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Nematode parasites undermine human health and global food security. The frontline
anthelmintic portfolio used to treat parasitic nematodes is threatened by the escalation of
anthelmintic resistance, resulting in a demand for new drug targets for parasite control.
Nematode neuropeptide signalling pathways represent an attractive source of novel drug
targets which currently remain unexploited. The complexity of the nematode neuropeptidergic
system challenges the discovery of new targets for parasite control, however recent advances
in parasite ‘omics’ offers an opportunity for the in silico identification and prioritization of targets
to seed anthelmintic discovery pipelines. In this study we employed Hidden Markov Model-
based searches to identify ~1059 Caenorhabditis elegans neuropeptide G-protein coupled
receptor (Ce-NP-GPCR) encoding gene homologs in the predicted protein datasets of 10 key
parasitic nematodes that span several phylogenetic clades and lifestyles. We show that, whilst
parasitic nematodes possess a reduced complement of Ce-NP-GPCRs, several receptors
are broadly conserved across nematode species. To prioritize the most appealing parasitic
nematode NP-GPCR anthelmintic targets, we developed a novel in silico nematode parasite
drug target prioritization pipeline that incorporates pan-phylum NP-GPCR conservation, C.
elegans-derived reverse genetics phenotype, and parasite life-stage specific expression
datasets. Several NP-GPCRs emerge as the most attractive anthelmintic targets for broad
spectrum nematode parasite control. Our analyses have also identified the most appropriate
targets for species- and life stage- directed chemotherapies; in this context we have identified
several NP-GPCRs with macrofilaricidal potential. These data focus functional validation
efforts towards the most appealing NP-GPCR targets and, in addition, the prioritization
strategy employed here provides a blueprint for parasitic nematode target selection beyond
NP-GPCRs.
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INTRODUCTION

Nematode parasites continue to have a global impact on human
health and agricultural productivity such that novel mode-of-
action anthelmintics are critical for sustained parasite control,
especially in light of the escalation in anthelmintic resistance (1–3).
Whilst the nematode neuromuscular system is a proven drug
target, it remains underexploited (4, 5). Indeed, the majority of
frontline anthelmintics only target aspects of neuromuscular
signaling controlled by ion channels, however the neuropeptide
signaling system is also critical to normal nematode
neuromuscular function (6, 7).

Within the neuromuscular signalling system, neuropeptide
GPCRs (NP-GPCRs) have been identified as highly ‘druggable’
targets (8). Indeed, an estimated 34% of human drugs act on
GPCRs (9, 10). Despite this, NP-GPCRs have yet to be exploited
for chemotherapeutic control of nematode parasites. In part,
this is due to limited knowledge of NP-GPCR profiles in key
parasitic nematode species which would enable NP-GPCR
target prioritization.

Recent advances in ‘omics’ technologies have driven a
significant expansion of in silico data for parasitic nematodes
(11), providing an opportunity for the identification of novel
putative anthelmintic targets. However, the volume and
complexity of the available datasets presents a significant
challenge to target prioritization. In silico prioritization
approaches are essential given the lack of tractable and scalable
reverse genetics tools for parasitic nematode systems (12, 13).

Analysis of the Caenorhabditis elegans genome suggests the
presence of 152 putative NP-GPCRs (14), several of which are
likely to represent attractive and exploitable anthelmintic targets.
Indeed, functional studies indicate that some Ce-NP-GPCR
knockdown/knockout worms display aberrant phenotypes that
include paralysis and death [see WormBase; Harris et al. (15)].
Despite this, we have limited knowledge of NP-GPCR encoding
gene conservation and life-stage expression in therapeutically
relevant parasitic nematodes. These data are essential to drive the
prioritization of parasite NP-GPCR drug targets for functional
validation and chemotherapeutic exploitation.

In this study we employed in silico approaches to: (i)
characterise the NP-GPCR complements of 10 key parasitic
nematode species; (ii) develop a novel nematode drug target
prioritization pipeline that incorporates NP-GPCR conservation,
expression and functional data, and (iii) identify NP-GPCRs that
represent putative, novel, broad spectrum parasitic nematode
control targets. Integration of these multi-omics-derived datasets
provides a springboard for functional biology that will improve
our understanding of fundamental nematode neurosignalling
and support future anthelmintic discovery efforts.
MATERIALS AND METHODS

