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Assessing clinical applicability 
of COVID‑19 detection in chest 
radiography with deep learning
João Pedrosa1,2,6*, Guilherme Aresta1,2,6, Carlos Ferreira1,2, Catarina Carvalho1,2, 
Joana Silva3,4, Pedro Sousa3,5, Lucas Ribeiro3, Ana Maria Mendonça1,2 & Aurélio Campilho1,2

The coronavirus disease 2019 (COVID‑19) pandemic has impacted healthcare systems across the 
world. Chest radiography (CXR) can be used as a complementary method for diagnosing/following 
COVID‑19 patients. However, experience level and workload of technicians and radiologists may affect 
the decision process. Recent studies suggest that deep learning can be used to assess CXRs, providing 
an important second opinion for radiologists and technicians in the decision process, and super‑
human performance in detection of COVID‑19 has been reported in multiple studies. In this study, 
the clinical applicability of deep learning systems for COVID‑19 screening was assessed by testing 
the performance of deep learning systems for the detection of COVID‑19. Specifically, four datasets 
were used: (1) a collection of multiple public datasets (284.793 CXRs); (2) BIMCV dataset (16.631 
CXRs); (3) COVIDGR (852 CXRs) and 4) a private dataset (6.361 CXRs). All datasets were collected 
retrospectively and consist of only frontal CXR views. A ResNet‑18 was trained on each of the datasets 
for the detection of COVID‑19. It is shown that a high dataset bias was present, leading to high 
performance in intradataset train‑test scenarios (area under the curve 0.55–0.84 on the collection of 
public datasets). Significantly lower performances were obtained in interdataset train‑test scenarios 
however (area under the curve > 0.98). A subset of the data was then assessed by radiologists for 
comparison to the automatic systems. Finetuning with radiologist annotations significantly increased 
performance across datasets (area under the curve 0.61–0.88) and improved the attention on clinical 
findings in positive COVID‑19 CXRs. Nevertheless, tests on CXRs from different hospital services 
indicate that the screening performance of CXR and automatic systems is limited (area under the curve 
< 0.6 on emergency service CXRs). However, COVID‑19 manifestations can be accurately detected 
when present, motivating the use of these tools for evaluating disease progression on mild to severe 
COVID‑19 patients.

First identified in late 2019, the coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2). While the majority of cases causes only mild symptoms, COVID-19 
can cause difficulty breathing, pneumonia, acute respiratory distress syndrome (ARDS) and ultimately death. 
The SARS-CoV-2 can be easily transmitted, which makes the identification of infected individuals of the utmost 
importance in the containment of the  pandemic1. Reverse transcription polymerase chain reaction (RT-PCR) is 
the reference standard method in COVID-19 diagnosis but can present significant turnaround time and remains 
subject to potential shortage. Lateral flow tests (LFT), which allow much faster turnaround time, suffer however 
from limited and highly variable sensitivities (38.32–99.19%)2. Furthermore, the development of new variants 
of SARS-CoV-2 can have an impact on the sensitivity of both RT-PCR and  LFTs3.

Given the involvement of the respiratory airways in COVID-19, chest radiography (CXR) was initially pro-
posed as an alternative screening method. While there is no single radiological feature that is indicative of 
COVID-19, changes include ground glass, coarse horizontal linear opacities and consolidation, most often with 
bilateral  involvement4. However, most COVID-19 patients do not develop pneumonia and present a normal 
CXR, which significantly lowers the screening value of  CXR5. Nevertheless, it has been proposed that people 
with severe respiratory symptoms could be quickly screened with CXR to distinguish between COVID-19 and 
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other  pathologies6. Considering that COVID-19 manifestations on CXR can often be subtle, significant experi-
ence is needed for an accurate reading of these images. Nevertheless, a high proportion of CXRs are read by 
technical staff, rather than by experienced  radiologists7, and the pandemic has likely worsened this issue due to 
staff shortages and an even higher numbers of radiological exams. Automated image analysis for the detection 
of CXR radiological features could thus play a significant role in providing a 2nd opinion to support clinical 
decisions in the triage of COVID-19 patients.

Automatic COVID‑19 diagnosis in chest radiography. The scientific community has responded 
quickly to the challenge and numerous studies have been published in literature on automated COVID-19 diag-
nosis in  CXR8. Figure 1 provides a summary in terms of the networks used, the ratio of COVID-19 vs non-
COVID-19 CXRs used for developing the methods, and reported performance of automatic COVID-19 diagno-
sis in  CXR9. We focus particularly on early works corresponding to initial response to the worldwide pandemic 
outbreak, period in which the inclusion of these type of automatic tools would have allowed to significantly 
reduce the workload of specialists and where high performance claims were made. Please refer for example  to9 
for a descriptive summary of these methods. As shown in Fig. 1, this is a highly imbalanced problem, with most 
of the datasets used in studies having less than 5% of COVID-19 images. Despite this imbalance and the high dif-
ficulty of the task, the reported performances are typically very high, commonly above 95% for different metrics.

Most methods rely on pre-trained deep networks, namely ResNet or DenseNet-based that have as main goal 
distinguishing COVID-19 patients from non-COVID-19 patients. Since COVID-19 shares radiological mani-
festations with pneumonia, a large number of methods approach this problem as a 3 class task. Other authors 
prefer to design dedicated networks for the task. A notable example is COVID-Net, one of the first solutions 
to be proposed for automatic COVID-19  screening10. The authors compare the performance of their method 
with a ResNet50 and a VGG19, showing that their solution performs better while requiring less computational 
complexity. In particular, an overall accuracy of 93.3% and a COVID-19 positive predictive value of 98.9% are 
reported. Despite Wang et al.’s success using a custom architecture, other authors have reported high perfor-
mances using pre-existing architectures. For instance, Apostolopoulos et al. tested multiple CNN architectures 
in both 2-class (COVID-19 and not COVID-19) and 3-class (normal, pneumonia and COVID-19) scenarios, 
obtaining a 98.75% accuracy using a 2-class  VGG1911  architecture12. Ozturk et al. proposed a variation of the 
DarkNet-1913 architecture, DarkCOVIDNet, and, similar to Apostolopoulos et al., tested both 2-class and 3-class 
scenarios, obtaining an accuracy of 98.08% in binary  classification14.

Even though these results are extremely promising, the performances reported are significantly different 
from what has been reported for visual reading by radiologists. In Stephanie et al.15, 508 CXRs were interpreted 
by 4 radiologists and it is shown that sensitivity and specificity change as the disease progresses, from 55% to 
79% sensitivity and from 83% to 70% specificity at ≤ 2 days and > 11 days after diagnosis respectively. While it is 
possible for deep learning techniques to learn features that are not evaluated by radiologists, which would lead 
to superior performance, the dependence of these techniques on the data used for training and testing could 
seriously bias results. This is particularly problematic given the limited CXR COVID-19 data publicly available 
at the time of the worldwide outbreak and the sources from which the data was obtained. Most studies use 
public datasets such as the COVID-19 Image Data Collection (COVID-19 IDC)16 and  COVIDx10, which were 
compiled by combining pre-pandemic public datasets (for normal and pathological non-COVID-19 cases) with 
more recent COVID-19 positive CXRs, mostly extracted from academic articles and online publications. This 
could cause automatic methods to learn non-radiological features such as image quality, acquisition settings and 
equipment, laterality or other markers, hospital system of origin, etc.. Because the positive and negative classes 
belong to different sources, these spurious differences highly correlate with the classes, easing the learning of 
shortcuts rather than actual radiological features. This was highlighted by DeGrave et al.17, where it was shown 
that a system trained on a dataset from different sources with an internal test area under the curve (AUC) of 
0.992 falls to 0.76 on an external dataset.

