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SUMMARY

Bacterial chemotaxis is a major testing ground for systems biology, including the
role of fluctuations and individual variation. Individual bacteria vary in their tum-
bling frequency and adaptation time. Recently, large cell-cell variation was also
discovered in chemotaxis gain, which determines the sensitivity of the tumbling
rate to attractant gradients. Variation in gain is puzzling, because low gain impairs
chemotactic velocity. Here, we provide a functional explanation for gain variation
by establishing a formal analogy between chemotaxis and algorithms for sampling
probability distributions. We show that temporal fluctuations in gain implement
simulated tempering, which allows sampling of attractant distributions with many
local peaks. Periods of high gain allow bacteria to detect and climb gradients
quickly, and periods of lowgain allow them tomove to newpeaks.Gain fluctuations
thus allowbacteria to thrive in complex environments, andmoregenerally theymay
play an important functional role for organism navigation.

INTRODUCTION

Bacteria navigate up and down gradients of chemicals in a process called chemotaxis. Chemotaxis is

achieved by transitions between swimming at a roughly uniform speed and constant direction (‘‘runs’’)

and random reorientations (‘‘tumbles’’). Bacteria climb gradients of chemical ligands by modulating

their tumbling frequency, so that tumbling rate decreases when the bacteria move up gradients of

chemoattractants and increases when they go down the gradient (Figure 1A).

Chemotaxis is well-characterized in terms of its molecular signaling circuit. The circuit implements a non-

linear integral feedback loop, which brings tumbling rates precisely back to the baseline after changes in

input (exact adaptation) and allows the bacteria to respond to relative changes in ligand input (fold-change

detection [FCD]) across a wide dynamic range (Shoval et al., 2010; Lazova et al., 2011). Analogous naviga-

tion systems also appear in eukaryotes (Polin et al., 2009; Arrieta et al., 2017) and simple animals (Larsch

et al., 2015; Borba et al., 2020).

Several aspects of the chemotaxis phenotype are highly variable between individual isogenic bacteria (reviewed

byWaite et al. [2018]; Colin and Sourjik [2017]). This variability results, at least in part, from stochastic fluctuations

in the abundance of proteins in the chemotaxis signaling pathway (Spudich and Koshland, 1976; Levin et al.,

1998) and from tunable post-translational modifications (Kamino et al., 2020) and is subject to genetic control.

A key question is whether phenotypic variability has an adaptive functional role for chemotaxis. Most of the

research on the adaptive role of variability has focused on the baseline tumbling rate (Spudich and Kosh-

land, 1976; Park et al., 2010; Matthäus et al., 2009; Frankel et al., 2014; Dufour et al., 2016; Keegstra et al.,

2017). Some individual cells show high tumbling and others show low tumbling rate, and this behavior lasts

for an entire cell generation. In each individual cell, the adaptation time to a step attractant change is

inversely proportional to that cell’s tumbling frequency (Spudich and Koshland, 1976). A recent study

also demonstrated that some cells have discrete on/off temporal fluctuations in the chemotaxis signaling

pathway, with a timescale of minutes (Keegstra et al., 2017). In an important theoretical study, Frankel et al.

proposed that high tumbling rate is preferable when the navigation goal is near, whereas low tumbling rate

is preferable when the goal is far (Frankel et al., 2014). This prediction was confirmed by subsequent exper-

imental work (Dufour et al., 2016; Waite et al., 2016), which also suggested that heterogeneity can be
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beneficial for amplifying the contribution of high-performing individuals at the tail of the phenotype distri-

bution. Stochastic fluctuations in tumbling rate may also contribute to efficient exploration of the environ-

ment by generating Lévy walk search behavior (Tu and Grinstein, 2005; Matthäus et al., 2009).

Recently, another major source of cell-cell variability was discovered, whose functional role is still not clear.

This is variability in the pathway gain (Salek et al., 2019). The gain, also called sensitivity, determines how

strongly bacteria change their tumbling rate in response to a given gradient (Figure 1B) (Sourjik and Berg,

2002; Colin and Sourjik, 2017). Salek et al. (2019) found that gain varies between genetically identical indi-

vidual cells by approximately an order of magnitude. Cell-cell variation in pathway gain is surprising,

because large gain increases both chemotaxis efficiency and how tightly bacteria accumulate around

attractant peaks (Salek et al., 2019). One may therefore expect that gain should be maximized. It has

been proposed that cell-cell variability in pathway gain may be beneficial for bet-hedging by preventing

the accumulation of too many bacteria in a small spatial region (Salek et al., 2019).

Here we consider the possibility that the observed cell-cell variability in gain is due to temporal fluctuations,

which can last for less or more than the generation time of an individual cell.

We propose a functional role for temporal fluctuations in pathway gain using a formal analogy to sampling al-

gorithms in physics and computer science. Gain fluctuations allow bacteria to efficiently navigate in complex en-

vironmentswhere the liganddistribution hasmany localmaxima andminima.Without gain fluctuations, bacteria

would get stuck at local maxima. To show this, we establish a mapping between bacterial chemotaxis and a

widely used method from statistical physics for sampling complex probability distributions known as simulated

tempering, which uses dynamic changes in temperature to cross energy barriers (Swendsen and Wang, 1986;

Marinari and Parisi, 1992; Hukushima and Nemoto, 1996; Earl and Deem, 2005; Lee et al., 2018). We show

that stochastic fluctuations in pathway gain provide a biological implementation of simulated tempering and

demonstrate that it allows colonization and growth in complex, patchy environments.

Our model makes minimal assumptions and can be readily generalized to FCD-based navigation systems

in other organisms. We therefore conclude by discussing several possible generalizations of our results.

RESULTS

Model for bacterial chemotaxis as a sampling process

We begin by establishing a connection between chemotaxis and the sampling of a probability distribution,

where the distribution is the distribution of chemoattractant in space. The sampling framework we use is

Figure 1. Stochastic heterogeneity in pathway gain in bacterial chemotaxis

(A) Bacterial chemotaxis is the navigation process by which bacteria accumulate near peaks of chemoattractants and away

from chemorepellants. Chemotaxis is performed by adjusting the tumbling rate according to the sensed concentration of

the ligand, so that bacteria tumble less when they move up attractant gradients or down repellant gradients.

(B) The accumulation of bacteria around attractant peaks is determined by an inverse temperature parameter b, which is

proportional to the chemotaxis gain, also called pathway sensitivity. Recent experiments showed that there is large and

persistent non-genetic heterogeneity in gain, suggesting that there may be temporal fluctuations in b (Salek et al., 2019).