Putative NP-GPCR Identification
Putative nematode NP-GPCRs were identified via multiple
sequence alignment derived Hidden Markov Models (HMMs),
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using methods based on those previously described (16). Briefly,
HMMs were constructed using predicted protein alignments of
all putative C. elegans neuropeptide receptors (14). Alignments
were generated using MEGA 7 with default MUSCLE settings
(17). Distinct models were constructed with rhodopsin and
secretin NP-GPCR family members (14) using default
hmmbuild parameters [HMMER v3; Mistry et al. (18)].
hmmsearch (HMMER v3) was employed to identify potential
NP-GPCRs within the predicted protein datasets of 10
phylogenetically dispersed nematode parasites (Trichuris muris,
Trichinella spiralis, Romanomermis culicivorax, Ascaris suum,
Brugia malayi, Dirofilaria immitis, Necator americanus,
Haemonchus contortus, Bursaphelenchus xylophilus, Globodera
pallida; see (Supplementary Table 1), using default settings. The
putative NP-GPCR sequences identified via hmmsearch were
then used as queries in BLASTp searches in the NCBI non-
redundant database (https://blast.ncbi.nlm.nih.gov; default
settings) to identify the most similar sequences in C. elegans.
Queries that failed to return a putative NP-GPCR as the highest
scoring pair/top hit were excluded from downstream analyses.
Putative NP-GPCR sequences were then filtered based on the
number of transmembrane (TM) domains, as predicted by
hmmtop (19). Returns containing 4 or more TM regions were
excluded from downstream phylogenetic analyses (see
Supplementary Figure 1 for a species-specific summary of the
TM domain composition of all returns present in the putative
NP-GPCR datasets), but still included in the drug target
prioritization pipeline (see Figure 1).

NP-GPCR Clustering and Phylogenetic
Analyses
The CLANS algorithm (https://toolkit.tuebingen.mpg.de/
#/tools/clans) was used to identify convex clusters within the
NP-GPCR datasets (20). Parasite NP-GPCR hits (761 putative
parasite NP-GPCR sequences with ≥4 TM domains) were
analysed alongside all putative NP-GPCRs from C. elegans (14).
NP-GPCR sequences were uploaded to the CLANS website;
BLAST high scoring pairs were extracted up to an E-value
limit of 1e-5, all other parameters remained at default. CLANS
performed a series of all-against-all BLASTp comparisons
between every sequence submitted, generating a 3D similarity
matrix constructed from the e-values of each individual search.
The CLANS file output was visualized and coloured after 20,000
clustering rounds using the Java-based desktop software. CLANS
convex cluster detection algorithm was used to delineate clusters
of sequences under default settings. Clusters were numbered
according to size (Cluster 1 being the largest). Individual clusters
were used in Maximum-likelihood phylogenetic tree
construction using MEGA 7 or MEGA CC (17), depending on
the computing requirements of individual trees. Note that, where
CLANS delineated clusters within the previously defined NP-
GPCR families (14), these clusters were amalgamated prior to
further phylogenetic analyses. Similarly, satellite singleton (non-
clustered) sequences and small clusters that lacked any putative
C. elegans homolog were grouped with their nearest-neighbour
cluster prior to tree construction. Sequences extracted from each
September 2021 | Volume 12 | Article 718363

https://blast.ncbi.nlm.nih.gov
https://toolkit.tuebingen.mpg.de/#/tools/clans
https://toolkit.tuebingen.mpg.de/#/tools/clans
https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


Atkinson et al. Parasitic Nematode Neuropeptide GPCRs
FIGURE 1 | NP-GPCR drug target prioritization pipeline demonstrating NP-GPCR identification, phylogenetics and target prioritization workflow and a summary of
the data generated at key stages in the pipeline. Five parasitic nematode NP-GPCRs are prioritised for validation in parasites: npr-5, -11, pdfr-1, fshr-1 and
F59D12.1. HMM, Hidden Markov Models; TM, transmembrane domains; PN, parasitic nematode; CLANS, Cluster Analysis of Sequences; Ce, Caenorhabditis
elegans; Reprod’n, reproduction; EXP, expression; WBP, WormBase Parasite; KO, knockout; RNAi, RNA interference.
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cluster were aligned via default MUSCLE settings in MEGA 7.
Alignments were analyzed using the ‘find best DNA/Protein
Models (ML)’ option to determine the most appropriate model
of evolution for tree construction. All trees were constructed
using: the bootstrap method (500 replicates); the LG model of
evolution (G+I) with 5 discrete Gamma categories; a partial
deletion of gaps (80% site coverage cut-off); and the nearest-
neighbour interchange algorithm with no branch swap filter.
Trees were rooted using a selection of C. elegans biogenic amine
receptor sequences (see Supplementary Figures 2–12). Returns
that clustered with a specific Ce-NP-GPCR with ≥70% bootstrap
support were considered orthologs. Where returns failed to
cluster with a specific Ce-NP-GPCR, but clustered with
multiple C. elegans paralogs within the same NP-GPCR family,
they were assigned based on top BLAST hit.

Drug Target Prioritization
A drug target prioritization pipeline based on: (i) NP-GPCR-
encoding gene conservation (generated in this study); (ii) C.
elegans derived functional data (15), and (iii) publicly available
RNASeq data (see Supplementary Table 1), were collated and
curated as outlined in Figure 1 . Briefly, NP-GPCR
conservation profiles across the nine key parasite species in
this study were analysed using the phylogenetics approach
described above. To enable the inclusion of all putative NP-
GPCR hits in the prioritization pipeline, and to circumvent
prioritization bias by losing those that possess partial sequence
availability (<4 TM domains; not suitable for phylogenetic
analyses), predicted proteins with <4 TM regions were
included as homologs of the highest scoring C. elegans
BLAST hit.