Figure 1.  Summary of the types of deep learning architecture (left), ratio of studied COVID-19 CXRs (center) 
and performance of automatic COVID-19 diagnosis in CXR up to July 2020 (right). Performance metrics: 
AUC - area under the ROC curve; Acc. - accuracy; F1 - F1 score; Prec. - precision; Sens. - sensitivity; Spec. - 
specificity (number of works).
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Contributions. The goals of this study are thus twofold: (i) to develop an automatic COVID-19 detection 
method in CXR to serve as a 2nd opinion to support clinical decisions in the triage of COVID-19 patients; (ii) to 
assess the clinical applicability of deep learning systems for COVID-19 screening using CXR images. In particu-
lar, we contribute to the development of more robust COVID-19 automatic detection methods by:

• Critically comparing the intra- and inter-dataset performance in both public and in-house datasets of a deep 
learning model trained following similar methods to the ones proposed during the worldwide pandemic 
outbreak. In particular, we show that performance claims on the literature are overconfident due to dataset 
bias;

• Building on the last topic, we show that using annotations from medical experts can significantly mitigate 
dataset bias, allowing the model to obtain a similar COVID-19 screening performance based solely on 
radiological manifestations of the disease to radiologists;

• To help the development and validation of future algorithms, we make publicly available the radiologists’ 
annotations on the public datasets.

Figure 2 shows a summary of the study. In specific, a comparison of the performance of a ResNet-18 trained on 
different datasets with the annotations of two experienced radiologists is performed. It is also shown that the 
introduction of field-knowledge during finetuning allows to avoid the dataset bias inherent to previous solutions, 
improving both the system’s performance and the significance of the explanations extracted from the model. 
Finally, the finetuned model is tested on an external set of images aimed at replicating a clinical environment.

Methods
Datasets. Three public datasets and one private datasets were used in this study. All data was collected ret-
rospectively. Note that for the public datasets, the exact criteria for inclusion in the dataset and referral for CXR 
are unknown. For all datasets, the same processing and criteria were applied to ensure uniformity. Only frontal 
CXRs—postero-anterior (PA) and antero-posterior (AP)—were included and CXRs were divided into 3 classes: 
Normal, Pathological (not COVID-19) and COVID-19. Ground truth labels for all CXRs were obtained from the 
ground truth available on each dataset. The COVID-19 label corresponds to a positive SARS-CoV-2 RT-PCR 
result and not necessarily to the presence of radiological features of COVID-19. Table 1 shows the distribution 
of the number of images per dataset and class after exclusion of non-frontal CXRs. Table 2 shows the patient 
and CXR acquisition characteristics for each dataset after exclusion of non-frontal CXRs. This information was 
extracted from the metadata available for each dataset or individual DICOM metadata. Note that patient and 
CXR acquisition characteristics are not available for every CXR. The reader is referred to the Additional Infor-
mation section for details on dataset access.

Mixed dataset. The Mixed dataset is a combination of multiple public CXR datasets, similar to those used 
in most early publications on automatic COVID-19 detection in  CXR10,12,14, combining pre-pandemic public 
datasets with recent COVID-19 positive CXRs, mostly extracted from academic articles and online publications. 
Normal and Pathological CXRs were obtained from the  CheXpert18, ChestXRay-819 and Radiological Society 
of North America Pneumonia Detection Challenge (RSNA-PDC)20 datasets. COVID-19 positive cases and a 
residual amount of Normal and Pathological cases were extracted from online repositories of CXRs, namely the 
COVID-19  IDC16 and  COVIDx10 datasets. Further CXRs were obtained by manual extraction of images pub-
lished online on Twitter and the Sociedad Española de Radiologia Médica (SERAM) website. Finally, COVID-19 
positive CXR were obtained from the COVID DATA SAVE LIVES dataset, made available by the HM Hospitales.

Given that there is significant overlap in some of the datasets included in the Mixed dataset, repeated images 
were excluded.

Figure 2.  Summary of the study. Each (letter.number) indicates the data/model used for performing the task 
encoded by the respective color.
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Table 1.  Number of CXRs per dataset and (number of CXRs annotated by radiologists) for each of the three 
classes after exclusion of non-frontal CXRs.

Dataset Normal Pathological COVID-19

Mixed

  CheXpert 21,214 (0) 169,833 (7) 0 (0)

  ChestXRay-8 60,361 (188) 880 (38) 0 (0)

  COVID-19 IDC 9 (1) 55 (50) 618 (205)

  COVIDx 1 (0) 0 (0) 93 (4)

  RSNA-PDC 8851 (251) 17,833 (291) 0 (0)

  SAVE LIVES 0 (0) 0 (0) 4889 (171)

  SERAM 0 (0) 5 (5) 37 (37)

  Twitter 0 (0) 0 (0) 114 (8)

BIMCV

  PADCHEST 4349 (78) 9811 (170) 0 (0)

  COVID-19+ 0 (0) 0 (0) 2471 (41)

COVIDGR 426 (150) 426 (150)

CHVNGE 5626 (529) 735 (68)

Table 2.  Patient and CXR acquisition characteristics for each dataset. Data is shown in absolute number and 
percentage in parenthesis. Age is shown as median [minimum; maximum]. * indicates that the information 
could not be obtained for all subjects and NA indicates that this data is not available.

Mixed BIMCV COVIDGR CHVNGE

Gender

 Male 165,123 (58.0) 8615 (51.8) 0 (0.0) 3340 (52.5)

 Female 118,863 (41.7) 8015 (48.2) 0 (0.0) 3021 (47.5)

 Unknown/Other 807 (0.3) 1 (0.0) 852 (100.0) 0 (0.0)

Age 58 [1;106]* 64 [1;101]* NA 66 [2;100]

View

 AP 199,606 (70.1) 4,214 (25.3) 0 (0.0) 82 (1.3)

 PA 84,070 (29.5) 12,160 (73.1) 852 (100.0) 66 (1.0)

 Unknown 1117 (0.4) 257 (1.5) 0 (0.0) 6213 (97.7)

CXR equipment

 Agfa CR
2280 (0.8)

346 (2.1) 0 (0.0) 0 (0.0)

 Agfa DX 247 (1.5) 0 (0.0) 0 (0.0)

 Canon DX 0 (0.0) 45 (0.3) 0 (0.0) 0 (0.0)

 Carestream CR 0 (0.0) 9 (0.1) 0 (0.0) 0 (0.0)

