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Abstract

The precise genetic diagnosis of dystrophinopathies can be challenging, largely

due to rare deep intronic variants and more complex structural variants (SVs).

We report on the genetic characterization of a dystrophinopathy patient. He

remained without a genetic diagnosis after routine genetic testing, dystrophin

protein and mRNA analysis, and short- and long-read whole DMD gene

sequencing. We finally identified a novel complex SV in DMD via long-read

whole-genome sequencing. The variant consists of a large-scale (~1Mb) inver-

sion/deletion-insertion rearrangement mediated by LINE-1s. Our study shows

that long-read whole-genome sequencing can serve as a clinical diagnostic tool

for genetically unsolved dystrophinopathies.

Introduction

Duchenne muscular dystrophy (DMD) and its two allelic

forms, Becker muscular dystrophy and X-linked dilated

cardiomyopathy, are caused by loss-of-function variants

in the DMD gene. The broad spectrum of pathogenic

DMD variants, ranging from single nucleotide variants to

large chromosomal events, are well-described in the litera-

ture.1–4 As small pathogenic variants and large deletions/

duplications almost all occur in coding and/or adjacent

non-coding regions of DMD, most DMD variants can be

detected by routine genetic testing for dys-

trophinopathies,3 which consists of multiplex ligation-de-

pendent probe amplification (MLPA) and/or short-read

sequencing of all exons and flanking regions of DMD.3

Most undetected DMD variants after routine testing are

deep intronic variants,5 which can be identified by mRNA

analysis and genomic sequencing approaches, such as Sanger

sequencing and short-read sequencing. However, some

patients remain without a genetic diagnosis after the use of

these methods due to the presence of very rare and more

complex structural variants (SVs). These complex SVs can
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evade detection by short-read sequencing or even by long-

read sequencing that lacks the read length to cover the SVs.

Newly emerged genetic approaches, including next-genera-

tion mapping2 and long-read sequencing,6 have high sensitiv-

ity to detect large SVs. Here, we performed long-read whole-

genome sequencing in a DMD patient who remained without

a genetic diagnosis after routine testing, dystrophin protein

and mRNA analysis, and short- and long-read whole DMD

gene sequencing. Finally, we identified a novel pathogenic

complex SV in DMD by long-read whole-genome sequenc-

ing, a large-scale inversion/deletion-insertion rearrangement

(almost 1Mb), which was mediated by long interspersed

nuclear element-1 (LINE-1) retrotransposons. This study is a

continuation of our previous work,7 which includes a step-

wise application of various genetic approaches to genetically

diagnose dystrophinopathies, with the exception of the appli-

cation of long-read whole-genome sequencing.

Methods and Results

Patient and routine genetic testing

This study was approved by the Ethics Committee at Pek-

ing University First Hospital. The patient analyzed in this

study is a 9.5-year-old boy with clinical characteristics com-

patible with a DMD phenotype. He presented to Peking

University First Hospital at the age of 6.5 years because of

delayed motor milestones and obvious proximal muscle

weakness since the age of 2 years. Physical examination

confirmed that he had limb-girdle muscle weakness, a posi-

tive Gowers’ sign, calf hypertrophy, and mild bilateral ten-

don contractures at 6.5-years of age. Currently, at the age

of 9.5 years, he is still able to independently walk but pre-

sents with obvious tendon contractures, toe walking, and

waddling gait. Serum creatine kinase was markedly elevated

in every test (range 6,510–11,896 IU/L; normal 25–170 IU/

L). His muscle MRI examination showed a distinctive mus-

cle involvement pattern, the trefoil with single fruit sign at

proximal thigh level, which is highly specific for a dys-

trophinopathy.8 On the basis of his DMD phenotype, we

initiated routine genetic testing for DMD variants, includ-

ing MLPA-based deletion/duplication analysis of DMD and

a short-read sequencing-based gene panel.9 However, rou-

tine testing did not identify any causal variants. Variants in

DMD were described in relation to genomic reference

sequence NC_000023.10 (genome build GRCh37/hg19),

coding DNA reference sequence NM_004006.2, and protein

reference sequence NP_003997.1.

Dystrophin protein and mRNA analysis

As no genetic diagnosis could be confirmed by routine test-

ing, a muscle biopsy was performed and revealed a

dystrophic pattern and absent expression of dystrophin

(Fig. 1), which established the molecular diagnosis of DMD

in this patient. Therefore, we performed a dystrophin mRNA

analysis to detect possible aberrant transcripts. We isolated

mRNA from the remaining muscle tissue and amplified 22

overlapping cDNA fragments of the entire dystrophin mRNA

using RT-PCR (Supplementary Figure S1).7 Gel elec-

trophoresis analysis of the cDNA products showed that the

2nd–15th cDNA fragments were absent (Supplementary Fig-

ure S1C), suggestive of a possible skipping of exons 8/9/10 to

49/50/51. Further cDNA analysis confirmed the skipping of

exons 8–51 from the mature mRNA (Supplementary Fig-

ure S1D), indicating a possible variant involving exons 8–51
at the genomic level. This aberrant transcript (r.650_7542del)

was predicted to create a frameshift and premature termina-

tion codon occurring 33 codons downstream of exon 52

(p.Asp217Glyfs*33), which was consistent with the absent

expression of dystrophin due to nonsense-mediated decay.