Phenotype data associated with C. elegans mutant/RNAi
experiments for the 152 known NP-GPCRs were collated from
observed phenotypes reported on WormBase [version WS280;
Harris et al. (15)]. Each Ce-NP-GPCR encoding gene was scored
based on phenotype significance (with relevance to anthelmintic
target discovery), where no recorded phenotype scored 0,
reproductive scored 2, sterility scored 3, motility scored 4, and
lethality scored 5. Any other recorded phenotype scored 1. Many
Ce-NP-GPCR encoding genes had multiple phenotypes
recorded; in this scenario, phenotype scores were combined to
provide an overall total phenotype score for each NP-GPCR.
Where multiple phenotypes within the same category were
recorded, the category was only scored once.

RNASeq data were accessed from published life-stage
specific transcriptome datasets [untreated/wildtype: T. muris
(21); A. suum (22, 23); B. malayi (24, 25); D. immitis (26); H.
contortus (27), and G. pallida (28)]. An FPKM value of 1 was
used as the threshold for transcript expression (where FPKM
≥1 was deemed to be expressed). RNASeq data for H. contortus
and T. muris (raw counts and FPKM) were generated following
an established RNASeq pipeline. Raw sequences reads
[PRJEB1360 (27); PRJEB1054 (21)] were downloaded and
split into forward and reverse fastq files using NCBI SRA
Toolkit (29). Reads were trimmed using Trimmomatic [v0.36;
parameter: LEADING:5 TRAILING:5 SLIDINGWINDOW:3:15
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MINLEN:34 (30)]. Corresponding genome assemblies for H.
contortus (27) and T. muris (21) respectively, were downloaded
from WormBase ParaSite (WBP) FTP server (31) and reads were
mapped to these genomes using HISAT2 [v2.1.0 (32)]. Following
genome mapping, raw gene counts were assigned through use of
SubRead v 2.0.1 featureCounts (33). Raw counts of orthologous
genes in samples were transformed to FPKM using countToFPKM
(34) and median FPKMs were calculated in order to represent
raw gene expressions of various developmental stages in
these nematodes.
RESULTS AND DISCUSSION

Parasitic Nematodes Possess
Caenorhabditis elegans
NP-GPCR Homologs
In this study we identified 1059 putative Ce-NP-GPCR homologs
in the predicted protein datasets of 10 phylogenetically dispersed
nematode parasites (see Supplementary Table 2 and Figure 1).
To our knowledge this is the most comprehensive analysis of NP-
GPCR profiles in parasitic nematodes to date, spanning five
phylogenetic clades and a range of parasitic lifestyles [human
parasitic nematode (HPN), animal parasitic nematode (APN),
plant parasitic nematode (PPN), entomopathogenic nematodes
(EPN)]. Several key points emerge from this study:

Nematode Parasites Possess a Reduced
Complement of Caenorhabditis elegans
NP-GPCR Homologs
All 10 parasitic nematodes examined in this study exhibited
restricted profiles of the 152 Ce-NP-GPCRs [21-78% Ce-NP-
GPCR profile (average 49.2%); see Supplementary Table 2,
Supplementary Data Sheet 1 and Figure 2] this trend is similar
to that noted previously (35, 36). Ascaris suum boasts the
largest Ce-NP-GPCR complement of all parasites examined
(78%; Figure 2A), including in comparison to the clade 9
species H. contortus and N. americanus which are more
closely related to C. elegans. This suggest that A. suum has
lost fewer NP-GPCR encoding genes than both H. contortus
and N. americanus despite being more distantly related to C.
elegans. The lowest complement of Ce-NP-GPCRs was
identified in the clade 2 species T. muris (21%) and T. spiralis
(22%; Figure 2A). The phylum spanning profile of NP-GPCR
encoding gene complements reported here closely aligns with
the parasitic nematode neuropeptide [FMRF-amide-like
peptide (flp), and neuropeptide like protein (nlp)] profiles
characterised previously (36, 37), where A. suum and the
clade 2 species (T. spiralis and T. muris) also display the
largest and smallest complements of parasite neuropeptide
encoding genes respectively.

The HMM based approach employed also identified several
biogenic amine GPCRs in addition to the NP-GPCRs reported
here (data not shown); this provides confidence that all putative
NP-GPCRs were identified in the available parasitic nematode
September 2021 | Volume 12 | Article 71836
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datasets. Although a small number of divergent NP-GPCR
sequences without an obvious C. elegans ortholog were
identified in specific parasite species (see Supplementary Data
Sheet 1 and Supplementary Figures 2–12), these were not
broadly conserved across the parasite species examined.

Nematode Parasite NP-GPCR Profiles Vary Within
and Between Phylogenetic Clades
The NP-GPCR encoding gene profiles of parasitic nematodes
representing five nematode clades [2, 8, 9, 10, 12; Holterman
et al. (38)] were examined in this study. Whilst only a small
number of species from each clade were examined here, all clades
exhibited a reduced complement of Ce-NP-GPCR homologs (see
Figure 2B); clade 9 and 10 nematodes displayed the highest
complement (both 68%) of Ce-NP-GPCRs and clade 2 displayed
the most reduced (21%).