These fluctuations may be short lasting or long lasting (e.g., due to cell-to-cell variation in receptor copy numbers). The

functional significance of these fluctuations is currently unclear.
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the Langevin Monte Carlo (LMC) approach. LMC is widely used for efficient sampling (Roberts and Twee-

die, 1996; Neal, 2011; Girolami and Calderhead, 2011; Dalalyan, 2014) and for global optimization (Chiang

et al., 1987; Gelfand and Mitter, 1991; Lee et al., 2018; Erdogdu et al., 2018; Ma et al., 2019; Chen et al.,

2020). In this article, we exploit the analogy between chemotaxis and LMC to understand the efficiency

of chemotaxis from an algorithmic perspective.

To establish the relation between bacterial chemotaxis and LMC sampling, we use the chemotaxis model

of Tu et al. (2008). This model provides good agreement with experimentally measured responses of bac-

teria to temporally varying stimuli (Shimizu et al., 2010) and has become a standard model for chemotaxis

(Menolascina et al., 2017; Salek et al., 2019; Alon, 2019). The model describes the fast (sub-second) inhibi-

tion of the tumbling rate l(t) by the attractant ligand input L(t). It also describes the slower (seconds-mi-

nutes) adaptation to a step change in L(t) that is due to receptor methylation,m(t), a negative feedback pro-

cess. The tumbling rate is controlled by a fast internal ‘‘receptor activity’’ variable a(t):

aðtÞ = 1

1+ e
N

�
að1�mÞ+ log

�
1+ L

KI

�
�log

�
1+ L

KA

��z 1

1+ e
N

�
Að1�mÞ+ log

�
L
KI

�� (Equation 1)

where KI;KA;a;N are constants and the approximation holds in the range of receptor sensing: KI � L � KA.

The dynamics of the slow negative feedback process is given by:

_mðtÞ = u

�
1� a

a0

�
(Equation 2)

where a0 is the steady-state level of a and u sets the timescale of adaptation. The tumbling rate is given by:

lðaÞ = 1

t

�
a

a0

�H

(Equation 3)

where t is steady-state run time, which is on the order of 1 s. Typical values for the constants

a;N; a0;KI;KA;u;H are provided in Table S1. The adaptation time of m, which is approximately inversely

proportional to ð1�a0ÞNau (STAR Methods), is on the order of seconds to minutes.

The model has several important features. It has the FCD property, where tumble responses to a time-

varying input L(t) depend only on changes of L(t) relative to its baseline (Shoval et al., 2010; Shimizu

et al., 2010; Adler and Alon, 2018). More generally, aðtÞ is proportional to the logarithmic derivative of

the low-frequency signals in the input, with a frequency threshold that is inversely proportional to the

adaptation time. These features, which are common in sensory circuits (Adler and Alon, 2018), have

been experimentally demonstrated (Lazova et al., 2011). Thus, a bacteria running in a static ligand field

L in direction u! relative to the gradient will have aðtÞfv u!,Vlog½L�ðxÞ, where v is the swimming speed

of the bacteria.

The run-and-tumble movement of E. coli is nearly isotropic at time and length scales much larger than t; vt

(Berg, 1993). This movement is thus well approximated by a diffusion process with diffusion constant D =
v2d�1

zq + t�1, where d is the dimension and zq is rotational diffusivity, which is small compared with the tumbling

frequency t�1. The temporal evolution of the bacterial population can therefore be modeled by a Fokker-

Planck equation that depends on the aforementioned signaling dynamics, as shown by several studies that

also provide excellent correspondence to empirical distributions with plausible parameters (Si et al., 2012;

Dufour et al., 2014; Menolascina et al., 2017). Here we analyze the equivalent Langevin equation, which de-

scribes the stochastic time evolution of the location of an individual bacterium:

dx = c Vlog LðxÞdt +
ffiffiffiffiffiffiffi
2D

p
dW (Equation 4)

where W is a 1-dimensional (1D) Wiener process and the advection parameter c is proportional to the

swimming speed squared: c= ½v2t�1 =ðzq + t�1Þ2�HNð1�a0Þ (Si et al., 2012). Note again that Equation 4 ap-

plies in the range where sensing is logarithmic KI � L � KA.

The advection parameter c is also called the chemotactic sensitivity coefficient (Salek et al., 2019). We will

study the 1D case (d = 1), but our conclusions generalize to 2 and 3 dimensions. We will also neglect the fact

that the run direction after tumble may be correlated with the previous run direction, which increases diffu-

sivity but does not affect our conclusions.
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Equation 4 is equivalent to a continuous LMC process that samples an invariant probability distribution

PðxÞ: at long times, the bacterial density converges to P(x). This distribution is proportional to a power b

of the ligand distribution (Lee et al., 2018):

PðxÞfeb log LðxÞ = LðxÞb (Equation 5)

where:

b =
c

D
=

t�1

zq + t�1
HNð1� a0ÞzHNð1� a0Þ (Equation 6)

Equation 5 is due to the log-sensing property of chemotaxis, which results in an advection term that is pro-

portional to the logarithmic gradient in Equation 4. The logarithmic gradient is equivalent to the advection

term of LMC. A search strategy that does not respond to the logarithmic gradient will therefore not be

equivalent to LMC.

The parameter b, which in statistical physics is proportional to the inverse temperature, determines the de-

gree to which the invariant distribution is concentrated around the peaks of the attractant profile LðxÞ. For
our purposes, it is important to note that the ‘‘inverse temperature’’ b is proportional to the chemotaxis

gain, as well as to the baseline receptor activity a0 (Equation 6). As there are temporal fluctuations in a0
(Keegstra et al., 2017) and potentially also in chemotaxis gain, there may be large temporal fluctuations

in b. Remarkably, b does not depend sensitively on swimming speed v or average run duration t, which

may be environment dependent; it depends only on intracellular signaling parameters.

When the inverse temperature parameter b is very small (b � 1), the bacterial distribution PðXÞ is nearly uni-
form on its support; when it is very large (b[1), PðXÞ is concentrated around the global maximum of attrac-

tant L(x); and when b = 1, the process samples the attractant distribution precisely, P(x)� LðxÞ.

