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Optical effects of exposing intact human lenses
to ultraviolet radiation and visible light
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Abstract

Background: The human lens is continuously exposed to high levels of light. Ultraviolet radiation is believed to
play a causative role in the development of cataract. In vivo, however, the lens is mainly exposed to visible light
and the ageing lens absorbs a great part of the short wavelength region of incoming visible light. The aim of the
present study was to examine the optical effects on human lenses of short wavelength visible light and ultraviolet
radiation.

Methods: Naturally aged human donor lenses were irradiated with UVA (355 nm), violet (400 and 405 nm) and
green (532 nm) lasers. The effect of irradiation was evaluated qualitatively by photography and quantitatively by
measuring the direct transmission before and after irradiation. Furthermore, the effect of pulsed and continuous
laser systems was compared as was the effect of short, intermediate and prolonged exposures.

Results: Irradiation with high intensity lasers caused scattering lesions in the human lenses. These effects were
more likely to be seen when using pulsed lasers because of the high pulse intensity. Prolonged irradiation with
UVA led to photodarkening whereas no detrimental effects were observed after irradiation with visible light.

Conclusions: Irradiation with visible light does not seem to be harmful to the human lens except if the lens is
exposed to laser irradiances that are high enough to warrant thermal protein denaturation that is more readily
seen using pulsed laser systems.

Background
Cataract is a major health problem, accounting for almost
20 millions cases of blindness globally and an even greater
number of cases of low vision [1]. Cataract is characterised
by increased absorption and scattering of light by the lens
of the eye resulting in a decreased transmission of light to
the retina. Evaluating the yellow-brownish discolouration
of the lens is an important aspect of grading the severity
of cataract [2-4]. Lens chromophores are formed by a
number of pathways including photochemical modifica-
tion of tryptophan [5-9] and denaturation with sugars
forming advanced glycation end products and cross-links
between lens proteins [10-13].
Exposure to ultraviolet radiation in the UVB (280-320

nm) can induce cataract in animal studies [14,15] and
epidemiological studies suggest a link between cortical
cataract and exposure to ultraviolet radiation [16-19]. In

vivo, the lens is relatively well protected from UVB radia-
tion because the shorter wavelengths of the solar spec-
trum are absorbed by atmospheric ozone, the upper eye
lids and to a lower extent the eyebrows shield the eye
[20,21] and because UV is absorbed to a large degree in
the cornea and the aqueous humour [22,23]. The natural
ageing process of the lens leads to increased lens yellow-
ing [24] and the aged lens contains UV-absorbers and
chromophores that absorb both ultraviolet radiation
[22,25] and with age increasing proportions of violet,
blue and to a lesser extent green light too [26]. The part
of the solar spectrum that reaches and becomes absorbed
by lens is thus dominated by UVA and the short wave-
length segment of the visible spectrum. Whereas the det-
rimental effect of UVB is well documented in the
literature, UVA seems less damaging [7,15,27] and may
even bleach lens chromophores [28,29]. The effects of
irradiation with visible light have not been described in
the literature but since the aged human lens absorbs a
great proportion of short wavelength visible light it is
very relevant to examine this part of the electromagnetic
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spectrum for potentially hazardous effects. The aim of
the present study was to examine and compare the
effects of irradiation with ultraviolet radiation and visible
light on the optical properties of naturally aged human
lenses. This was done by using different wavelengths of
irradiation, different exposure times and irradiation
levels, and pulsed and continuous wave laser systems.
The effect of the irradiation was documented qualita-
tively by photographs and quantitatively by measuring
the direct transmission of white light before and after
irradiation.

Methods
Biological material
Human donor lenses were kindly provided by Dr Liesbeth
Pels and co-workers of the Corneabank NORI, Amster-
dam, the Netherlands. Lenses were procured within 24
hours post mortem and kept at 5°Celsius in minimal
essential medium (MEM) until they were used for the
experiments (> 4 days post mortem). All lenses were of
good optical quality indicating that no swelling had taken
place. A few of the lenses had localised opacities of the
capsule induced by the postmortem storage. To avoid
potential problems with scattering from these localised
opacites the lens capsule was gently removed before irra-
diation and the lens placed between two glass mounting
plates kept apart by an adjustable spacer. Removing the
capsule did not influence the way a lens responded to irra-
diation as judged by comparing the two lenses from the
same donor in a control experiment including 2 sets of
lenses.
Only non-identifiable donor material was used. The

study adhered to the tenets of the Helsinki Declaration
and it was approved by the medical ethics committee of
Copenhagen County.

