their

previous study [116] showed that acutely paralyzed soleus retains properties similar to type S

(early recruited) MUs, whereas chronically paralyzed soleus takes on contractile properties

more analogous to type FF (later recruited) MUs. We developed regression equations based on

the data of Shields et al. (their Table 1, [115]) to predict increases in CT as a function of

fatigue-related decreases in tetanic torque for both groups. While there were substantial differ-

ences in the extent of torque loss and changes in CT during the 180-s bout of stimulation for
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the two groups, the regression equations were virtually identical. As such, we combined the

data from the two groups to obtain the simple relation:

% CT ¼ 0:379 � % FL ð11Þ

where % CT is the percentage increase in contraction time associated with a given percentage

force loss (% FL) for any MU. For example, if a MU with an initial CT of 50 ms loses 20% of its

force, then Eq 11 would predict a 0.379 x 20% = 7.6% increase in CT to a value of 53.8 ms.

Fatigue—Central factors

Central fatigue encompasses a host of mechanisms that can curtail the spiking output of motor

neurons [4–7]. One category of such mechanisms is that related to diminution of net excit-

atory drive to motor neurons. This can occur due to decreases in excitatory input (e.g., from

supraspinal centers) and/or increase in inhibitory inputs (e.g. via peripheral receptors and

their spinal interneurons). In the model, such a reduction in net excitation could be imple-

mented by decreasing the excitatory drive function, E(t), or by reducing the maximum excita-

tion, Emax (Eq 4). For simplicity in the present simulations, however, neither E(t) or Emax were

explicitly reduced to simulate this category of central fatigue mechanisms.

Another category of mechanisms underlying central fatigue are those intrinsic to motor

neurons that contribute to time-dependent decreases in motor neuron firing in the presence

of constant excitatory drive, referred to as firing-rate (or spike-frequency) adaptation. Here we

simulated firing-rate adaptation using an approach similar to that described previously in

detail by Revill and Fuglevand [117]. In brief, an exponentially rising outward (i.e. inhibitory)

“current” was subtracted from the excitatory drive function to yield the net excitation acting at

the spike initiation zone of a motor neuron. The extent of this intrinsic adaptation current, A,

for any MU(i), was a function of both the time since MU recruitment, TR(i), and the excitation

level, E(t), namely,

Aðt;EÞ ¼ qðiÞ ½1 � e� ðt� TRðiÞÞ=t� ð12Þ

where τ is the time constant. We assigned the time constant a value of 22 s based on experi-

mental observations of Sawczuk et al. [63] and Gorman et al. [60].

The parameter q(i) in Eq 12 designates the maximum value of the adaptation (inhibitory)

current for each MU. Because the magnitude of adaptation tends to be larger with greater lev-

els of depolarizing current and firing rate [59,60,63], q was modeled to depend on a MU’s fir-

ing rate in excess of its minimum firing rate [i.e., R(i,t)—minR]. In addition, the magnitude of

firing-rate adaptation appears to be more pronounced in high threshold compared to low

threshold MUs [59,64]. Therefore, we also included recruitment threshold as an additional fac-

tor influencing the maximum extent of adaptation, q for each MU, using:

qðiÞ ¼ ϕ ½Rði; tÞ � minRþ d�
RTEðiÞ � 1

RTEðnÞ � 1

� �

ð13Þ

where (RTE(i)—1)/(RTE(n)—1) indicates the recruitment threshold excitation of any MU(i),

relative to the largest threshold MU(n), or RTE(120) in our model. The parameter ϕ was

selected to match the magnitude of adaptation for different levels of excitation, as reported by

Kernell and Monster [59], and was assigned a value of 0.67. The parameter d was included to

account for the observation that the absolute minimum firing rate that a MU can sustain is

lower at derecruitment than at recruitment [18, 54, 118]. Such a lower firing rate at derecruit-

ment may be partially due to adaptation. Therefore, firing rate could decay with time below

the initially specified minimum firing rate by a small amount determined by d. In the present
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simulations, d was assigned a value of 2 imp/s, similar to values reported experimentally

[54, 118].

As an example of how firing rate adaptation was implemented, consider one MU, say MU

(60), in the population of n = 120 MUs. From Eq 2, the RTE for MU(60) = 6.96 excitation

units. Under a constant excitatory drive of E = 20 excitation units, and in the absence of adap-

tation, Eq 3 would predict a steady firing rate of 21.04 imps/s. With adaptation, the adaptation

current, A (Eq 12) progressively undercuts the net excitatory drive acting on the MU and

decreases the firing rates. At 20 units of excitation, the maximum extent of firing rate adapta-

tion (Eq 13) for MU60 would be q(60) = 0.67 [21.04–8 + 2] [(6.96–1)/(50–1)] = 1.23. After 15 s

of activity, firing rate adaptation (Eq 12) for MU60 is = 1.23 x (1 –e-15/22) = 0.61 imp/s, and the

adapted firing rate is 21.04–0.61 = 20.43 imp/s.