Short- and long-read sequencing of the
whole DMD gene

Genomic DNA was isolated from peripheral blood and

paired-end short-read whole DMD gene sequencing was

performed as previously described7 to search for variants

that could cause the exon skipping. No potentially causa-

tive intronic variants were identified. Only one pair of

reads (length 150bp) were found indicating a possible

inversion involving exons 8–51, but they were not suffi-

ciently informative for further validation (Supplementary

Figure S2A). We then performed the long-read sequencing

of the DMD gene (average read length 1377bp; average

read depth 191X) using a previously described protocol.7

Ten reads with an average length of 1938bp indicated a

possible inversion involving exons 8–51, g.(31767103-

31767576)_(32749380-32749897)inv (Supplementary Fig-

ure S2B), suggesting that its breakpoints would be

involved in LINE-1s as both the genomic regions

chrX:32749016-32755046 and chrX:31767278-31768677

were classified as a LINE-1 annotated by RepeatMasker

(http://www.repeatmasker.org/cgi-bin/WEBRepeatMaske

r). However, we could only successfully validate the 30

breakpoint region (Fig. 2C) according to the information

provided by those 10 reads. The low coverage and depth

of the 50 breakpoint region was not informative enough

for further Sanger validation, due in part to a possible

large deletion event around the 50 breakpoint region (Sup-

plementary Figure S2B).

Long-read whole-genome sequencing

For further precise the identification and validation of the

possible inversion, we performed whole-genome long-read
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sequencing using the Nanopore PromethION (Oxford

Nanopore, Oxford, UK) sequencer. Reads (average length

21,173bp; average depth 15X) were aligned to the human

genome using minimap2. Small variants and SVs were

called using Clairvoyante and Sniffles, respectively.6 We

found that 13 reads with the average length of 62,738bp

not only indicated the possible inversion but also a dele-

tion event around the 50 breakpoint region (Fig. 2A).

After Sanger sequencing, we finally confirmed the exact

sequence of the 50 breakpoint region and discovered that

it was a deletion-insertion event (Fig. 2D). Therefore, this

complex SV, 982,323bp inversion flanked by 3,719bp

deletion-insertion, was eventually described as follows

(Fig. 1):

g.[31767573_32749896inv;31767575A>G;32749897_327536
16delinsGGACATGGATGAAGTGGGAAGTCATCATTCT-

CAACAAATTAACACAGGAACAGAAAACCAAAC]; c.[6

50-36206_650-32487delinsGTTTGGTTTTCTGTTCCTGT

GTTAATTTGTTGAGAATGATGACTTCCCACTTCATCC

ATGTCC;7543-19710T>C;650-32486_7543-19708inv]. The
inserted sequence at the 50 breakpoint was completely

homologous to a region in LINC02343 (BLAT homology

search, chr13:34940968-34941030, GRCh37/hg19). Both of

the 400bp sequences around the 50 and 30 breakpoint

regions were classified as a LINE-1 annotated by Repeat-

Masker (Fig. 1B). This novel complex SV was absent from

a healthy control (Fig. 2B and Supplementary Figure S2)

and several databases as well, including the Database of

Genomic Variants (DGV; http://dgv.tcag.ca/dgv/app/home

), Genome Aggregation Database (gnomAD; https://gno

mad.broadinstitute.org/), ClinVar (https://www.ncbi.nlm.

nih.gov/clinvar/), and Leiden Open Variation Database

(LOVD; https://databases.lovd.nl/shared/genes/DMD).

Discussion

The DMD gene, spanning over 2.5Mb, is the largest gene

described in the human genome, more than 99% of

which is the intronic region.10 Transposable elements that

can mediate gross genomic rearrangements are relatively

frequent in the intronic region of DMD.11,12 The above

structural complexity of DMD underlies the complex

spectrum of pathogenic DMD variants. Thus, the identifi-

cation of the full spectrum of DMD variants demands the

application of various genetic approaches in addition to

the routine testing.1,3,4,11

Figure 1. Graphic representation of the aberrant splicing of DMD caused by the complex structural variant. The complex structural variant,

982,323bp inversion flanked by 3,719bp deletion-insertion, caused the skipping of exons 8–51 from the mature mRNA. The aberrant transcript

was predicted to create a frameshift and premature termination codon, which was consistent with the absent expression of dystrophin observed

on immunostaining. (A) reference genome; (B) patient genome (NC_000023.10); (C) dystrophin pre-mRNA; (D) dystrophin mRNA (NM_004006.2).