 Carestream DX 0 (0.0) 97 (0.6) 0 (0.0) 59 (0.9)

 FUJI CR 0 (0.0) 155 (0.9) 0 (0.0) 2164 (34.0)

 FUJI DX 0 (0.0) 4 (0.0) 0 (0.0) 436 (6.9)

 GE DX 0 (0.0) 155 (0.9) 0 (0.0) 0 (0.0)

 GMM DX 0 (0.0) 269 (1.6) 0 (0.0) 0 (0.0)

 ImagingDynamics CR 0 (0.0) 3668 (22.1) 0 (0.0) 0 (0.0)

 KONICA CR 0 (0.0) 423 (2.5) 0 (0.0) 0 (0.0)

 KONICA DX 0 (0.0) 89 (0.5) 0 (0.0) 0 (0.0)

 Philips CR
1019 (0.4)

8131 (48.9) 0 (0.0) 0 (0.0)

 Philips DX 2711 (16.3) 0 (0.0) 0 (0.0)

 Samsung DX 0 (0.0) 0 (0.0) 0 (0.0) 3702 (58.2)

 SIEMENS CR
1575 (0.6)

261 (1.6) 0 (0.0) 0 (0.0)

 SIEMENS DX 0 (0.0) 0 (0.0) 0 (0.0)

 Unknown/Other 279,919 (98.3) 21 (0.1) 852 (100.0) 0 (0.0)
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BIMCV. The Banco digital de Imagen Medica de la Comunidad Valenciana (BIMCV) dataset is composed 
of CXRs from public hospitals in the Valencian Region, Spain and is made available by the BIMCV. While this 
dataset is composed uniquely of images from BIMCV, Normal and Pathologic (non-COVID-19) cases originate 
from different hospitals and from a different timespan than COVID-19 positive cases. Normal and Pathological 
CXRs were obtained from the BIMCV-COVID19-PADCHEST, a subset of the larger BIMCV-PadChest21 public 
dataset which is composed of CXRs from the Hospital Universitario San Juan De Alicante, Alicante, Spain from 
2009 to 2017. COVID-19 positive CXRs were obtained from the BIMCV-COVID-19+22 public dataset which is 
composed of CXRs from 11 public hospitals in the Valencian Region, Spain from 6th February 2020 to 1st April 
2020.

COVIDGR. The COVIDGR dataset contains CXRs from the San Cecilio University Hospital at Granada, Spain 
and is made available by the Andalusian Research Institute in Data Science and Computational Intelligence 
(DaSCI)23. All CXRs were acquired with the same equipment and consist entirely of PA views. All patients 
underwent a RT-PCR test within 24 hours of the CXR. Manual selection of CXRs was performed to balance the 
positive and negative RT-PCR test results. Note that because no information except for RT-PCR results is avail-
able, RT-PCR negative patients cannot be labelled exclusively as either Normal or Pathological.

CHVNGE. The CHVNGE dataset contains CXRs collected retrospectively at the Centro Hospitalar de Vila 
Nova de Gaia e Espinho (CHVNGE) in Vila Nova de Gaia, Portugal between the 21st of March and the 22nd 
of July of 2020. All data was acquired under approval of the CHVNGE Ethical Committee and followed all 
relevant guidelines and regulations. Informed consent was waived by the CHVNGE Ethical Committee given 
that all data was anonymised prior to any analysis. All CXRs of patients who underwent an RT-PCR test within 
the study time frame were extracted. Both PA and AP views were included and no other exclusion criteria were 
applied. The information regarding the CXR equipment used for acquisition was preserved as different CXR 
equipments were used in each hospital service. CXRs obtained in the emergency department (Samsung DX) 
can thus be analysed separately from those who were in inpatient services (Carestream DX, FUJI CR and FUJI 
DX) and in intensive care units (FUJI CR). CXRs from patients with a positive RT-PCR test were labelled as 
COVID-19 whereas all other patients were labelled as Normal/Pathological. Note that, similarly to COVIDGR, 
RT-PCR negative patients cannot be labelled exclusively as either Normal or Pathological. Given that the dataset 
encompasses all patients who were suspected for SARS-CoV-2 infection and no manual selection of CXRs was 
performed, this dataset is the most representative of a clinical setting.

CXR annotation. In order to evaluate the performance of radiologists in the detection of COVID-19 radio-
logical features in CXR, manual annotation of a subset of CXR images from each dataset was performed by two 
radiologists using an in-house software. The software presented CXRs from a randomly selected subset and 
allowed for window center/width adjustment, zooming and panning. Radiologists were asked to label CXRs 
into one of 4 classes: Normal, Not indicative of COVID-19 (pathological), Indicative of COVID-19 and Undeter-
mined. The Indicative of COVID-19 class was defined as CXRs where the patient presented findings indicative of 
COVID-19, namely bilateral pulmonary opacities of low/medium density. The Undetermined class was defined 
as CXRs where the patient presented findings that could be indicative of COVID-19 but which could also be 
indicative of another condition, namely unilateral lung opacities, diffuse bilateral opacities of ARDS pattern or 
diffuse reticular opacities. The Not indicative of COVID-19 (pathological) class was defined as CXRs where the 
patient presented findings indicative of any other pathology except for COVID-19. CXRs where the patient pre-
sented medical devices were classified as Normal if the underlying pathology was not visible. Additionally, CXRs 
without sufficient quality for visual assessment by the radiologists due to bad image quality, patient positioning 
or any other factors could be labelled as Compromised for exclusion.

Manual labelling of CXRs was performed in two stages. First, both radiologists independently classified each 
CXR. CXRs where the two radiologists disagreed were then selected for the second stage where the two radiolo-
gists assessed the CXRs together to achieve consensus. At no point were radiologists given access to the ground 
truth label, RT-PCR results or any other information besides the CXR image.

To ensure that written information present in the CXR image (such as hospital system, health service, laterality 
markers, patient positioning, etc.) did not bias the annotation, all written labels were blacked out during before 
annotation. This was done in a semi-automatic way using a  YOLOv324 architecture for the detection of written 
labels in CXRs. For this purpose, 317 CXRs were randomly selected from the Mixed dataset and bounding boxes 
were manually drawn around all written labels. The network was then trained on the 317 CXRs (733 bounding 
boxes). Previous to CXR annotation by the radiologists, all CXRs were visually inspected and any missing or 
incorrect bounding boxes were corrected manually. All annotations on the public datasets are available at https:// 
doi. org/ 10. 25747/ 342B- GF87.

Automatic CXR COVID‑19 detection. For automatic COVID-19 detection in CXR, an 18-layer deep 
residual neural network architecture (ResNet18)25 was used in all experiments. While larger networks such as 
DenseNet121 have shown excellent performance in CXR disease  classification18, the smaller ResNet18 was cho-
sen to try to reduce overfitting to the limited data in the COVID-19 class and the inherent bias of the existing 
datasets.

The ResNet18 architecture used was identical to the architecture proposed in He et al.25, except that the input 
is a 1-channel gray image (512 × 512 pixels) and the number of output nodes is the number of classes being 
considered.