Within clades, variation in NP-GPCR complement was
evident; for example, whilst the clade 2 species, T. muris and T.
spiralis, displayed a highly similar, reduced, NP-GPCR
complement (21%), an additional clade 2 species, R. culicivorax
(entomopathogenic nematode), possessed 49% of Ce-NP-GPCR
homologs (Figures 2A, B and Supplementary Table 2).
Similarly, the clade 8 filarids, B. malayi and D. immitis,
displayed reduced NP-GPCR complements relative to A. suum
(clade 8). These data suggest multiple distinct gene loss events in
the lineages that led to present day Trichuris/Trichinella and
filarid spp. It is also likely that some of the 152 Ce-NP-GPCRs
arose from gene duplication events that occurred in the lineages
that led to the crown clades (clade 8-12; Holterman et al. ()), and
so the NP-GPCRs absent from clade 2 species may not have been
present in the last common ancestor of all nematodes. In contrast,
both of the plant parasitic nematodes examined, B. xylophilus
(clade 10) and G. pallida (clade 12), display relatively similar NP-
GPCR profiles despite their distinct clade designations
(Supplementary Table 2). The number of NP-GPCRs present
appears to be consistent across nematode lifestyles (as defined
here; Figure 2C), however the gene profiles are different since
species have distinct gene repertoires.
Frontiers in Endocrinology | www.frontiersin.org 5
Nematode Parasite NP-GPCR Profiles Include
Representatives of All of the Rhodopsin and Secretin
NP-GPCR Families
The nematode parasite NP-GPCR profiles include representatives
from the 17 rhodopsin and secretin receptor sub-families
described in C. elegans (14). It is interesting to note that whilst
there is broad representation across the majority of receptor sub-
families (see Figure 3), there are also significant gaps inNP-GPCR
complements especially within theDrosophilaDromyosuppressin
(dmsr-10, 12-16) and Drosophila FMRF-amide (frpr-11-13)
GPCR families (see Supplementary Table 2). Also evident are
significant gaps in the otherwise broad NP-GPCR family profiles
of the filarids including an absence of members of the Ghrelin-
obstatin/neuromedin U, Galinin and Sex Peptide receptor
families and a significant reduction in Neurokinin/neuropeptide
FF/orexin receptor family members (see Supplementary
Table 2).

Nematode Parasite NP-GPCRs Are Broadly
Expressed but Display Differential Expression
Patterns Across Nematode Life-Stage
The majority of NP-GPCRs are broadly expressed across the
lifecycle stages of key species in this study (those with available
life-stage specific RNASeq data; FPKM ≥1) indicating their
general importance to nematode biology (see Supplementary
Table 3). NP-GPCRs display differential expression patterns
across life-stages in all parasitic nematodes examined (T.
muris, A. suum, B. malayi, D. immitis, H. contortus, G. pallida;
see Supplementary Table 3. Whilst it is interesting to note that
the majority of NP-GPCRs are expressed in all life stages,
including in adult nematodes, there appears to be a general
upregulation of NP-GPCR expression in the larval stages of a
number of species including B. malayi (L3), T. muris (L2), G.
pallida (J2), D. immitis (microfilariae). This indicates that, whilst
NP-GPCRs have an important role across the nematode lifecycle,
there may be an enhancement of NP-GPCR signaling in the
larval stages that could reflect a significant need for movement/
migration and development at this stage. Whether these patterns
A B C

FIGURE 2 | Nematode parasites have reduced and variable NP-GPCR complements across (A) 10 nematode species (B) phylogenetic clades and (C) parasitic
lifestyles, expressed as a % of the predicted 152 Caenorhabditis elegans NP-GPCRs. Dotted line represents the average % (49.3%) of Ce-NP-GPCRs across all 10
species. APN, animal parasitic nematode; HPN, human parasitic nematode; PPN, plant parasitic nematode.
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of NP-GPCR expression can be directly tied to variation in gene
function between lifecycle stages remains to be investigated.