What is the typical value of b for E. coli chemotaxis? Microfluidics experiments in a linear gradient in the

sensing range (Kalinin et al., 2009) show that bacteria converge to a population distribution of PðXÞf
LðxÞb where b � 14 (Figure 2, black lines). The analytical estimate from Equation 4 with the parameters pro-

vided in Si et al. (2012) also gives a high value of b � 27. The discrepancy may be partially due to a being

away from the adapted state a0 during gradient climbing (see Hu and Tu [2014] for details). Both estimates,

however, suggest that E. coli tends strongly toward optimization, in the sense that cells converge to a dis-

tribution that is tightly concentrated around the attractant peak.

The experiments of Salek et al. suggest that there is large cell-cell variation in the pathway gain HN (and

hence in b) (Salek et al., 2019). Accounting for this variation does not hinder the fit to the empirical distri-

butions (Figure 2, red lines) and can explain the long tail observed in the steep linear gradient (Figure 2,

right panel). However, the variance in pathway gain measured by Salek et al. suggests large cell-cell vari-

ation in b (i.e., a 95% range of 2<b<37 for the estimate bz14). This raises the question of what is the role of

the large variability of b.

Figure 2. Inference of the inverse temperature parameter b from chemotaxis in linear gradients

Kalinin et al. (2009) performed experiments where a bacteria (E. coli) navigated linear gradients L(x) of the chemoattractant MeAsp in a microfluidic device

(insets). The accumulation profiles F(x) (blue circles) correspond well to an invariant probability distribution proportional to LðxÞb where b= 14 (black lines).

This correspondence holds even if we account for the heterogeneity in b observed in Salek et al., by taking the invariant probability distribution to be

proportional to LðxÞxb; x � Gamma½2:25; 35� (red lines).
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A constant gain would prevent efficient chemotaxis

Understanding the adaptive importance of a trait requires us to understand how this trait contributes to the

ability of the organism to survive and reproduce. For bacterial chemotaxis, an effective chemotaxis strategy

is considered to be one that has rapid and tight accumulation of bacterial populations around peaks of at-

tractants (or away from repellants) (Clark and Grant, 2005; Celani and Vergassola, 2010). In the simple case

of a single-peakedGaussian patch of attractant (Figure 3A), this is clearly optimized bymaximizing pathway

gain (and therefore maximizing ‘‘inverse temperature’’ b), because this maximizes the velocity in the direc-

tion of the gradient, as well as the tightness of the invariant distribution around the peak.

Such single-peaked patches are unlikely, however, to fully represent the natural environments in which

E. coli live. We will therefore consider a more general environment that contains multiple attractant peaks,

namely, a multimodal attractant distribution (Figure 3B). In such complex environments, the bacteria face

two important tasks. The first is to navigate toward a maximum of attractant, and the second is to colonize

many attractant peaks. As we will show using the analogy with sampling by LMC, these tasks are incompat-

ible with simply maximizing or minimizing b.

The fundamental problem of sampling in complexmultimodal environments is that of metastability—becoming

stuck at one peak for long times. Consider an environment L(x) that consists of two Gaussians of unit width with

means at x = 0; x = 2m (this corresponds, for example, to patches of dissolved organic matter). If a sampling pro-

cess that samples LðxÞb starts around the first peak x = 0, when will it visit the second peak? This transit time will

be limited by the probability density around the midpoint (or valley) between the peaks x = m, which is propor-

tional to e�
1
2bm

2
. Therefore, the time it takes to cross between modes increases exponentially with inverse tem-

perature b and with the distance m. The feasibility of exploring multiple peaks is thus extremely sensitive to the

choice of b and its relation with the statistical properties of the environment. Similar considerations apply for

linear gradients from steady sources that decay like LðxÞ = ð1 =xÞ, where the probability density at distance m

goes like m�b (Figure S1). One possibility to avoid metastability is to set b low enough to allow transitions be-

tween the peaks. This, however, may be an unfavorable solution, because it comes at the cost of worse locali-

zation near the peaks: the bacterial distribution is spread out and nearly uniform.

To summarize, a chemotactic strategy with a single (or narrowly distributed) b faces an inauspicious trade-

off. Choosing a large inverse temperature b results in tight accumulation around the attractant peak, but

Figure 3. Stochastic tempering allows efficient movement between attractant peaks in multi-modal attractant distributions

(A andB)We simulated the chemotaxis Langevin processes in either unimodal (A) or bimodal (B) attractant distributions. The processes hada highgain, parametrized

by an ‘‘inverse temperature’’ parameter b (b = 30, blue, left panel); a low gain (b = 2, orange,middle panel); or a tempering strategywith stochastic switches between

high and low gain (b = 30–b = 2). Parameters for all processes are provided in the STAR Methods section. Although the high-b process localizes well around the

unimodal peak, it fails to cross between peaks in the bimodal case. The low-b process, on the other hand, crosses well between the peaks but localizes poorly around

each peak. The tempering strategy can both localize well around each peak (in periods here b is high) and cross well between the peaks in periods where b is low.
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crossing between patches becomes intractable; a low bmay allow efficient crossing between patches, but

the bacteria will not accumulate around the peaks of the attractant distribution.

Tempering allows efficient navigation in complex environments

To address this problem, we propose that bacteria employ a tempering strategy with stochastic temporal

changes in inverse temperature b. This provides a physiological function to the stochastic variation in gain,

which proportionally affects b. Our inspiration is the simulated tempering approach to LMC, in which sto-

chastic switches between temperatures allow sampling of complex, multi-modal distributions (Marinari

and Parisi, 1992; Lyubartsev et al., 1992). When multiple instances are run in parallel, the method is known

as parallel tempering (Hansmann, 1997; Earl and Deem, 2005). Simulated tempering is also related to the

simulated annealing method for global optimization (Kirkpatrick et al., 1983; Van Laarhoven and Aarts,

1987), in which temperature is changed over time according to a defined schedule.

For simplicity, we analyze stochastic switches between two inverse temperatures: bhot ;bcold , with transition rates:

h1 : bcold/ bhot ; h2 : bhot/ bcold , similar to the binary fluctuations observed by Keegstra et al. (2017) (our results

generalize to stochastic switches between many temperatures). Bacteria spend on average a fraction ε=

ðh1 =h1 + h2Þ of the time at bhot and ð1�εÞ of the time at bcold : Intuitively, this strategy can be efficient because

crossing valleys between peaks becomes feasible (because a bacterium spends a fraction ε of the time at bhot ,

where it can overcome potential barriers), and it can also localize efficiently around each peak when at bcold .

To quantitatively test the importance of tempering, we will analyze two scenarios: colonization of multiple

patches and escape from an unfavorable patch.