Fatigue-related changes in motor unit force capacity

When rested and at maximum voluntary excitation (where E(t) = Emax = 67 excitation units),

the modeled muscle generated a total maximum voluntary contraction force of 2,216 units and

generated a minimum force of 1 force unit (0.045% MVC) at E(t) = 1. The model can be given

a target at some percentage of the maximum force (e.g. 40% MVC would be 886.4 units of

force). For the initial time sample (t = 0), the muscle was assumed to be completely rested and

the model incremented excitation in 0.01 steps beginning with E(t) = 1. At each excitation

step, the un-adapted firing rate (Eq 3), normalized firing rate (Eq 4), associated normalized

force (Eqs 5 & 6), and the actual force developed (Eq 7) was determined for each MU. The

total muscle force was calculated as the sum of force values across all MUs. If the total muscle

force was below the target force, excitation was increased by 0.01. This process was repeated

until the force target was met or slightly exceeded, at which time the model was advance 0.1 s

(sample rate = 10 Hz) to the next time sample.

During each subsequent interval, the existing force capacity of each motor unit (PE) was cal-

culated as PE from the previous sample, minus the fatigue-related change during the 0.1 s

interval (using Eq 10):

PEði; tÞ ¼ PEði; t � 0:1Þ � 0:10½ FATði; tÞ � ð14Þ

Where PE(i,0) = P(i), as the muscle has not yet had time to fatigue. At each subsequent itera-

tion and for each MU: (a) fatigue affected force capacity and contraction time, (b) the duration

of activity (time since recruitment) affected firing rates, and (c) these factors affected normal-

ized firing rates, normalized forces, and actual exerted forces. Thus, with sustained isotonic

contractions, more excitation would be needed to meet the force target over the course of the

contraction, possibly necessitating the recruitment of higher threshold MUs not initially active

under rested conditions.

Simulations

For target force levels at 15% MVC, and from 20–90% MVC in 10% increments, simulations

were run for the duration necessary for the muscle force capacity to fall below the designated

target force, and this duration was considered to be the endurance time. In addition to simu-

lating total muscle force and endurance time, the model also enabled tracking of the instanta-

neous force and force capacity (absolute and relative) of each MU throughout the simulated

contractions. A simulation was also run with a 100% MVC target for 200 s so it could be com-

pared to the time-histories reported for this type of task in a number of experimental studies.

Similarly, simulations were also performed using targets of 15%, 50% and 85% MVC, with

each running until the total muscle force had decreased to 15% of maximum. This provided an
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interesting opportunity to compare the force capacities across MUs at the end of these trials

for which the defined level of total muscle fatigue (85% decrease in total muscle force capacity)

would be the same in all cases. In addition, we simulated fatigue involving a ‘staircase’ task in

which force was maintained for 32 s at progressively increasing 20% MVC increments with a

5-s linear ramp between steps.

Comparison to experimental data. Endurance time data, compiled from the literature,

were used to evaluate the validity of the fatigue model. Toward this goal, Frey Law & Avin

(2010) provided an excellent summary of isometric fatigue collected over 194 studies in

human subjects. We calculated mean endurance times by digitizing values from their Fig 4 for

ankle (dorsiflexors: n = 20, plantarflexors: n = 12), knee (extensors: n = 99), trunk (flexors:

n = 1, extensors: n = 12, rotators: n = 3), shoulder (flexors: n = 3, extensors: n = 3, abductors:

n = 5), elbow (flexors: n = 79, extensors: n = 20) and hand tasks (grip: n = 37, digit: n = 7) at

15% (n = 9), 20% (n = 43), 30% (n = 40), 40% (n = 56), 50% (n = 53), 60% (n = 29), 70%

(n = 19), 80% (n = 23) and 90% (n = 2) MVC. Weighted averages of endurance time were then

calculated for each combination of %MVC and joint, and for each %MVC across joints, based

on the number of means in each condition (from Table 1 of Frey Law & Avin, 2010). Maxi-

mum voluntary contractions are unique in that total muscle force capacity will start to decrease

immediately (i.e. endurance time� 0 s). Therefore, for 100% MVC contractions, force curves

were digitized from Bigland-Ritchie et al. [36], Bigland-Ritchie [37], Kent-Braun et al. [38],

and Jones et al. [39] so that polynomial regression equations could be established to approxi-

mate the time-history of force capacity decreases (r2� 0.99 for each curve). Those equations

were used to calculate the average duration until a 1% MVC drop with a 100% MVC load.
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