Nematode Parasite In Silico NP-GPCR
Analyses Have Potential to Direct Drug
Discovery Pipelines
The volume and complexity of the NP-GPCR profiles outlined
above challenge the ability to prioritise the most attractive NP-
GPCRs for validation as novel drug targets. In silico approaches
offer a novel route to exploit available datasets and integrate
information to direct drug target selection (39–42). Here we
present a novel in silico nematode parasite NP-GPCR drug target
prioritization pipeline that incorporates pan-phylum NP-GPCR
conservation (generated in this study), parasite life-stage specific
expression, and C. elegans-derived phenotype data to assess the
target appeal of NP-GPCRs for nematode control (Figure 1).
Frontiers in Endocrinology | www.frontiersin.org 6
NP-GPCRs Have Conservation Profiles That Highlight
Their Appeal as Broad Spectrum Drug Targets
Seven of the 152 Ce-NP-GPCRs are conserved across all 10
parasitic nematodes examined (gnrr-1, ckr-2, frpr-19, C01F1.4,
F59D12.1, pdfr-1 and seb-3; see Supplementary Table 2 and
Figure 4). An additional six NP-GPCRs are conserved in nine of
the 10 key species examined (npr-4, daf-38, dmsr-2, dmsr-8,
T11F9.1, H09F14.1; see Supplementary Table 2 and Figure 4)
and a further 18 are conserved in eight of the 10 parasites in this
study (npr-5, npr-11, npr-35, npr-16, npr-32, ntr-2, sprr-1, frpr-5,
frpr-7, frpr-9, frpr-18, dmsr-1, dmsr-6, dmsr-7, F40A3.7, aexr-1,
fshr-1, F13H6.5; see Supplementary Table 2 and Figure 4).
Eighteen NP-GPCRs were not identified in any parasite species
(see Supplementary Table 2), and six NP-GPCRs (dmsr-11, frpr-
16, gnrr-7, npr-33, D1014.2, ZK863.1; present in only one
species) show highly restricted patterns of conservation.
FIGURE 3 | CLANS analysis identifies NP-GPCR sub-families. Similarity matrix derived from all-against-all BLASTp comparisons between all identified
nematode NP-GPCR sequences (E-value limit = 1e-5). NPF/Y, neuropeptide F/Y receptor family; SOMA, somatostatin receptor family; GAL, galanin receptor
family; FRPR, FMRFamide Peptide Receptor family; aFRPR, another FMRFamide Peptide Receptor family; DMSR, Drosophila myosuppressin receptor family;
GO/NU, Ghrelin-obstatin/neuromedin U receptor family; NK/NPFF/Orexin, Neurokinin/neuropeptide FF/orexin receptor family; GnRH, Gonadotropin-releasing
hormone receptor family; GC, Gastrin-cholecystokinin receptor family; VP, Related Vasopressin receptor family; SexP, Related to Sex peptide receptor family;
DR, related to fly ortholog (TF315326), plus related family (TF315359); TAG-89-like, Related family with no specific orthologs (TF318526); AEX-2-like, Related
family with no specific orthologs (TF316587); TF317595, Related family with fly ortholog; TF315508, Related family with no specific orthologs; TF316160,
Related family with no specific orthologs; FSHR, follicle-stimulating hormone receptor; DmDopEcR, Drosophila Dopamine/Ecdysteroid receptor; SEC, secretin-
type receptors.
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NP-GPCRs Are Associated With C. elegans
Phenotypes That May Have Drug Target Appeal
Caenorhabditis elegans functional data may inform NP-GPCR
target appeal through the collation and consideration of
phenotype information. In this study we collated phenotype data
from C. elegans null mutant/RNAi experiments for the 152 NP-
GPCRs [see WormBase (15); see Supplementary Table 4]. Each
NP-GPCRwas scored based on perceived phenotype significance to
nematode biology and/or established anthelmintic endpoints, and
therefore potential drug target appeal (seeMaterials andMethods).
Often, multiple phenotypes were attributed to individual NP-
GPCRs, therefore scores were added to yield an overall
phenotype score for each receptor (see Supplementary Table 4).
Several key points emerge from these datasets: (i) 89 of the 152
putative Ce-NP-GPCRs had no associated null mutant/RNAi
phenotype(s) which may reflect a combination of: (a) lack of
Frontiers in Endocrinology | www.frontiersin.org 7
functional analyses data for Ce-NP-GPCRs, (b) use of an
unsuitable C. elegans post-functional genomics bioassay and/or,
(c) functional redundancy in nematode neuropeptidergic signalling
systems; (ii) 16 Ce-NP-GPCRs had a lethal phenotype reported in at
least one study (npr-5, nmur-4, npr-20, tkr-3, npr-30, gnrr-2, gnrr-6,
ckr-1, frpr-4, frpr-10, dmsr-3, Y37E11AL.1, Y40C5A.4, F59B2.13,
F52D10.4, fshr-1; see Supplementary Table 4); (iii) npr-3, -4, -7,
-11, -12, -34, egl-6 and pdfr-1 also scored highly as theseNP-GPCRs
are associated with atypical locomotion, sterility or reproductive
phenotypes in at least one study. Although the scoring system
adopted here elevates the scores of NP-GPCRs that fall into
multiple phenotype categories, the appeal of mutant/RNAi
phenotypes associated with, for example, only locomotion should
not be ignored; the NP-GPCRs associated with locomotion (in at
least one study) include npr-1, -2, -8, -9, -10, -13, -25,
and F59D12.1.
FIGURE 4 | Integration of nematode ‘omics data informs NP-GPCR target prioritization. Venn Diagram illustrating the NP-GPCRs emerging from the prioritization
pipeline following consideration of NP-GPCR conservation, NP-GPCR expression in key therapeutically relevant parasitic nematode lifecycle stages, and Ce-NP-GPCR
null mutant/RNAi phenotype. Based on currently available data, the most appealing broad-spectrum NP-GPCR targets are highlighted in red. Receptors highlighted in
orange represents those that share broad spectrum and key phenotype (lethality and locomotory) appeal; those highlighted in blue share broad spectrum conservation
and expression attributes, and those highlighted in green share key phenotype and broad spectrum expression. >80% expression = NP-GPCRs that are expressed
(FPKM>1) in more than 80% of the therapeutically relevant lifecycle stages analysed.
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It is interesting to note that of the 16 NP-GPCRs that are
associated with lethal phenotypes in C. elegans three (npr-5, ckr-1
and Y40C5A.4) are present in the most important APN/HPN
species in this study (A. suum, B. malayi, D. immitis, N.
americanus, H. contortus; see Supplementary Table 2). 16
additional NP-GPCRs emerged from the available phenotype
data with appealing locomotory, reproductive and/or sterility
phenotypes. Of these, five (npr-1, -11, -13, pdfr-1, F59D12.1) are
present in the most important APN/HPN species in this study
(see Supplementary Table 2). Finally, of the seven NP-GPCRs
completely conserved in the parasitic species examined in this
study, F59D12.1 and pdfr-1 have been linked to deleterious C.
elegans phenotype post RNAi/knockout (see Supplementary
Table 4).