Evaluation of the effects of irradiation
The effect of irradiation was evaluated by direct white
light transmission measurements, visual inspection and
by photography using a Canon EOS 30D digital camera
equipped with a Canon compact-macro lens. The
transmission of white light was measured using a broad
band white light source (DT-Mini-2-GS, Micropack,
Ocean Optics, the Netherlands) that was fibre coupled
to a collimating set of lenses in front of the human
lens. After passing through the mounted human lens,
transmitted light was detected by focusing outcoming
light into an optical fibre that was connected to an
Avantes Spectrometer (AvaSpec-2048-2, Avantes BV,
The Netherlands). The resolution of the spectrometer
was 0.3 nm. Direct lens transmission was calculated as
the ratio between the intensity of emitted (Ilens) and
incident (Iincident) light after correction for background
levels (Idark) of light (Eq. 1):

T =
Ilens − Idark

Iincident − Idark
(1)

Transmission spectra were normalized to a nominal
transmission of 100% between 600 and 700 nm.

Laser systems
Four different laser systems were examined: a pulsed
nanosecond laser at 355 nm (third harmonic Nd:YAG,
pulse duration 4.2 ns, repetition rate 13 kHz), a pulsed
femtosecond laser at 400 nm (frequency double Ti:Sap-
phire (Mira 900, Coherent, USA) after amplification by a
regenerative amplifier (RegA, Coherent, USA), pulse
duration 150-250 fs (10-15 seconds), repetition rate 275
kHz), a continuous wave (cw) frequency doubled diode
laser at 405 nm [30], and a cw frequency doubled solid
state Nd:YAG laser at 532 nm (LSR532U-200, Lasever,
China). Laser energy output was measured using a ther-
mopile detector and was adjusted to the desired irradi-
ance using a graded neutral density filter. Irradiances are
reported as the radiant power per area (W/cm2) accord-
ing to CIE standards [31]. The lenses were irradiated
with a collimated laser beam. The area of interest was
defined by fixing a circular aperture (1.4 mm in diameter)
on the front surface of the lens mounting system. The
laser beam cross-section was kept larger than the aper-
ture to ensure that the entire area of the aperture was
irradiated. All transmission measurements were per-
formed through the aperture.

Results
Pulsed ultraviolet radiation at 355 nm short and long
exposures
Six lenses from donors aged 54 to 72 years were irra-
diated at 355 nm and were found to develop white
lesions instantaneously at a mean laser irradiance of 65
mW/cm2 (corresponding to a pulse energy of 0.4 μJ) or
higher, Figure 1. White lesions were avoided when laser
irradiance was reduced to 16 mW/cm2 (corresponding to
a pulse energy of 0.1 μJ) but prolonged exposure (~72
hours) led to brown lesions, Figure 1. In all 6 lenses
transmission at 355 nm was < 1% before exposure. No
light transmission was detectable through the white or
brown lesions. In a single case a dose-dependent photo-
bleaching was observed at a laser irradiance of 75 mW/
cm2 that produced photodamage in all other lenses, see
Figure 2. In this single case of photobleaching, a dose-
dependent increase in transmission of short wavelengths
was noted with a maximum effect around 410 nm.

Pulsed and continuous wave violet light at 400 and 405
nm short, intermediate and long exposures
The effects of pulsed and continuous wave (cw) lasers
were compared using a cw (405 nm) and a femtosecond
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Figure 1 Photowhitening and photodarkening. Close-up photographs showing the white (left) and brown (right) lesions produced by
irradiation with a 355 nm pulsed laser. The lesions are circular with a diameter of 1.4 mm, corresponding to the aperture used.

Figure 2 Transmission changes after 355 nm. Changes in transmission after irradiation of a 72 year old human donor lens with a 355 nm
pulsed laser. Each graph represents a 60 minute exposure duration. This was the only lens that showed a dose-response photobleaching after
exposure to 355 nm.
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pulsed laser (400 nm). Seven lenses from donors aged
64 to 73 years were irradiated with the pulsed laser and
7 lenses from donors aged 57 to 75 years were irradiated
with the cw system. Light transmission before exposure
was on average 1.1% at 400 nm and it was 2.2% at
405 nm. Using the pulsed laser system, white lesions
were produced instantaneously with pulse energy densi-
ties < 0.4 μJ/cm2 or higher. No light transmission was
detectable through the white lesions. Lower laser irra-
diances resulted in macroscopically visible photobleach-
ing and increased transmission of predominantly blue
light, Figure 3. Blue light transmission from 450-490 nm
increased by 4.7 - 18.8% after irradiation. A similar
result was obtained for the cw irradiation with produc-
tion of white lesions at laser irradiances < 165 mW/cm2

while lower irradiances led to photobleaching. Blue light
transmission from 450-490 nm increased by 9.7 to
34.2% after irradiation. Brown lesions were not observed
after irradiation with the violet lasers (exposure dura-
tions up to 18 hours).

Continuous wave green light at 532 nm short and
intermediate exposures
All three lenses (aged 68 to 72 years) irradiated with a
green cw laser had a light transmission at 532 nm of

57- 84% before irradiation and they consistently showed
a minor increase in transmission of 8.0 - 8.3% in
the blue region from 450-490 nm after irradiation by
~1.6 kJ/cm2, Figure 4. The effects were barely visible
macroscopically. Increasing the radiation dose up to 105
minutes (~3 kJ/cm2) did not result in further photo-
bleaching or formation of white or brown lesions.