For the first scenario, which we call the serial patchmodel, we will consider an environment that consists of a

1D array of Gaussians with standard deviation s and with maxima placed at mn = 2nm; n˛Z: LnðxÞ=
e�

1

2s2
ðx�2nmÞ2 (Figure 4A). The midway points between patches are at distance m from each peak, which is

large compared with the standard deviation m=s[1 (i.e., the patches are separated). We assume that

the performance of an individual bacteria (or its lineage), f , depends on the product of how many patches

the bacteria visited fv and its performance over each patch fp, that is, f = fv fp. The migration of bacteria

in this model is limited by metastability at the midway points. The crossing rate between patches can

therefore be estimated by the Kramers approximation (Kramers, 1940):

t�1
escape z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�U00ð0ÞU00ðmÞp
2p

e�UðmÞ�Uð0Þ
D z

bD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p
2ps3

2be� m2

2s2
b (Equation 7)

where U is the potential function U= � clog

0
@e�

1
2ðx�2mÞ2 +e�

1
2x

2

1
A and c = bD. In Figure 4B we plot the value

of tescape for various values of m;s and b . One can see that the crossing rate t�1
escape is very sensitive to the

choice of b (see also Figure S2 for estimation of tescape for a wide range of m; s and b).

As t�1
escape is the rate-limiting step for the colonization of new patches, we can model the colonization process as

randomwalk where the bacteria have probability p= t�1
escape to move to each of the adjacent patches. The num-

ber of patches visited up to time t (divided by
ffiffi
t

p
) will be on the order of the mean displacement:

fv z
ffiffiffiffiffiffi
2p

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p
p

s
2

b
2e� m2

4s2
b (Equation 8)

Note that aforementioned equation can be generalized for patches with various separation distances (due

to different variance or mean position) by taking the geometric mean of the values of t�1
escape.

For the performance in each patch, we consider a performance metric that depends on localization around

the peak: the overlap integral between the location of the bacteria PðxÞ and the attractant peak of LðxÞ
(d� 1Þ:

fp =

R d

�d
PðxÞdxR d

�d
LðxÞdx

=

R d

�d

ffiffiffiffiffiffiffi
b

2ps2

q
e� b

2s2
x2dxR d

�d

ffiffiffiffiffiffiffi
1

2ps2

q
e� 1

2s2
x2dx

z
ffiffiffi
b

p
(Equation 9)
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We can also consider other performance metrics—the important aspect is that b improves localization

around the peak, and thus improves fp. The overall performance is therefore:

f = fpfv = b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p
p

s
2

b
2e� m2

4s2
b (Equation 10)

The performance rises and then falls as a function of b (Figure 4C, solid lines).

The equation for f reveals the fundamental trade-off between colonization and localization—as b is impor-

tant for localization but detrimental for colonization, it is impossible to optimize both fp and fv at the same

time. Moreover, the optimal b is highly sensitive to m (which is contingent on the environment), and a choice

of b that is too low or too high results in poor performance.

Now consider a tempered strategy with stochastic switches between bhot ;bcold . We make the conservative

assumption that the time the bacteria spends at bcold makes no contribution to escaping from patches, and

thus:

t�1
escapeðmÞzε

bhotDm

2ps3
2bhote� m2

2s2
bhot (Equation 11)

This holds as long as the bacteria spends enough time in bhot to escape (i.e., h2 is smaller than t�1
escape). Thus:

Figure 4. Stochastic tempering provides a superior strategy for patch colonization in multi-modal environments

(A) The serial patch model is an infinite mixture of Gaussian attractant patches with standard deviation s and maxima

placed at .� 4m; � 2m;0; 2m;4m;... Bacteria start at x = 0.

(B) Time to cross over to an adjacent patch tescape increases exponentially with b for the untempered strategy (solid lines,

plotted for various m). For the tempered strategy crossing time is determined by bhot (dashed lines, plotted for bhot = 1;

bcold = 20;ε = 1
3;D = 0:0009 mm2=sec). We assume a patch lifetime of tpatch = 1day.

(C) Performance f for the untempered strategy as a function of b (solid lines) decays to zero at low and high values of b due

to the trade-off between colonization and localization. The untempered strategy outperforms it by decoupling

colonization and localization (dashed lines).

(D) The asymmetric patch model is an infinite mixture of small unfavorable Gaussian patches (height h = 1) and large

favorable Gaussian patches (height h = H[1). For panels (E and F) we denote by z the ratio between unfavorable and

favorable patches.

(E) Expected value of patch performance (normalized by
ffiffiffiffiffiffiffiffiffiffi
bcold

p
or

ffiffiffi
b

p
) for tempered (black) and untempered (gray)

strategies for various values of H setting z= 10 (other parameters are as in other simulations).

(F) Normalized expected value of patch performance as a function of z, setting H = 10.
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fvz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε

bhotD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p
p

s
2

bhot
2 e� m2

4s2
bhot (Equation 12)

We also make the conservative assumption that the time the bacteria spends at bhot makes no contribution

to patch performance, and thus patch performance is:

fpzð1� εÞ
ffiffiffiffiffiffiffiffiffiffi
bcold

p
(Equation 13)

The overall performance is

f = fpfv = ð1� εÞ ffiffiffi
ε

p ffiffiffiffiffiffiffiffiffiffi
bcold

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bhotD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 � s2

p
p

s
2

bhot
2 e� m2

4s2
bhot (Equation 14)

We can see a clear difference between the performance of the tempered strategy (Equation 14) and the

untempered strategy (Equation 10)— the tempered strategy allows one to optimize separately fp (by

increasing bcold ) and fv (by decreasing bhotÞ at a fixed cost of the pre-factor ð1 � εÞ ffiffiffi
ε

p
. Therefore, choosing

a low bhot and a high bcold (independent of m) can easily outperform the untempered strategy (Figure 4C,

dashed lines). Tempering therefore allows for efficient balancing of colonization and patch utilization.

The second scenario is the asymmetric patch model, which explores the problem of global optimization.

Consider two Gaussian patches with standard deviation s and with maxima placed at 0; 2m, and with

very different heights h = 1;h = H, soH[1 (Figure 4D). We assume that the performance increases propor-

tionally to patch height (which corresponds to attractant concentration). We can compute the transition

rate from the unfavorable patch (h = 1Þ to the favorable patch (h = H):

t�1
escapez

bD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hm2 � 1

2ð1+ hÞ2s2

q
ð1+ hÞps3

ð1+ hÞbe� m2

2s2
b (Equation 15)

The exponential dependence of the escape rate on b again means that for well-separated patches (large m=

s) it is unfeasible to leave the unfavorable patch when b is large. As the bacteria can in principle get trapped

in either of the patches, the expected value for the performance is fpz1
2 ðH + 1Þ ffiffiffi

b
p

.