(E) and (I) hematoxylin and eosin staining (920); (F) and (J) immunohistochemical staining for dystrophin-N (920); (G) and (K) dystrophin-C (920);

(H) and (L) dystrophin-R (920). (E)–(H), a healthy control; (I)–(L), the patient. L1, LINE-1.
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It has been increasingly reported that deep intronic

variants, the main source of the undetected variants after

routine testing, can be identified via dystrophin mRNA

analysis.5 Hence, we performed dystrophin mRNA analy-

sis in a DMD patient without a pathogenic variant identi-

fied through routine testing and found an informative

aberrant splicing event. Then short- and long-read whole

DMD gene sequencing were performed to search for pos-

sible causal variants, which revealed a potential large-scale

inversion in DMD. However, as both breakpoints of the

complex SV locate in LINE-1s, they are hard to study via

short reads, and sometimes even difficult to study via

Figure 2. Identification and validation of the complex structural variant in DMD. (A) An integrative genomics viewer screenshot of long-read

whole-genome sequencing showing that 13 reads indicating an inversion and a deletion event around the 50 breakpoint region (indicated in reads

with black frame). (B) Gel electrophoresis analysis of the PCR products of the genomic breakpoint regions using primers designed for the complex

structural variant in the patient (positive) and healthy control (negative). Successful Sanger validation of the 30 (C) and 50 (D) breakpoint regions.
Ctr1, a healthy control; Ctr2, a reagent control (blank).
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long reads that lack the read length to cover the SV and

its breakpoints sufficiently. Therefore, we could not fur-

ther reconstruct the complex SV according to the infor-

mation provided by long-read whole DMD gene

sequencing. We ultimately validated the complex SV

using longer reads obtained from long-read whole-gen-

ome sequencing, highlighting the significance of long-read

whole-genome sequencing in the identification and recon-

struction of large-scale complex SVs in DMD. It is imper-

ative to improve the detection rate and accurate

reconstruction of pathogenic DMD variants for various

reasons, including genetic counseling, prenatal diagnosis,

and disease management in dystrophinopathies.

LINE-1s are very common retrotransposons, typically

of ~6 kb in length and occupying ~17% of the human gen-

ome.13 If a de novo insertion of a LINE-1 has a deleterious

effect on its host gene, the LINE-1 may be inactivated via

silencing effects and accumulation of mutations.13 Further-

more, LINE-1s are hard to detect with the commonly used

short-read sequencing. Hence, diseases related to LINE-1

insertions have been rarely reported. Only seven cases with

dystrophinopathies caused by pathogenic LINE-1 inser-

tions in DMD have been reported. Four of the insertions

are in exons causing dystrophinopathies by exonic disrup-

tions,14–17 one in 50 untranslated region of DMD causing

dystrophinopathies by affecting the transcription process

or the stability of mature mRNA,18 and two in introns

causing dystrophinopathies by partial exonization of them-

selves.7,11 The mutational event related to LINE-1 identi-

fied in our case is a genomic rearrangement mediated by

the retrotransposition activity of two LINE-1s in deep

intronic regions. To our knowledge, this is the first report

of a LINE-1-meditated large-scale complex SV in DMD

shown to cause a dystrophinopathy, expanding the genetic

spectrum of dystrophinopathies.
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Supporting Information

Additional supporting information may be found online

in the Supporting Information section at the end of the

article.

Figure S1. cDNA analysis of the DMD muscle transcript.

(A) The entire dystrophin mRNA (NM_004006.2) was

divided into 22 overlapping cDNA fragments for RT-PCR

amplification. (B) Gel electrophoresis analysis showed that

the 22 overlapping cDNA fragments were successfully

amplified in healthy control. (C) Gel electrophoresis anal-

ysis showed that the 2nd–15th cDNA fragments were

absent in the patient, suggestive of skipping of exons 8/9/

10 to 49/50/51 from the mature mRNA. (D) Further

cDNA analysis confirmed the skipping of exons 8–51
from the mature mRNA in the patient. F, fragment.

Figure S2. Indications for the complex structural variant

in DMD found in short- and long-read whole DMD gene

sequencing. (A) An integrative genomics viewer (IGV)

screenshot of short-read whole DMD gene sequencing

showing that there was one pair of reads indicating a pos-

sible inversion involving exons 8–51 (indicated in the red

pair-reads; patient track). No short reads indicating possi-

ble disease-causing structural variants were found in a

healthy control track. (B) An IGV screenshot of long-read

whole DMD gene sequencing showing 10 reads (not fully

presented in the IGV screenshot) indicating a possible

inversion involving exons 8–51 (indicated in the colorful

reads with black frame; patient track). No long reads

indicating possible disease-causing structural variants were

found in a healthy control track.
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