Discussion
The main purpose of the present work was to examine
and compare the effect of ultraviolet and short wave-
length visible irradiation on naturally aged human
lenses. We found that irradiation with short wavelengths
either led to photobleaching or photodamage seen as
whitish lesion formed instantaneously upon exposure to
very high laser irradiances of UVA or violet lasers or
dark lesions that were seen only after prolonged expo-
sure to UVA.
The present study has some limitations. For 355 nm we

only had access to a pulsed laser system and at 532 nm
we only had access to a continous wave laser system. For
this reason we compared the effect of pulsed and cw
lasers around 400 nm and we found that pulsed lasers
are very likely to produce photodamage because of their
high pulse energy density. Due to the differences in laser

Figure 3 Transmission changes after 400 nm. Changes in transmission as a function of wavelength after irradiation of a 64 year old human
donor lens with a 400 nm femtosecond pulsed laser for 18 h 47 minutes and 23 h and 28 minutes. The transmission before irradiation was set
to 100% for all wavelengths.
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system is was necessary to use very long exposure times
in some experiments to get below the pulse energy den-
sity where photo-whitening was observed. Potentially this
could have influenced the results. However, based on the
experiments around 400 nm we observed the same
response to irradiation when the lenses had been exposed
to a total of 1.6 kJ/cm2 during a time period of 18 hours
for the femtosecond experiments or 15 minutes for the
cw experiments. Based on these few observations it
seems likely that the photobleaching is independent on
the exposure time but dependent on the exposure dose.
The number of wavelengths studied and the number of
lenses studied for each wavelength and type of irradiation
(pulsed versus cw) are small and this means that the
given values for photodamage cannot be interpreted
directly as threshold levels.
UVA absorption has previously been shown to

increase the temperature of the lens [32] and thus the
white immediate lesions are likely to be thermal,
induced by absorption and dissipation of heat in the
vicinity of the absorbing chromophores. Lens proteins
are prone to aggregation by heating [33] and since lens
transparency is intimately related to the three-dimen-
sional arrangement of the lens proteins [34,35] protein
coagulation and aggregation will increase optical density

[36]. Our results may need to be taken into considera-
tion when interpreting previous findings of lens protein
aggregation in studies using pulsed UV irradiation
[36-39]. The average human exposure to ambient ultra-
violet radiation is around 25 kJ/m2/year (in the USA)
[40] and the ANSI standard maximum permissible
exposure limit for photochemical damage for a point
source laser beam at 355 nm is 1 J/cm2 [41]. The white
lesions were only produced with high laser irradiances
that a living human would not experience unless acci-
dentally exposed to very strong laser sources.
Photodarkening was only noted after very high doses

of UVA (< 4 kJ/cm2). The nature of the photochemical
reactions leading to the observed photodarkening is not
known. A large number of chromophores have been
identified in the aged human lens. Photooxidation is
believed to play a role for cataractogenesis [42] and was
most likely also involved in the photodarkening we
observed.
Photobleaching was observed upon exposure to the

violet and green lasers. It was observed only once after
UVA irradiation using doses that in all other cases lead
to photodamage. It is not known why that single lens
was bleached and not damaged since the optical proper-
ties of the lens did not differ substantially from the

Figure 4 Transmission changes after 532 nm. Changes in transmission of a human donor lens (aged 72 years) during irradiance with a 532
nm continuous wave laser for 10 and 40 minutes. Transmission before irradiation was set to 100% for all wavelengths.
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other lenses although it was the oldest, and hence the
most darkly coloured, of the lenses studied at 355 nm.
The phenomenon of photobleaching was previously
reported after exposure to UVA [28,29]. It was not asso-
ciated with any signs of opacification of the lens during
an observational period of one week after exposure but
the long term effects are unknown. The bleaching was
localized and remained stable for one week after expo-
sure, showing that the chromophores that were bleached
are not diffusible. The biochemical processes behind the
photobleaching are unknown and were not assessed in
the present study. We analyzed the transmission proper-
ties of the lenses before and after exposure and found a
decreased absorption of short wavelengths after irradia-
tion in the lenses that were photobleached. The age-
induced increased absorption of short wavelengths by
the lens is well-known [23,26] and different models
characterising the age-induced spectral changes have
been presented [43,44]. The observed photobleaching
was a combination of decreased absorption by the
young and old lens chromophores in the van de Kraats
model [44].

Conclusions
In conclusion, the present study showed that UVA, vio-
let and green light seems to be optically harmless to the
human lens except for prolonged exposure to high dose
UVA or short term exposure to very intense laser radia-
tion capable of inducing thermal damage. Notably,
pulsed lasers more readily produce thermal damage due
to the high pulse energy densities and should only be
used with precaution in future research.
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