For the tempered strategy, on the other hand, the bacteria can cross between the patches in the bhot state

and localize effectively in the bcold state. From Equation 5, the relative time it spends at the favorable patch

is 1=ð1 +H�bhot Þ (we again assume that patch crossing occurs only in the bhot state), so the performance

becomes proportional: fp = ð1 � εÞ
�

H
1+H�bhot

+ 1
1+Hbhot

� ffiffiffiffiffiffiffiffiffiffi
bcold

p
. Taking, for example, b = bcold ; bhot = 1,

and H[1, we find fpzð1 � εÞH ffiffiffiffiffiffiffiffiffiffi
bcold

p
. Thus, for two patches, the tempered strategy is better when the

cost of tempering ε is smaller than 1=2.

What about a more general case, where there are only a few favorable patches nh=H among many

unfavorable patches nh= 1 (i.e. nh= 1

nh=H
= z[1)? The untempered strategy has a performance of

fpffiffiffiffiffiffiffiffi
bcold

p =
1

z�1 + 1
+ 1

z+ 1H/1, because it is unlikely that the starting patch will be a favorable one. On the other

hand, for the tempered strategy, we have
fpffiffiffiffiffiffiffiffi
bcold

p = ð1 � εÞ
�

1
z�1H+ 1

+ H
zH�1 + 1

�
= ð1 � εÞ H2 + z

H+ z
. This perfor-

mance depends on the ratio of H=z—a very favorable patch (H[z[1Þ can yield high performance
fpffiffiffiffiffiffiffiffi
bcold

p = ð1�εÞH even when there are many unfavorable patches in the environment. Tempering therefore

allows for efficient utilization of favorable patches in the presence of other (potentially many) unfavorable

patches (Figures 4E and 4F).

In conclusion, thesemodels suggest that the tempered strategy can yield superior performance in the pres-

ence of multiple attractant patches.

This quantitative theory was developed for static attractant patches. In reality, patches have a finite lifetime

tpatch due to their consumption, diffusion/advection, or environmental effects. The timescale tpatch is var-

iable—for marine sources, for example, it can range from seconds to minutes for patches of dissolved
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organic matter to hours to days for more persistent sources such as marine aggregates or phytoplankton

(Kiørboe et al., 2002; Stocker et al., 2008). Patch lifetime can be incorporated into the model. It sets a

maximal value for tescape: tescape<tpatch. Given this value, it is possible to determine whether the cost of

tempering (the prefactor of Equation 14) indeed outweighs the cost of using an untempered strategy,

with the escape rate now capped by tpatch: In Figures 4B and 4C we set tpatch = 1day, and in Figure S3

we plotted tescape and f taking tpatch = 10min and tpatch = 1 week.

Tempering provides efficient growth and colonization in complex environments

In addition to the theoretical analysis of tempering in a patchy environment, we also simulated a minimal model

for bacterial population dynamics (Figure 5A). We assume that the environment consists of G equal-height

Gaussian patches with peaks at 0; 2m;4m;.;2ðG � 1Þm, and standard deviation s (Figure 5B). The bacteria navi-

gate and grow in this environment, such that after every generation-interval (tgen) the bacteria replicate if they

sense an attractant level higher than a threshold lrep (accumulation near peak). Bacteria start at x = 0. To

encourage colonization of new patches, we also assume that each patch has a finite carrying capacity K. For

simplicity we again assume a static attractant profile; the carrying capacitymay thenbedue to the nutrient deple-

tion, while the attractant is a separate navigational cue that is present at large quantities.

Constant�b strategies perform poorly in such environments (Figure 5C). If b is high, the bacteria localize

effectively near the first local maximum of the attractant. They therefore initially grow rapidly; however,

the finite carrying capacity K of the patch prevents further growth, and, due to metastability, they only

very slowly colonize other patches. This results in limited population expansion. For the bacteria to colonize

other patches, b needs to be lowered, but this prevents effective localization near the peak and so also

compromises growth.

Bacteria with a tempering strategy that temporally switch between high and low b, on the other hand, can

effectively grow and colonize (Figure 5C). During the time the bacteria spend at high b, they effectively

accumulate at a local peak. Spending time at low b helps the bacteria cross valleys, thus colonizing new

patches. This results in superior overall growth rate. Importantly, the strategy is robust to the geometry

and size of the attractant peaks—spending some time at a low enough b prevents metastability for diverse

environments, even if the average b is very high. As we noted earlier, it is only important that the bacteria

spend long enough in bhot to allow for patch crossing. As we showed analytically, the choice of bhot ;bcold
does not need to be tuned for a particular environment, as the simple strategy of switching between high

and low b either outperforms or performs similarly to constant-b strategies for diverse environments

(Figure S4).

Figure 5. Tempering improves growth and colonization of multi-modal environments in population simulations

(A) A simple model of patch colonization, where bacteria migrate and colonize attractant patches. Each simulated

bacteria performs chemotaxis. At the end of each generation-interval, the bacteria replicates if local attractant

concentration is higher than lrep, and if the patch is occupied by less than K bacteria. Here lrep = 0:95 and K = 50. Red

bacteria represent the bhot state, whereas blue bacteria represent the bcold state.

(B) Simulations for a 1D case where the attractant patches are Gaussians with height = 1 and standard deviation s = 0.07

mm (see Figure S3 for other parameter choices). G = 21 patches are placed at m= 0.15 mm distance from each other.

(C) Constant-b (constant gain) strategies (gray lines, thicker lines correspond to higher b, namely, b = 2; 3:4;5:9;10:1;17:5;

30) either fail to localize around peaks (low b) or suffer from metastability and fail to colonize new patches (high b). This

results in lower overall population growth. The simulated tempering strategy (black line) localizes well around peaks and

can colonize new patches, yielding larger population growth.
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Theory on LMC sampling can provide insight into chemotaxis strategies

So far, we have shown that bacterial chemotaxis is analogous to LMC-based sampling and used this anal-

ogy to demonstrate the importance of stochastic fluctuations in pathway gain for efficient navigation in

complex environments. We demonstrated this for an environment that consists of multiple Gaussian attrac-

tant patches. We conclude by developing the analogy between patch colonization and sampling more

formally, which allows us to generalize our results.