In the context of this study, there are several important
caveats to the extrapolation of the WormBase derived C.
elegans phenotype data for drug target prioritisation including:
(i) the reported differences between phenotypes recorded for
multiple distinct mutations associated with the same gene, as
well as RNAi animals (typically performed in RNAi
hypersensitive mutant strains), (ii) the variable and often
specific nature of the phenotype screens employed, and (iii)
the bias in the volume/quality of functional data for specific NP-
GPCRs or GPCR families. Whilst we have attempted to
incorporate all of the observed C. elegans phenotypes recorded
on WormBase regardless of experimental approach (how the
mutant was generated, phenotype screens employed), the major
caveats outlined above somewhat limit the utility of these data,
and emphasise the need for functional analysis of all highly
conserved and highly expressed NP-GPCRs in parasitic
nematodes. Despite this, the approach offers a route to
prioritising drug target candidates for functional validation in
low throughput parasite platforms.

The format of our prioritisation pipeline allows for the
distinct prioritisation of NP-GPCRs based on conservation,
expression and/or C. elegans phenotype. This enables for the
segregation or integration of prioritisation criteria as required
and for the addition of phenotype data as they become available.

NP-GPCRs Are Broadly Expressed Across
Nematode Life-Stages Underpinning Their Appeal as
Novel Drug Targets
The available nematode RNASeq data suggest that parasite
NP-GPCRs are broadly expressed across the species examined
in this study (see Supplementary Table 3; for example, of the 13
genes that were conserved in at least nine of the 10 parasite
species examined (see NP-GPCRs Have Conservation Profiles
That Highlight Their Appeal as Broad Spectrum Drug Targets),
the majority are also expressed in therapeutically relevant
lifecycle stages (including: adult H. contortus; microfilariae and
adult B. malayi and D. immitis; adult A. suum; adult T. muris; see
Supplementary Table 3) underpinning the appeal of NP-GPCRs
as therapeutic targets. In this context, the NP-GPCR expression
data on their own do not discriminate sufficiently to prioritise a
reduced cohort of broad spectrum drug targets however, in the
scenario where a species focused/narrow spectrum target is
Frontiers in Endocrinology | www.frontiersin.org 8
desirable, ranking candidate drug targets based on expression
data is more informative. For example, 21 NP-GPCRs are
expressed in all therapeutically relevant stages of A. suum (npr-
1, -16, -23, -33, gnrr-2, daf-38, ckr-2, frpr-5, -7, -9, -18, -19, sprr-
1, dmsr-1, -4, C17H11.1, C24B5.1, tag-89, fshr-1, F59D12.1, pdfr-
1); of these, npr-1, fshr-1, F59D12.1 and pdfr-1 also display
defective phenotypes in C. elegans (see NP-GPCRs Are
Associated With C. elegans Phenotypes That May Have Drug
Target Appeal).

Several Parasitic Nematode NP-GPCRs Emerge as
the Most Appealing Broad Spectrum Drug Targets
The data presented here identify 17 NP-GPCRs as the most
appealing broad spectrum drug target candidates (>80%
conservation and expression across key parasitic nematodes;
see Figures 1 and 4). Parasitic nematode reverse genetics
platforms are low throughput necessitating a focus on a
smaller subset of NP-GPCRs. With this in mind, npr-5, npr-11,
pdfr-1, fshr-1 and F59D12.1 step forward as initial candidates for
functional validation (Figures 1 and 4).