The loss function used during training was the weighted binary cross-entropy26:

https://doi.org/10.25747/342B-GF87
https://doi.org/10.25747/342B-GF87
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where C is the number of classes, yc is one when c is the ground truth class and pc is the model prediction for 
class c. To balance the effect of different classes and avoid bias, class weights wc = 1− Nc/N were applied, where 
N is the total number of images in the training set and Nc the number of images in the training set of class c. 
Model optimization was performed using  Adam27 with a learning rate of 0.0001 and a batch size of 24. These 
values were chosen empirically based on previous experiments and hardware capacity. Given the large number of 
images in the Mixed dataset, an epoch was defined as 1200 batches (approximately one tenth of the dataset) and 
all models were trained for a maximum of 100 epochs with a patience of 10 epochs as an early stopping criterion.

To estimate the performance of the predictive model in practice and avoid a possible bias due to random 
division of the data, a 5-fold cross-validation scheme was performed during training and testing. Folds were 
constructed through random CXR selection so that the class and dataset distributions in each fold are similar to 
the full dataset and so that all CXRs from each patient are placed in the same fold. In interdataset settings, i.e. 
when a model trained on dataset A is tested on dataset B, the full dataset B is used for testing.

Experiments
CXR annotation. A total of 2,442 CXRs were selected for annotation by the two radiologists. Of these, 1256 
belong to the Mixed dataset, 289 belong to BIMCV, 300 belong to COVIDGR and 597 belong to CHVNGE 
(distribution per classes shown in Table 1). Selection of CXRs for annotation was performed randomly: for the 
Mixed dataset, a balanced selection strategy was used during image selection, whereas for BIMCV, COVIDGR 
and CHVNGE, the dataset class distribution was maintained in the subset selected for annotation. Due to prac-
tical reasons, the independent reading of CXRs by each radiologist was not possible in all cases—of the 2,442 
CXRs annotated, 799 were annotated in consensus without independent reading.

During annotation, a total of 77 CXRs (25 Normal, 26 Pathological and 26 COVID-19) were randomly selected 
for repeated annotation to determine intraobserver variability. The repeated images were mixed in with new 
images in a 1:10 ratio during annotation. Radiologists were unaware that repeated images were being introduced 
to avoid bias.

Model training. Baseline training. The network was first initialized with weights from an Imagenet pre-
trained  model28 (the weights in the first layer were taken from the red channel on the pretrained model). The 
model was first trained for binary Normal vs Not Normal classification and only then trained with three output 
nodes corresponding to the Normal, Pathological and COVID-19 classes where the Pathological class included 
all classes except the Normal and COVID-19 classes. This two-step training strategy aims at leading the model 
to learn CXR-related features prior to learning COVID-19-related features, increasing feature relevance while 
reducing overfitting. This model was trained using the Mixed dataset to allow a direct comparison to previous 
studies on COVID-19 detection in CXR and will be referred to as MMixed.

Dataset finetuning. In order to estimate a best case scenario in terms of performance for each dataset, MMixed 
was then retrained on each of the other single-source datasets—BIMCV, COVIDGR and CHVNGE. By having 
access to data from each dataset, dataset-specific features can be learned, improving performance. Naturally, 
finetuned models will also be more subject to dataset bias and learning shortcuts that misrepresent COVID-19 
manifestations. These models are hereinafter referred to as MBIMCV , MCOVIDGR and MCHVNGE respectively.

Pseudo-labelling. Given the characteristics of the Mixed dataset and the high correlation between dataset 
sources and classes, it is expected that MMixed model learns not only radiological features of COVID-19 but also 
that it relies heavily on learning  shortcuts17. In order to decrease this effect and improve the learning of radiolog-
ical features, a pseudolabelling  strategy29 was implemented. This was performed by obtaining the predictions of 
the model trained on the Mixed dataset on all images of the same dataset. All images with predicted probability 
lower than 0.9 were then removed to include only high confidence predictions and the predicted class was then 
used as ground truth label for retraining the model. This model is referred as MMPseudo.

Radiologist annotations. Given that not all COVID-19 positive cases present manifestations on CXR, consid-
ering these cases as COVID-19 during training can introduce high levels of noise and promote the learning of 
shortcuts for classification, which do not represent COVID-19 manifestations. Using radiologist annotations 
during training avoids this issue as COVID-19 positive CXRs without manifestations will be presented to the 
model as Normal CXRs during training, enforcing the learning of features that represent COVID-19 manifesta-
tions. For this purpose, MMixed was retrained using the labels given by the radiologists during manual annota-
tion of the Mixed dataset. Regarding the CXRs annotated as Undetermined, the principle of precaution was 
applied: given the definition of this class as CXRs where the patient presented findings that could be indicative 
of COVID-19 but which could also be indicative of another condition, these CXR were considered to belong 
to the COVID-19 class. CXRs marked as Compromised were discarded. This model is hereinafter referred to as 
MMAnnot.

Performance evaluation. The agreement between radiologist annotations and ground truth labels in the 
detection of COVID-19 was evaluated in terms of precision (Prec.) and recall whereas the intra- and interob-
server variability were evaluated in terms of accuracy (Acc.) and Cohen’s kappa ( κ)30:

(1)L =−

C∑

c=1

wcyclog(pc)



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6596  | https://doi.org/10.1038/s41598-022-10568-3

www.nature.com/scientificreports/

where TP is the number of true-positive detections, FN the number of false-negatives, FP the number of false-
positives and FN is the number of false-negatives. po is the relative agreement between annotators and pe is the 
expected agreement when both annotators assign labels randomly. All metrics were computed considering a 
binary classification scenario (COVID-19 or not COVID-19). Given the definition of the Undetermined class, 
agreement was computed considering as positives either only the Indicative of COVID-19 class (C) or both the 
Indicative of COVID-19 and Undetermined classes (C+U). Where applicable, the statistical significance of the 
difference between the radiologist annotations and the ground truth labels was tested using an adaptation of 
the McNemar test ( χ2)31. McNemar tests were computed only when power ≥0.8 and statistical significance is 
reported in terms of p-value.

Model performance was evaluated with receiver operating characteristic (ROC) curve, specifically in terms 
of AUC. Confidence intervals were computed taking into account the achieved average performance for all folds. 
To further validate the models, Grad-CAM++32 was used to visualize the location of the regions responsible for 
the network predictions when necessary. Finally, the calibration of the model’s prediction was assessed using the 
Expected Calibration Error (ECE)33. The ECE is a summary of the Reliability diagram, which plots the expected 
accuracy as function of the predicted class probability. Briefly, all N test samples are binned probability-wise 
in B groups for which the accuracy Accb and average confidence pb for the corresponding reference label are 
computed. ECE is the weighted average of the difference between these two measures:

where Nb is the number of samples in bin b. Results are evaluated considering 10 bins.
The statistical significance of the differences in the performance of the models (and the radiologists) was 

performed according to the DeLong test, which allows for paired comparison of  AUCs34. When comparing 
AUCs across different test sets, the permutation test for continuous unpaired comparison of AUCs proposed in 
Venkatraman et al.35 was used. Note that when comparing a model to radiologist annotations, only the subset 
of CXRs annotated by radiologists was taken into account. Statistical significances computed across folds were 
fused according to Fisher’s combined probability  test36 to obtain a single p-value and when performing multiple 
comparisons, statistical significance was considered after applying the Bonferroni  correction37.