For an attractant ligand distribution LðxÞ we can define the target probability distribution of the bacteria as

lbðxÞfLðxÞb, which is the invariant distribution of Equation 4. Let rtðxÞ be the distribution of locations

sampled by the bacteria by time t. We are interested in how fast rtðxÞ converges to lbðxÞ. For this we

need tomeasure how different rtðxÞ is from lbðxÞ. One way to do this is to use the Kullback-Leibler (KL) diver-

gence of rtðxÞ with respect to lbðxÞ:

HlbðrtÞ =
Z

rtðxÞlog
rðxÞ
lbðxÞdx (Equation 16)

KL divergence is a measure of relative entropy. It is non-negative, andminimizedHlb ðrtÞ= 0 at rt = lb. There

is extensive mathematical literature on the convergence of the KL divergence for Langevin processes (Vil-

lani, 2008). An important result is that Langevin dynamics can be viewed as optimization (or steepest

descent) of Hlb ðrtÞ in the space of probability distributions (Jordan et al., 1998; Wibisono, 2018), with dy-

namics given by:

dHlb ðrtÞ
dt

= � Jlb ðrtÞ (Equation 17)

where Jlb is the relative Fisher information:

Jlb ðrtÞ =
Z

rtðxÞkVlog
rðxÞ
lbðxÞ

2

dxk (Equation 18)

As can be seen from the aforementioned equations, convergence can be rapid if we can bound the KL

divergence with the Fisher information:

HlbðrÞ%
1

2A
Jlb ðrÞ (Equation 19)

which yields:

Hlb ðrtÞ%e�2AtHlb ðr0Þ (Equation 20)

That is, the convergence of the KL divergence is exponentially fast. Equation 19 is equivalent to a condition

known as the Logarithmic Sobolev Inequality (LSI) (Gross, 1975; Bakry and Émery, 1985), with a Sobolev con-

stant A. LSI holds for strongly log-concave distributions (and in particular for Gaussians)—lb satisfies Equa-

tion 19 if it is A-log concave. LSI is also equivalent to a Gaussian-like concentration of lb (Ledoux, 1999; Go-

zlan et al., 2011). We can therefore conclude that chemotaxis (either untempered or tempered) can sample

such Gaussian-like attractant patches rapidly.

For multi-modal distributions, such as mixtures of Gaussians, this rapid convergence does not hold, as we

have seen the time to cross between modes increases exponentially with their distance for an untempered

strategy. However, it is possible to prove that a tempered strategy converges rapidly, at least on a mixture

of Gaussians with equal variance (Madras and Randall, 2002; Woodard et al., 2009; Lee et al., 2018). The

proof, which is due to Lee et al. (2018), is based on a decomposition theorem by Madras and Randall

(2002); informally, it states that if the space can be partitioned into subsets in such a way that the LMC pro-

cess converges rapidly within each subset, and transitions between subsets occur rapidly enough, then the

LMC process converges rapidly overall (STAR Methods). For an environment that consists of a collection of

Gaussian attractant patches of equal variance, it is possible to define such a partition (Ge et al., 2017; Lee

et al., 2018). If the high-temperature process crosses rapidly between the partition sets (that is, bhot is cho-

sen low enough), then the entire process can converge rapidly.

DISCUSSION

We studied the functional significance of variation in pathway gain in bacterial chemotaxis. Gain variation is

puzzling, because individuals with low pathway gain climb gradients poorly and accumulate less tightly
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around attractant peaks, and thus selection should push towards maximal gain. We considered the possi-

bility that variation is due to (potentially long-lasting) temporal fluctuations. We suggest that such fluctu-

ations in gain are crucial for efficient chemotaxis in complex environments with multiple attractant maxima

and minima. This is because a strategy with a single (or tightly distributed) pathway gain either cannot

escape local peaks, if gain is high, or localizes poorly around peaks, if gain is low. A variable-gain strategy

overcomes both of these problems. This strategy is a biological implementation of the simulated-

tempering algorithm used in statistical physics and computer science for sampling complex distributions.

To analyze the function of gain variation, we made a formal analogy between bacterial chemotaxis and the

LMC algorithm, a widely used method for sampling probability distributions. Standard LMC often fails to

efficiently sample from multi-modal distributions. It gets stuck on local maxima, because the time to cross

valleys depends exponentially on the distance between the peaks, and can easily become intractable.

Simulated tempering LMC employs a tempering strategy that consists of stochastic switches in the temper-

ature parameter. The tempering strategy makes the crossing of valleys computationally tractable, while

sacrificing efficient localization near the peaks for only a fraction of the time. We show that tempering is

analogous to stochastic fluctuations in the chemotaxis pathway gain. This allows rapid colonization of

new patches by bacteria, while maintaining efficient localization within each patch.

The model presented here is based on the mean-field approximation that averages over the internal state

of the bacteria (Si et al., 2012). Although this approximation works well in some parameter regimes (such as

shallow gradients), it cannot account for large deviations in internal state that bacteria experience due to

positive feedback between run duration and sensing. This was addressed recently in an important theoret-

ical paper (Long et al., 2017). Long et al. showed that the positive feedback between motion and sensing

can result in an almost switch-like dynamics, with very long runs when climbing gradients and persistent

tumbling when descending the gradient. These dynamics become dominant when the positive feedback

timescale tE = ðL =NHvÞ (L is the length scale of the gradient) becomes short compared with adaptation

time. This effect causes large variability in the internal state of the bacteria (including receptor methylation),

which depends on the behavior of the bacteria, and it improves gradient climbing efficiency and accumu-

lation around peaks. Tempering is therefore still required to allow for efficient crossing between peaks.

The present tempering role for temporal fluctuations in gain adds to previous concepts on the functional

benefits of phenotypic heterogeneity. Two well-studied concepts are bet-hedging (Kussell and Leibler,

2005; Wolf et al., 2005; Xue and Leibler, 2017; Martı́n et al., 2019) and division of labor (Ackermann,

2015; Adler et al., 2019). Bet-hedging is defined as diversification that is beneficial for buffering against un-

certain changes in the environment. For instance, diverse behavioral strategies help animal populations to

overcome different invasion stages and conditions (Sih et al., 2012; Wolf and Weissing, 2012; Carere and

Gherardi, 2013; Forkosh et al., 2019). The tempering strategy studied here is beneficial even when the envi-

ronment is static. In addition, unlike division of labor, which is a population-level property, the tempering

strategy can be beneficial at the level of the individual organism, allowing efficient navigation.