Two of the NP-GPCRs that emerge from our pipeline as
appealing targets (npr-5 and -11) have been linked to several
peptides. NPR-11 has been functionally linked to NLP-1 and
FLP-34 and, heterologously matched with FLP-21, -18, -34, -15
and -27 (43–47). NPR-5 is also functionally linked to FLP-18 and
heterologously linked to FLP-18 and -21 (46, 48–50). Interestingly
FLP-18 signalling has been shown to be important to nematode
biology and is associated with a raft of biological processes including
chemosensation, heat avoidance, reversal length, foraging
behaviour, metabolism, locomotion quiescence during lethargus,
and dauer formation (49–55); these data enhance the appeal of
NPR-5 and -11 as putative novel drug targets. Significantly, npr-5 is
conserved in 84% of 134 nematode genomes, representing 109
species, 7 clades and 3 distinct lifestyles (56), highlighting the
importance of NPR-5 across phylum Nematoda.

PDFR-1 is related to arthropod Pigment Dispersing Factor
Receptor and, more distantly, to vertebrate Calcitonin and
Vasoactive Intestinal Peptide receptors (57). These receptors
function in the control of circadian rhythms and arousal (51, 57,
58). PDFR-1 in C. elegans has been deorphanised heterologously
and functionally to PDF-1 and PDF-2 (NLP-37) peptides, which
modulate locomotion (57, 59). PDFR-1 signalling has also been
implicated in inducing extended roaming states, arousal of
locomotory behaviour following lethargus, and in the promotion
of male mate searching behaviour in C. elegans (51, 60, 61).
Notably, pdf-1 and pdfr-1 were present together in 96% of 134
nematode genomes (unpublished observations).

The remaining prioritised receptors are orphan NP-GPCRs that
have not yet been linked to a cognate ligand. F59D12.1, also known
as PCDR-1 (Pathogen Clearance Defective Receptor), has been
associated with locomotion via RNAi experiments which resulted
in slow and paralyzed worms (62). PCDR-1 also plays a key role in
pathogen clearance of Microbacterium nematophilum infection in
C. elegans (63). The functional data available for fshr-1 indicate that
mutant C. elegans (tm3954) and RNAi worms display lethal
phenotypes (15, 64).
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Whilst several additional NP-GPCRs (gnrr-1, ckr-2, frpr-19,
C01F1.4, seb-3) were conserved in all species examined in this
study, the limited functional information available for these
receptors has precluded their prioritisation as the most
appealing targets at this point (see Figure 4). This reflects a
major gap in the NP-GPCR null mutant/RNAi phenotype data
and is a caveat to drug prioritisation in this context. In addition,
the scale and scope of the post-functional genomics phenotype
screens performed in Ce-NP-GPCR null mutant/RNAi
experiments are: (i) highly variable and often gene dependent
and, (ii) focus almost exclusively on loss of function screens (lack
of over-expression data), such that this results in a degree of bias
within the NP-GPCR prioritisation pipeline whereby highly
conserved receptors that simply lack phenotype data are not
emerging among the prioritised subset. Indeed, this is supported
by a lack of correlation between parasitic nematode NP-GPCR
conservation and the C. elegans derived phenotype data reported
here (Spearman’s rho; Figure 5). It is also interesting to note that
some of the NP-GPCRs highlighted above, that are broadly
conserved but were not prioritised due to lack of phenotype
data, are also broadly expressed across nematode lifecycle stages
(e.g. gnrr-1, ckr-2, frpr-19 expressed in 83%, 97% and 100% of the
transcriptomes examined respectively); this suggests potential
functional importance and should form the focus of future
functional analyses in parasitic nematodes.

NP-GPCR Prioritisation Pipelines Can Also Direct
Narrow Spectrum Drug Target Prioritisation
Narrow spectrum anthelmintics have proven utility in nematode
parasite control strategies (65). The drug target prioritisation
pipeline presented here also enables the prioritisation of narrow
spectrum drug targets that are relevant to the control of specific
Frontiers in Endocrinology | www.frontiersin.org 9
parasite species or life-stages. For example, no macrofilaricidal
anthelmintics currently exist (66). Several NP-GPCRs (npr-5, -19,
-23, -29, gnrr-1, -4, ckr-1, -2, frpr-8, -19, Y40C5A.4, aexr-1, fshr-1
and F59D12.1) emerge from our pipeline as NP-GPCRs that are
expressed in both adult male and female B. malayi and D.
immitis (see Supplementary Table 3). Some of these NP-
GPCRs have already been prioritised as broad-spectrum targets
(see Several Parasitic Nematode NP-GPCRs Emerge as the Most
Appealing Broad Spectrum Drug Targets; npr-5, fshr-1 and
F59D12.1) however, an additional two NP-GPCRs (ckr-1 and
Y40C5A.4) emerge that are also appealing as microfilaricides;
this underscores the utility of the NP-GPCR prioritisation
pipeline in teasing out species specific therapeutic targets (see
Supplementary Tables 2–4).
CONCLUSIONS