Results
CXR annotation. Figure 3 shows the confusion matrices between ground truth labels and radiologist anno-
tations in each of the datasets, as well as interobserver variability and intraobserver variability. The performance 
of radiologists in COVID-19 detection in terms of precision and recall is shown in Table 3. As expected, con-
sidering as positives only CXRs marked as Indicative of COVID-19 (C) gives a higher average precision but with 
low recall, whereas including as positives CXRs marked as Undetermined (C + U) significantly increases recall, 
but at the expense of precision. Comparing across datasets, it can be seen that radiologists achieve the highest 
precision and recall on the COVIDGR and Mixed datasets, whereas the lowest performance is obtained for the 
CHVNGE dataset. Table 4 shows the inter- and intraobserver variabilities for all annotated CXRs. A statistically 
significant difference ( p = 0.0021 ) was found between the two observers when considering as positives only the 
CXRs marked as Indicative of COVID-19, whereas other combinations could not be performed at power ≥0.8 
due to the reduced sample size.

Automatic CXR COVID‑19 detection. Figure 4 shows the ROC curves of all trained models on each 
dataset, as well as comparison to radiologist annotations after consensus. Table 5 shows the AUC of each model 
in all datasets and Table 6 shows the statistical significance of differences in AUC between readers (trained mod-
els and radiologists) for each dataset. Table 7 shows the model calibration metric ECE for each dataset, model 
and fold.

On the test set, it can be seen that intradataset train-test scenarios obtained the best results on all datasets, 
i.e. when training includes CXRs from the dataset used on testing (dashed lines in Fig. 4). This was most evident 
on the Mixed, BIMCV and CHVNGE datasets with differences in AUC between MMixed and other models on 
the Mixed dataset, between MBIMCV and other models on the BIMCV dataset and between MCHVNGE and other 
models on the CHVNGE dataset all being statistically significant with p < 0.0001 . On COVIDGR, differences in 

(2)Recall =
TP

TP + FN

(3)Prec. =
TP

TP + FP

(4)Acc. =
TP + TN

TP + TN + FP + FN

(5)κ =1−
1− po
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ROCs were less stark. The differences between MCOVIDGR and MMixed and MCOVIDGR were statistically significant 
for p < 0.0015 but differences between MCOVIDGR and other models were less significant.

On the subset of annotated CXRs, trained models outperformed radiologists on intradataset train-test sce-
narios, particularly on the Mixed and BIMCV datasets. Differences in performance between radiologists and 
each of the models yielded statistically significant differences ( p < 0.0001 ) for all models on the Mixed dataset 
and for MBIMCV on the BIMCV dataset. On COVIDGR and CHVNGE, differences between radiologists and 
MCOVIDGR and MCHVNGE were less significant ( p = 0.0137 and p = 0.03691 ). On interdataset train-test, model 
performance is typically lower than or similar to that of radiologists. On CHVNGE, where model performance 
was lowest, only MMAnnot can achieve a performance close to that of radiologists.

Figure 3.  Confusion matrices between ground truth labels and radiologist annotations. (a) Comparison 
between ground truth and radiologists’ consensus on each dataset; (b) Inter- and intraobserver variability across 
all datasets (left and right respectively). N - Normal; P - Not indicative of COVID-19 (pathological); C - Indicative 
of COVID-19; U - Undetermined. Cases annotated as Compromised are not shown. Color intensity corresponds 
to the percentage of cases within each column.

Table 3.  Agreement between radiologists after consensus and ground truth considering as positives only 
CXRs marked as Indicative of COVID-19 (C) or Indicative of COVID-19 and Undetermined (C + U). χ2 : p-value 
obtained with the McNemar test.

Dataset

C C + U

Prec. Recall χ
2 Prec. Recall χ

2

Mixed 0.79 0.28 < 0.0001 0.49 0.63 < 0.0001

BIMCV 0.67 0.19 < 0.0001 0.30 0.75 < 0.0001

COVIDGR 1.00 0.26 < 0.0001 0.93 0.54 < 0.0001

CHVNGE 0.44 0.13 < 0.0001 0.30 0.54 < 0.0001

All 0.79 0.25 < 0.0001 0.49 0.60 < 0.0001
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Figure 5 shows the GradCAM++ activations of MMixed and MMAnnot in CXRs of COVID-19 positive patients 
from the CHVNGE dataset. Images were selected from representative subsets containing the 10 CXRs with 
predicted probability closest to the maximum, average and minimum predicted probability by MMAnnot.

Real-world application. Figure 6 shows the performance of MMAnnot and the radiologist annotations for each 
CXR equipment used in acquisition on CHVNGE, which correspond to the different hospital services as out-
lined in Section “Datasets”. Table 8 shows the AUC for every cross validation fold for each CXR equipment. 
MMAnnot was chosen for this analysis as it was the best performing method on CHVNGE, excluding the model 
finetuned on CHVNGE. Table 9 shows the statistical significance of differences in MMAnnot AUC between CXR 
equipments. Table 10 shows the statistical differences in ROC between MMAnnot and radiologists on the subset 
of annotated CXRs. It can be seen that performance is higher for CXRs acquired with Carestream and FUJI CR, 
followed by FUJI DX. The lowest AUC is obtained for CXRs obtained with Samsung with a statistical significant 
difference to FUJI CR and Carestream ( p < 0.0046 ). The performance of radiologists follows the same trend 
as MMAnnot , with the lowest sensitivity found for Samsung CXRs. Nevertheless, radiologists showed a signifi-
cantly superior AUC for Samsung CXRs ( p = 0.0398 ) and significantly inferior performance on FUJI CR CXRs 
( p = 0.0415).

Discussion
CXR annotation. The radiologists’ recall for Indicative of COVID-19 and Undetermined is in line with other 
 studies15. On the other hand, the recall for Indicative of COVID-19 is lower, suggesting that the Indicative of 
COVID-19 labelling protocol is overly conservative as it only includes CXRs where radiologists were fairly certain 
that the patient presented COVID-19 infection. Regarding precision, the differences observed between datasets 
are likely related to the characteristics of each dataset. It can be seen that on both the Mixed and BIMCV datasets, 
false positive COVID-19 annotations mostly occur for pathological non-COVID-19 cases (Fig. 3a) and rarely 
occur for normal patients. As such, for datasets where images originate from multiple sources and represent a 
wider range of pathologies confoundable with COVID-19, precision is lower. While the Normal/Pathological 
distribution is not known for COVIDGR, 82% of non-COVID-19 cases were annotated as Normal by the radi-
ologists, which indicates that the percentage of Pathological cases is significantly lower than on other datasets 
and is responsible by the high precision values obtained. Furthermore, it shows how dataset characteristics can 
bias the performance obtained by radiologists but also for models being tested on these datasets.