It is interesting to consider how tempering is affected by another important source of heterogeneity in bac-

teria, namely, cell-cell variation in the adaptation time (Spudich and Koshland, 1976). In addition to the

functional roles discussed in the introduction, fluctuations in adaptation time can also complement

tempering for efficient navigation in complex environments. This is because the bacterial chemotaxis

signaling circuit acts as a low-pass filter on the logarithmic derivative of the input (which controls the accu-

mulation around peaks), with a filtering time-window that is proportional to the adaptation time (Tu et al.,

2008). Slower adaptation therefore makes the bacteria ‘‘see’’ smoother inputs, which can also accelerate

sampling (Ma et al., 2019), again at the cost of poorer localization around local peaks.

In addition to tempering, other behavioral strategies can also help bacteria escape from local attractant

peaks. One such strategy is to increase the variation in run duration. It has been proposed that E. coli

may perform an approximation of a Lévy walk, where the run durations are drawn from a power-law distri-

bution instead of an exponential distribution, due to slow fluctuations in signaling molecules (Tu and Grin-

stein, 2005; Matthäus et al., 2009). This is supported by a recent study that characterized E. coli run-length

distributions using 3D tracking (Huo et al., 2021). Mathematically, it is possible to account for the power-law

run distribution in the sampling equation by using fractional differentiation, as shown in a recent article by

Sximsxekli (2017). Lévy walks are effective for searching for randomly distributed, sparse targets
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(Viswanathan et al., 1999); however they may be suboptimal when the target is close, or in the presence of

bias (Palyulin et al., 2014). In principle, a Lévy walk can occasionally generate very long runs that can cross

between peaks, while most of the time staying close to the peak. However, there is an important difference

between the tempering and Lévy walk strategies. The tempering strategy allows the bacteria to cross be-

tween peaks, but bacteria remain attracted to areas of high attractant concentration; in contrast, in the Lévy

walk the long runs are random and can send the bacteria far from attractant patches, where the gradient

may no longer be detectable. The tempering strategy may therefore be preferable when attractant peaks

are dense, whereas the Lévy walk strategy may be preferable when they are sparse.

Although the LMC analogy was developed for bacterial navigation, its underlying assumptions are general

and can extend to other organisms that combine FCD input sensing with stochastic navigation. As the

benefit from tempering (balancing peak localization with exploration of new peaks) can in principle apply

to a wide range of navigation systems, we would expect tempering to be a widespread strategy. One po-

tential example for this is the chemotaxis of Dictyostelium, which is based on FCD sensing (Janetopoulos

et al., 2004; Kamino and Kondo, 2016; Kamino et al., 2017) and stochastic navigation (Amselem et al., 2012).

It will be interesting to test whether this system, which exhibits stochastic fluctuations in signaling compo-

nents (Arai et al., 2010), also performs tempering. Another potential example is the dopamine system in

vertebrates, which controls movement and is based on FCD sensing of expected reward (Tobler et al.,

2005; Karin and Alon, 2021). The effective inverse temperature for the dopamine system is bz 1, and it

is therefore closer to sampling of rewards rather than optimization, in line with experimental observations

on choice behavior across vertebrates (McDowell, 2013). In this system, tempering can be implemented by

fluctuations in dopamine gain, which may be due to changes in the level of other neuromodulators such as

endogenous opioids (Smith et al., 2011).

The analogy between LMC-based sampling and chemotaxis can help address additional fundamental

questions in biological navigation. One important outstanding question is why stochastic navigation is

so prevalent across different organisms. The run-and-tumble navigation of bacteria is markedly less effi-

cient in climbing gradients than direct reorientation according to the spatial gradient, because run-and-

tumble movement is nearly isotropic and uncorrelated with the gradient (Berg, 1993). It is thought that bac-

teria use run-and-tumble because they cannot measure spatial gradients along their body, as shown by

Berg and Purcell (1977) and Bialek and Setayeshgar (2005) (but see also Thar and Kühl [2003]). However,

stochastic navigation is also employed by organisms that can sense spatial gradients along their body,

such as Chlamydomonas and C. elegans (Polin et al., 2009; Luo et al., 2014; Pierce-Shimomura et al.,

1999). This raises the question of whether stochastic navigation may be preferable under some conditions

to direct spatial-gradient reorientation.

The analogy to sampling and optimization approaches from physics and computer science can provide

insight into this question. Stochastic navigation is analogous to LMC-based sampling, whereas spatial

gradient reorientation is analogous to gradient-descent-based optimization. Gradient descent is

commonly used for convex optimization; however, it is notoriously ineffective for global optimization

and for optimization in non-convex settings, when compared with Langevin diffusion (Ma et al., 2019; Ra-

ginsky et al., 2017; Xu et al., 2018). Comparing trade-offs between sampling and optimizationmay therefore

help understand the navigational strategies employed by organisms.

Limitations of the study

In this study we propose a function for temporal fluctuations in pathway gain—they allow bacteria to effec-

tively balance localization around peaks with navigation to new peaks. It will be important to test this pro-

posal experimentally. In particular it will be important to experimentally quantify the navigation behavior of

bacteria in multi-modal environments and how it is influenced by the pathway gain of individual bacteria.
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omerka-weizmann/chemotaxis_tempering.

� No additional information.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

The study did not use experimental models.

METHOD DETAILS

Stochastic simulations of chemotaxis

We simulated the trajectories of bacteria using the Langevin process dx = c Vlog LðxÞdt + s dW , with s=ffiffiffi
2

p
,0:03mm1:5sec�0:5 (corresponding to a run duration of t = 1 sec and a swimming speed of v =

0:03mm=sec, and D = v2t). The advection parameter c was adjusted according to b, where b = 2c=s2.

All simulations were performed using the ItoProcess procedure of Mathematica, with a step size of

0.05sec. For tempering between bhot ; bcold , we assumed stochastic changes with transition rates:

h1 : bcold/ bhot ; h2 : bhot/ bcold , so transition that times were drawn from exponential distributions with

means t1 = ð1 =h1Þ;t2 = ð1 =h2Þ. Since stochastic fluctuations may occur on a timescale of minutes to hours,

we chose for the simulations t1 = 6 min and t2 = 24 min. The generation interval is tgen = 60 min.