Recently improved parasite ‘omics’ data have driven a paradigm-
shift towards mechanism-directed drug target screening
approaches, providing an opportunity to identify the most
attractive nematode parasite targets. Our focus on NP-GPCRs
as therapeutic targets is driven by their importance to nematode
biology (8), however the number and diversity of nematode NP-
GPCRs is currently a hinderance to functional validation and
successful exploitation. Here we present data on NP-GPCR
conservation and the application of a drug target prioritisation
pipeline that highlights the most attractive parasitic nematode
NP-GPCRs for parasite control at this time. These data:
(i) provide a comprehensive library of NP-GPCRs in key
nematode parasites; (ii) enable the selection of both broad and
narrow spectrum control targets; (iii) inform future validation
FIGURE 5 | Comparison of phenotype score and NP-GPCR conservation. Phenotype score (sum of all phenotype categories associated with each gene) was
plotted against the number of species which possess an NP-GPCR of interest. There is a no statistically significant correlation (Spearman rho) between phenotype
score and NP-GPCR encoding gene conservation. Only genes displaying both a high level of conservation and phenotype score are highlighted.
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efforts for NP-GPCRs in key parasitic nematode systems which
are currently significantly lacking and, (iv) will expedite the
anthelmintic development pipeline via informed target selection.
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Supplementary Figure 1 | Nematode parasite NP-GPCR predicted
transmembrane domains. Sequences with < 4 transmembrane (TM) domains were
excluded from further phylogenetic analysis. Full length sequences are expected to
contain 7 TM domains. Proportion of GPCRs presenting 7 TM domains can be used
as a crude but relevant proxy for NP-GPCR annotation/dataset quality in this
instance.

Supplementary Figure 2–12 | Maximum likelihood phylogenies constructed
using the LG model of evolution (+G +I; with 5 discrete Gamma categories), 500
bootstrap replicates, partial deletion of gaps (80% site coverage cut-off) and the
nearest-neighbour interchange algorithm with no branch swap filter. For rhodopsin-
type GPCR phylogenies, trees were rooted using a selection of C. elegans biogenic
amine receptors.

Supplementary Data Sheet 1 | HMM search output and post-phylogenetic
analysis summary highlighting the specific nematode parasite NP-GPCR encoding
gene IDs identified here.

Supplementary Table 1 | Parasitic nematode species examined in this study.
APN, animal parasitic nematode; HPN, human parasitic nematode; PPN, plant
parasitic nematode; EPN, entomopathogenic nematode. Genomes and
transcriptomes used: Trichuris muris (21), Trichinella spiralis (67), Romanomermis
culicivorax (68), Ascaris suum (22, 23), Brugia malayi (24, 25, 69), Dirofilaria immitis
(26, 70), Necator americanus (71), Haemonchus contortus (27), Bursaphelenchus
xylophilus (72), Globodera pallida (28).

Supplementary Table 2 | Ce-NP-GPCR complements of 10 key nematode
species. A black box indicates the presence of a homologue identified via BLAST
search. A grey box indicates the absence of a gene. GO/NU, Ghrelin-obstatin/
neuromedin U receptor family; NK/NPFF/Orexin, Neurokinin/neuropeptide FF/
orexin receptor family; GnRH, Gonadotropin-releasing hormone receptor family;
GC, Gastrin-cholecystokinin receptor family; VP, Related Vasopressin receptor
family; Sex P, Related to Sex peptide receptor family; Drosophila related, related to
fly ortholog (CG33639); FSHR, follicle-stimulating hormone receptor; DmDopEcR,
Drosophila Dopamine/Ecdysteroid receptor.

Supplementary Table 3 | Ce-NP-GPCR binary expression patterns in parasitic
nematodes. A black box indicates the presence of a NP-GPCR homologue that is
not expressed in a specific life cycle stage (FPKM <1). A red box indicates the
presence of a NP-GPCR homologue expressed in a specific life cycle stage
(FPKM > 1). A grey box indicates the absence of a gene. GO/NU, Ghrelin-obstatin/
neuromedin U receptor family; NK/NPFF/Orexin, Neurokinin/neuropeptide FF/
orexin receptor family; GnRH, Gonadotropin-releasing hormone receptor family;
GC, Gastrin-cholecystokinin receptor family; VP, Related Vasopressin receptor
family; SexP, Related to Sex peptide receptor family; Drosophila related, related to
fly ortholog (CG33639); FSHR, follicle-stimulating hormone receptor; DmDopEcR,
Drosophila Dopamine/Ecdysteroid receptor.

Supplementary Table 4 | Ce-NP-GPCR knock out/RNAi phenotype summary. A
coloured box indicates phenotype linked to each Ce-NP-GPCR encoding gene. A
grey box indicates the absence of a phenotype category. GO/NU, Ghrelin-obstatin/
neuromedin U receptor family; NK/NPFF/Orexin, Neurokinin/neuropeptide FF/
orexin receptor family; GnRH, Gonadotropin-releasing hormone receptor family;
GC, Gastrin-cholecystokinin receptor family; VP, Related Vasopressin receptor
family; SexP, Related to Sex peptide receptor family; Drosophila related, related to
fly ortholog (CG33639); FSHR, follicle-stimulating hormone receptor; DmDopEcR,
Drosophila Dopamine/Ecdysteroid receptor.
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