Interestingly, the radiologists’ performance on the CHVNGE dataset is lower than for the other datasets. This 
suggests that the CHVNGE dataset is more challenging and that the public datasets misrepresent the different 
COVID-19 stages in comparison to the clinical reality in CHVNGE. This is particularly true for the Mixed data-
set, which is known to mostly include severe COVID-19  patients23. On the other hand, CHVNGE may present 
a higher prevalence of early stage COVID-19 cases, which have limited radiological manifestations, resulting in 
lower recall. This hypothesis is corroborated by Fig. 6, where the experts’ performance on images acquired in 
inpatient services and the intensive care unit is higher than on images acquired on initial patient screening in 
the emergency department.

Regarding the inter- and intraobserver variability, high accuracy ( ≥0.81) was obtained with however only 
moderate κ values, particularly for interobserver variability when considering as positives C. Analysing Fig. 3b, 
it can be seen that while negative Indicative of COVID-19 CXR annotations are consistent, CXRs annotated by at 
least one of the radiologists as Indicative of COVID-19 are much less consistent, with radiologist 1 being in gen-
eral more conservative and attributing label Undetermined to a high proportion of CXRs annotated as Indicative 
of COVID-19 by radiologist 2. This difference in agreement is however, expected since the Undetermined label 
corresponds to borderline cases, where the main radiological manifestations of COVID-19 are not obvious or 
complete. Consequently, decisions in these cases may vary more frequently. This lack of consistency is however 
less clear when considering as positives C + U, where a reasonably higher value of κ is obtained.

Automatic CXR COVID‑19 detection. The AUC differences found between inter- and intradataset train-
test scenarios (Table 5) corroborate the findings of DeGrave et al.17. Even though experiments were designed 
with patient-wise stratified cross-validation, the performance of the models in intradataset train-test scenarios 
was always higher than when different datasets were used for training and testing. This suggests that the deep 
learning system is not relying exclusively on radiological features to perform image classification, and is instead 

Table 4.  Inter- and intraobserver variability of radiologist annotations considering as positives only CXRs 
marked as Indicative of COVID-19 (C) or Indicative of COVID-19 and Undetermined (C + U). χ2 : p-value 
obtained with the McNemar test (NP: power< 0.8).

C C + U

Acc. κ χ
2 Acc. κ χ

2

Interobserver 0.90 0.44 0.0021 0.82 0.58 NP

Intraobserver

  Radiologist 1 0.96 0.80 NP 0.81 0.56 NP

  Radiologist 2 0.87 0.50 NP 0.83 0.63 NP

   Consensus 0.95 0.77 NP 0.88 0.71 NP
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Figure 4.  ROC of each of the models on each of the datasets. Average model performance across all folds is 
shown as a line (full line: full dataset used for testing; dashed line: separate test set for each fold) and shaded 
region corresponds to the 95% confidence interval. Left: model performance on all CXRs; Right: model and 
radiologists performance on annotated CXRs. Rightmost plots are a zoomed version of the gray shaded 
region of the left plot. Radiologists performance is shown when considering as positives only CXRs marked as 
Indicative of COVID-19 ( • ) or Indicative of COVID-19 and Undetermined ( �).
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Table 5.  Model AUC for each dataset and cross validation fold. Bold indicates the highest AUC per dataset 
and fold.

MMixed MBIMCV MCOVIDGR MCHVNGE MMPseudo MMAnnot

Mixed

0.9967 0.6248 0.9294 0.9741 0.9890 0.9192

0.9898 0.7161 0.9144 0.9590 0.9326 0.9017

0.9892 0.7139 0.7708 0.9604 0.9785 0.9007

0.9906 0.6072 0.8275 0.9783 0.9840 0.9694

0.9974 0.6078 0.9535 0.9718 0.9853 0.9635

BIMCV

0.6354 0.9790 0.6572 0.6929 0.7357 0.6264

0.6564 0.9839 0.6659 0.7005 0.6887 0.6813

0.6405 0.9877 0.6510 0.7009 0.6952 0.6858

0.6491 0.9867 0.6861 0.6861 0.7160 0.7249

0.6399 0.9847 0.6815 0.6965 0.6755 0.6740

COVIDGR

0.8441 0.8272 0.8409 0.7400 0.8384 0.8789

0.7802 0.6768 0.8789 0.7868 0.8060 0.7774

0.8065 0.8180 0.7936 0.7697 0.8209 0.8424

0.7871 0.8215 0.8143 0.7701 0.8004 0.8611

0.7432 0.7116 0.8227 0.7991 0.8590 0.7625

CHVNGE

0.5926 0.6244 0.5730 0.7218 0.5810 0.6986

0.6085 0.6025 0.5971 0.7145 0.5969 0.6518

0.5549 0.6178 0.5971 0.7322 0.5887 0.6137

0.5465 0.5891 0.6292 0.7269 0.6049 0.6604

0.6256 0.5674 0.5573 0.7293 0.6297 0.6594

Table 6.  Statistical significance of differences in AUC between readers (models and radiologists) for each 
dataset according to the De Long test. Bold indicates statistical significance with Bonferroni correction 
( p < 0.0033 and p < 0.0024 for the test set and annotated test sets respectively).