Heterogeneity in b from bacterial T-maze experiments

A recent study (Salek et al., 2019) quantified non-genetic variability in pathway gain. While the fitted distri-

bution is a product of several underlying components, we find that it is approximately a Gamma distribu-

tion with a shape parameter of 2.25 and a scale parameter of 35. This distribution has a coefficient of vari-

ation of approximately 2/3. We accounted for this heterogeneity in Figure 2 by computing the probability

distribution PðxÞ = 1
Z

RN
0

Prob½x� LðxÞbxRN

�N
LðxÞbxdx dx, where Z is a normalization factor, x is a random variable that is

distributed x � Gamma½2:25;35�, and b is chosen such that <b,x> = 14.

Adaptation time of tumbling rate

To derive the adaptation time for the tumbling rate a we linearize Equations 1 and 2 around a= a0 andm =

m0 = 1 + 1
aN log

a0
1�a0

+ 1
a
log L

KI
. Since tumbling rate adjusts on a timescale that is more rapid than methyl-

ation, we take its quasi-steady-state (given by Equation 1), so the equation for m becomes:

_mðtÞz � ð1� a0ÞNauðm� m0Þ

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

Mathematica https://www.wolfram.com/mathematica/ Version 12.1.1.0
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From which we can see that the adaptation rate is inversely proportional to ð1 � a0ÞNau.

Mixing time of chemotaxis strategies

In order to analyze whether a given chemotaxis strategy is able to cross between peaks, we use a formal

analogy between chemotaxis and the LMC algorithm. The LMC algorithm samples an invariant probability

distribution that is proportional to the attractant distribution raised to the power b, where b is the inverse

temperature of the Langevin process. Whether the chemotaxis strategy is able to cross between modes

and localize around attractant peaks is then directly related to the convergence rate of the analogous sam-

pling algorithm to its invariant distribution.

To quantify this convergence rate of the sampling process, we recall that we defined the KL divergence of

the sampled distribution rt relative to the invariant distribution lb:

HlbðrtÞ =
Z

rtðxÞlog
rðxÞ
lbðxÞdx

And thatHlb ðrtÞ/0 as t/N. We define themixing time as the time it takes forHlb ðrtÞ to reach a fraction g

of its original value, e.g. the half-way convergence point for g = 1=2. In our case, lbðxÞ is given by a power b

of the attractant ligand distribution. As we have shown in the main text, for an A log-concave attractant dis-

tribution such as a Gaussian lbðxÞ=e�
b

2s2
x2 (which is log concave withA = b=s2), the convergence rate can be

bound by:

Hlb ðrtÞ%e�2atHlb ðr0Þ
And therefore, the mixing time is polynomial in the length-scale s.

For the case of two or more Gaussians with means placed at distance 2m from each other however, the

limiting timescale for the mixing time is given by the escape time from each Gaussian,

tescapez

 
bD

ffiffiffiffiffiffiffiffiffiffi
m2�s2

p
2ps3

2b

!�1

e
m2

2s2
b, which is exponential in the length scale.

What about a tempered strategy? Here we will outline the proof of (Lee et al., 2018) that a tempered strat-

egy over Gaussians of similar variance has polynomial mixing time. For simplicity, we analyze the discrete

time case, as the results extend in a straightforward manner to the continuous time case. Following the def-

initions in (Madras and Randall, 2002; Lee et al., 2018), a Markov Process M is given by a probability tran-

sition kernel Pðx;dyÞ over a measure space U (e.g. U = Rn), that is reversible with respect to a probability

density p. The asymptotic convergence rate is related to a quantity that is called the spectral gap of the

process. The spectral gap is defined as:

GapðMÞ = inf
f

1

2

ZZ
jf ðxÞ � f ðyÞj2pðdxÞPðx;dyÞ

Where f is a non-constant function with variance 1 and an expected value of 0 w.r.t p. Note that the quantity

that is minimized is the Dirichlet form of f .

The spectral gap is interesting because it determines the mixing time (Levin and Peres, 2017). The mixing

time is inversely related to the spectral gap, so algorithmic improvement is achieved by increasing the

spectral gap.

In our case, we will be interested in giving lower bounds on the spectral gap for Langevin diffusion pro-

cesses on Gaussian patches, using a decomposability theorem, due to Randal and Madras (Madras and

Randall, 2002).

For the decomposability theorem, we assume that we are given a partition F= fAj; j˛1; ::;mg of the state

space U of the Markov chain U = W1%j%mAj. Let PjA denote the restriction of P to A, so transitions occur

according to P but are rejected if they leave A. Additionally, let M denote the projected Markov chain

with transition rates corresponding to average probability flows between the sets of F, i.e. the transition
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probability between i,j is 1
pðAiÞ

R
Ai

R
Aj

Pðx;dyÞpðxÞdx. Then the decomposability theorem states the following

lower bound on the spectral gap:

GAPðMÞR1

2
GAP

�
M
�
min

1%j%m
GAP

�
MjAj

�
The product is composed of two parts: the spectral gap of the projected Markov chain GAPðMÞ, and the

smallest spectral gap when the Markov process is restricted to each component of the partition. More

recently, Lee et al. demonstrated a similar decomposition theorem, which concerned decomposing the

stationary distribution instead of decomposing the state space (Lee et al., 2018). For a Langevin-diffusion

process over a mixture of Gaussians of similar variance, the stationary distribution is similar to a mixture of

Gaussians (raised by a power b), over each of which the Langevin process mixes rapidly (Bakry and Émery,

1985), so the partition components can simply be chosen to be the mixture components. In fact, this can be

generalized to any mixture of log-concave distributions (Lee et al., 2018).

Let us now consider a tempering strategy as defined in the manuscript, which consists of stochastic

switches between two inverse temperatures bcold ;bhot at rates h1 : bcold/ bhot ; h2 : bhot/ bcold . If bhot is

chosen low enough then all the mixture components will become sufficiently close to allow for rapid tran-

sitions between the components at bhot . It is therefore possible for the process to cross between the com-

ponents at bcold by transitioning to bhot and then back to bcold .

QUANTIFICATION AND STATISTICAL ANALYSIS

Estimating the inverse temperature b from chemotaxis in linear gradients

To quantify the inverse temperature parameter for E. coli chemotaxis, we used the experiments by (Kalinin

et al., 2009) that measured population distributions FðxÞ for E. coli in linear gradients after reaching dy-

namic equilibrium (Figure 5, panel E1, see Kalinin et al. for experimental details). In order to determine

b, we estimated the following error: the absolute difference between the probability distribution propor-

tional to PðxÞ= LðxÞb (where LðxÞ is ligand concentration) and FðxÞ for each of the three gradients. We set b

to minimize the average error for the three distributions. A similar fit can be obtained by taking the inter-

cept of the linear fit of log FðxÞ against log LðxÞ.
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