Whole test set Annotated test set

Mixed BIMCV COVIDGR CHVNGE Mixed BIMCV COVIDGR CHVNGE

MMixed MBIMCV < 0.0001 < 0.0001 0.6026 0.0481 < 0.0001 < 0.0001 0.2155 0.0376

MMixed MCOVIDGR < 0.0001 < 0.0001 0.0013 0.2237 < 0.0001 0.9545 0.6534 0.5636

MMixed MCHVNGE < 0.0001 < 0.0001 0.1189 < 0.0001 <0.0001 0.3035 0.5661 0.0023

MMixed MMPseudo < 0.0001 < 0.0001 0.0001 0.1163 0.0005 < 0.0001 0.7054 0.4333

MMixed MMAnnot < 0.0001 < 0.0001 0.1080 < 0.0001 0.0000 0.5516 0.7556 0.1077

MBIMCV MCOVIDGR < 0.0001 < 0.0001 0.0102 0.0613 0.0000 < 0.0001 0.2324 0.0119

MBIMCV MCHVNGE < 0.0001 < 0.0001 0.6802 < 0.0001 0.3088 < 0.0001 0.5906 0.2749

MBIMCV MMPseudo < 0.0001 < 0.0001 0.0319 0.1726 0.0000 < 0.0001 0.0813 0.0125

MBIMCV MMAnnot < 0.0001 < 0.0001 0.2073 0.0013 0.0425 < 0.0001 0.0433 0.0957

MCOVIDGR MCHVNGE < 0.0001 0.0001 0.0015 < 0.0001 < 0.0001 0.7269 0.1279 0.0003

MCOVIDGR MMPseudo < 0.0001 < 0.0001 0.2827 0.0139 < 0.0001 0.1835 0.6108 0.6498

MCOVIDGR MMAnnot < 0.0001 0.0277 0.0055 < 0.0001 < 0.0001 0.8138 0.1589 0.1793

MCHVNGE MMPseudo < 0.0001 < 0.0001 0.0067 < 0.0001 0.0127 0.0893 0.2426 0.0070

MCHVNGE MMAnnot < 0.0001 0.0002 0.0059 < 0.0001 0.0234 0.7022 0.3261 0.0528

MMPseudo MMAnnot < 0.0001 < 0.0001 0.2475 < 0.0001 0.0003 0.3714 0.4898 0.1156

Radiologists MMixed - - - - < 0.0001 0.0594 0.2566 0.0028

Radiologists MBIMCV - - - - < 0.0001 < 0.0001 0.7046 0.1386

Radiologists MCOVIDGR - - - - < 0.0001 0.3913 0.0137 0.0092

Radiologists MCHVNGE - - - - < 0.0001 0.2694 0.7197 0.3691

Radiologists MMPseudo - - - - < 0.0001 0.4794 0.0331 0.0212

Radiologists MMAnnot - - - - < 0.0001 0.0053 0.1322 0.2046
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partially overfitting to other acquisition details. This further highlights the need to carefully validate systems 
prior to announcing (near-)human performance. On the other hand, the studied finetuning approaches helped 
to mitigate the overfit behaviour. Indeed, results suggest that revisiting cases where COVID-19 radiological 
manifestations are more evident helps the model converge to a feature representation that better encodes the 
radiological manifestations of the pathology. In fact, both MMPseudo and MMAnnot are able to outperform MMixed 
in all external datasets (Table 5), without requiring additional training data. The difference in performance in 
CHVNGE is particularly significant for MMAnnot ( p < 0.0001 ), where the annotations performed by the radi-
ologists were used to finetune the system. As shown in Fig. 4, training with a selection of images from the Mixed 
dataset known to contain COVID-19 features allowed the model to approximate its performance to the human 
experts on the CHVNGE dataset without the need to introduce images from that dataset.

The hypothesis that finetuning with good quality labels improves the system’s reliability is further supported 
by the models’ calibration performance (Table 7). Interestingly, the lowest ECE values are achieved when using 
finetuning with the CHVNGE dataset ( MCHVNGE ) and using the expert annotations ( MMAnnot ). As previously 
discussed, the CHVNGE dataset may better represent the clinical reality and thus have a higher diversity and 
progression stages of COVID-19 radiological manifestations, promoting a less binarized output of the model. 
Likewise, MMAnnot shows low ECE values for all datasets. This further corroborates that adjusting the model’s 
weights using the CXRs annotated by the radiologists mitigates overfitting by redefining the solution space and 
allowing to dampen previously overconfident incorrect predictions.

Finally, comparing the activation maps of MMixed and MMAnnot corroborates that the features encoded by 
MMAnnot can better represent findings indicative of COVID-19. On the two top examples, MMixed activation 
maps fail to indicate the full extent of the lung findings, namely on the bottom left lung in the first example 
and present lower activations on the right lung in the second example. The activation maps also reveal that the 
focus of MMAnnot on the region of interest (i.e. the lung volume) was significantly improved when compared to 
MMixed . This can be seen not only for correct classifications, such as the second example where MMixed shows 
activations on the diaphragm, but also for wrong classifications such as the fourth example where the strongest 
activations of MMAnnot are limited to the lung region whereas MMixed presents strong activations on the heart, 
clavicles and diaphragm.

Real-world application. The performance of both MMAnnot and the radiologists (Indicative of COVID-19 and 
Undetermined) is higher in images from intensive care units and inpatient services in comparison to the emer-
gency department (Fig. 6). As previously suggested, images from patients with late stage COVID-19 are expected 
to be easier to distinguish from other pathologies because the radiological manifestations resulting from the 
infection are more visible. This further reinforces the need to contextualize the acquisition setting when report-
ing model performances. While it has been repeatedly suggested in literature that a system such as the one pro-
posed in this study could be used as an early screening tool, it is clear in this study that even MMAnnot , the best 
performing model in CHVNGE without dataset finetuning, has a much lower performance than what has been 
suggested in literature and than what can be ascertained from available public datasets where significantly higher 

Table 7.  Calibration in termos of ECE for each model and dataset for the 5 test folds. Lower ECE values 
indicate higher calibration. Bold indicates lowest value in row.

MMixed MBIMCV MCOVIDGR MCHVNGE MMPseudo MMAnnot

Mixed

0.0082 0.6994 0.0883 0.0448 0.0079 0.0438

0.0191 0.6977 0.1161 0.0904 0.0224 0.0265

0.0215 0.6021 0.2232 0.0291 0.0242 0.0245

0.0213 0.7106 0.0648 0.0498 0.0294 0.0243

0.0241 0.7152 0.0633 0.0217 0.0251 0.0104

BIMCV

0.1469 0.0069 0.1992 0.1145 0.1234 0.1639

0.1304 0.2277 0.1326 0.0670 0.1442 0.0929

0.1202 0.2074 0.2724 0.1535 0.1255 0.1350

0.1295 0.2237 0.1555 0.0307 0.1194 0.1052

0.1382 0.2209 0.2260 0.0971 0.1334 0.1489

COVIDGR

0.4447 0.2275 0.0810 0.1029 0.4238 0.1902

0.4591 0.1790 0.1961 0.0773 0.4977 0.2853

0.3522 0.1970 0.2810 0.0909 0.4321 0.2300

0.4344 0.2442 0.3393 0.0419 0.4055 0.2572

0.4373 0.2008 0.3581 0.1109 0.4595 0.2026

CHVNGE

0.1202 0.6024 0.1281 0.0650 0.1039 0.0599

0.0965 0.5253 0.1523 0.0349 0.1136 0.0552

0.0941 0.5427 0.2279 0.0913 0.1131 0.0790

0.0990 0.6492 0.1636 0.0815 0.1447 0.0504

0.1046 0.6215 0.2241 0.0779 0.1075 0.0635



13

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6596  | https://doi.org/10.1038/s41598-022-10568-3

www.nature.com/scientificreports/

Figure 5.  Examples of CXRs of COVID-19 positive patients from the CHVNGE dataset (first column) and 
corresponding GradCAM++ activation on the COVID-19 class for the MMixed (second column) and the 
MMAnnot (third column). The first two rows correspond to CXRs correctly classified by MMAnnot with high 
probability, the third row corresponds to a CXR correctly classified by MMixedAnnot with average probability and 
the fourth row corresponds to a CXR incorrectly classified by MMixedAnnot with low probability.
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Figure 6.  Equipment-wise evaluation of MMAnnot on the CHVNGE dataset. Top left: model performance on all 
CXRs. Top right: model and radiologist performance on CXRs annotated by radiologists (Carestream not shown 
due to limited data). Average model performance for all folds is shown as a line and shaded region corresponds 
to the 95% confidence interval. Radiologists’ performance is shown considering as positives only CXRs marked 
as Indicative of COVID-19 ( • ) or Indicative of COVID-19 and Undetermined ( �).

Table 8.  MMAnnot AUC for each CXR equipment on CHVNGE for each cross validation fold. Bold indicates 
the highest AUC for each fold.

FUJI CR Samsung Carestream FUJI DX

0.7808 0.5618 0.8056 0.6768

0.8145 0.5710 0.8551 0.7053

0.7770 0.5676 0.7959 0.7061

0.7908 0.5934 0.8249 0.7291

0.7975 0.5890 0.8019 0.6783

Table 9.  Statistical significance of differences in MMAnnot AUC between different CXR equipments on 
CHVNGE according to the Venkatraman test. Bold indicates statistical significance with Bonferroni correction 
( p < 0.0083).

MMAnnot

FUJI CR Samsung < 0.0001

FUJI CR Carestream 1.0000

FUJI CR FUJI DX 0.2357

Samsung Carestream 0.0046

Samsung FUJI DX 0.0294

Carestream FUJI DX 0.8490

Table 10.  Statistical significance of differences in ROC between MMAnnot and radiologists for each CXR 
equipment on CHVNGE according to the De Long test. Bold indicates p<0.05.

FUJI CR Samsung FUJI DX

MMAnnot Radiologists 0.0415 0.0398 0.2699
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AUCs have been reported (AUCs ≥ 0.9 ). Instead, systems such as this are perhaps put to better use as an evalu-
ation tool of the progress of severe COVID-19 infections, reducing the workload of intensivists and radiologists 
on intensive care units by providing an objective opinion of the disease’s progression.

Main findings and limitations. As discussed in the Introduction section, several methods for automatic 
COVID-19 diagnosis in CXR have been proposed in literature. Particularly in the beginning of the pandemic 
extremely high performances have also been reported (see Fig. 1)9. These results have been replicated in this 
study on intradataset train-test scenarios (e.g. MMixed tested on the Mixed dataset). However performance in 
interdataset train-test scenarios was found to be much lower, likely due to significant dataset bias. In these sce-
narios, most trained models could not achieve the performance of radiologists, particularly on the CHVNGE 
dataset, which more closely represents clinical reality. When finetuned with radiologist annotations however, 
MMAnnot showed a more consistent performance across datasets and a much closer ROC to that of radiologists 
on CHVNGE. Finally, performance on different hospital services (through CXR equipments) was studied, show-
ing that the performance of an automatic system for COVID-19 detection in CXR is nevertheless underwhelm-
ing and research efforts should be directed towards, for example, evaluation of progress and severity of disease 
in inpatient/intensive care units.

In spite of the promising results obtained in this study, there are limitations that must be taken into account 
in the interpretation of results and future directions. As highlighted in this manuscript, the training of deep 
learning systems relies heavily on the available data and while this study includes data from several sources to 
achieve a good representation of multiple environments, the dataset which intends to represent clinical reality 
is limited. For one, it represents the reality of a single hospital system in Portugal, which may limit the repro-
ducibility of these results in other hospitals. Although we believe that the performance differences reported on 
Table 8 are meaningful and justifiable, it would still be of interest to corroborate our findings on additional data 
sources. Furthermore, the data from CHVNGE represents a limited scope in time, which is particularly relevant 
given the rapid changes of COVID-19 since its appearance. As such, to properly evaluate the true clinical impact 
of this type of systems, different time points would need to be considered. Finally, there is no guarantee that 
the achieved performance and model behaviour is reproducible for different network architectures. Indeed, in 
this study we opted for using a ResNet architecture which, as highlighted in Fig. 1, accounts for approximately 
25% of the proposed methods during the initial outbreak. However, different network architectures may have 
different generalization capabilities and robustness to overfit. Given the impossibility of assessing all available 
architectures, we aim at raising awareness for the need to properly train and evaluate a model’s performance and 
thus avoid overconfident claims.

Conclusion
This study assessed the performance of a deep learning system for COVID-19 screening using CXR and compared 
it with expert radiologists. The detection of COVID-19 in CXR images is non-trivial due to the wide range of 
radiological manifestations associated with the infection. Consequently, radiologists tend to confound COVID-
19 patients with other pathologies. Similarly to other recent studies, it was found that the performance reported 
for deep learning approaches is overconfident. Indeed, this study shows that the screening performance is not 
robust to changes in data origin. However, the results shown suggest that finetuning the model with labels pro-
vided by human experts allows the network to improve the quality and meaningfulness of the extracted features, 
improving explainability and reducing data bias.

Results also suggest that the applicability of these systems for initial patient triage, when radiological mani-
festations of COVID-19 are minimal, is limited. However, when radiological manifestations of COVID-19 are 
present, these can be accurately detected and pinpointed by these tools. Although the achieved results are promis-
ing, there is still need to understand how well these findings translate to other time points/variants of COVID-19 
and different clinical realities. Based on this study, future directions in this field should also focus on the use of 
deep learning systems for tracking the evolution of mild to severe COVID-19 infections, providing a robust 2nd 
opinion and thus contributing to mitigate the consequences of the pandemic.

Data availability. The public datasets used in this study are available in the following repositories:

• CheXpert: https:// stanf ordml group. github. io/ compe titio ns/ chexp ert/
• ChestXRay-8: https:// nihcc. app. box. com/v/ Chest Xray- NIHCC
• COVID-19 IDC: https:// github. com/ ieee8 023/ covid- chest xray- datas et
• COVIDx: https:// github. com/ linda wangg/ COVID- Net
• RSNA-PDC: https:// www. kaggle. com/c/ rsna- pneum onia- detec tion- chall enge
• SAVE LIVES: https:// www. hmhos pital es. com/ coron avirus/ covid- data- save- lives
• SERAM: https:// seram. es/ images/ site/ TUTOR IAL_ CSI_ RX_ TORAX_ COVID- 19_ vs_4. 0. pdf
• Twitter: https:// twitt er. com/ Chest Imagi ng
• BIMCV PADCHEST: https:// bimcv. cipf. es/ bimcv- proje cts/ padch est/
• BIMCV COVID-19-PADCHES: https:// bimcv. cipf. es/ bimcv- proje cts/ bimcv- covid 19/
• COVIDGR: https:// dasci. es/ trans feren cia/ open- data/ covid gr-2/

Manual annotations by the radiologists on the public datasets are publicly available at https:// doi. org/ 10. 25747/ 
342B- GF87. The CHVNGE dataset was acquired under approval of the CHVNGE Ethical Committee as detailed 

https://stanfordmlgroup.github.io/competitions/chexpert/
https://nihcc.app.box.com/v/ChestXray-NIHCC
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/lindawangg/COVID-Net
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge
https://www.hmhospitales.com/coronavirus/covid-data-save-lives
https://seram.es/images/site/TUTORIAL_CSI_RX_TORAX_COVID-19_vs_4.0.pdf
https://twitter.com/ChestImaging
https://bimcv.cipf.es/bimcv-projects/padchest/
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://dasci.es/transferencia/open-data/covidgr-2/
https://doi.org/10.25747/342B-GF87
https://doi.org/10.25747/342B-GF87
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in Section“Datasets”. However, the CHVNGE Ethical Committee determined that the data cannot be used beyond 
the purpose of the current study, and thus cannot be shared publicly with other institutions.
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