Supplementary Materials

Figure S1. Sequence identity and similarity scores for zebrafish and human apolipoproteins. Percent similarity and identity between zebrafish and human orthologs was determined by

ClustalW (v1.83) multiple sequence alignment with standard settings.

Figure S2. In situ hybridization analysis of *apoA-Ia* and *apoA-Ib* does not reveal maternal transcripts at the 8-cell (C) stage, and no induction of transcription at 30% epiboly (E). No staining is present in zebrafish treated with sense probes at any stage. Larvae are wild type (2–5 dpf treated with PTU) and nacre-/- (6 dpf). Experiments were performed in triplicate; $n \ge 5$ larvae for each probe in every experiment. S: somite, dpf: days post-fertilization.

Figure S3. *apoBa*, *apoBb.1*, and *apoBb.2* in situ hybridization does not reveal mRNA transcripts at the 8-cell (C) stage, 30% epiboly (E), 80% E. No staining was observed for sense probes. Experiments were performed in triplicate on wild type (2–5 dpf treated with PTU) and nacre-/- (6 days post-fertilization (dpf)) larvae; $n \ge 5$ larvae for each experiment.

Figure S4. *apoEa* has no or low expression in 8-cell (C), 30% epiboly (E), or 80% E larvae; a*poEb* mRNA is not present in 8-C embryos. Sense probes show no staining at any stage (S: somite). In situ hybridization (ISH) was performed in wild type and nacre-/- zebrafish. Larvae from 2 to 6 days post-fertilization (dpf) were treated with hydrogen peroxide. ISH was performed in triplicate; $n \ge 5$ larvae for each experiment.

Figure S5. Zebrafish *apoA-IVa*, *apoA-IVb.1*, *apoA-IVb.2*, and *apoA-IVb.3* mRNA are not revealed at the 8-cell (C) stage, 30% epiboly (E), or 80% E, as measured by in situ hybridization (ISH). Experiments were performed in triplicate ($n \ge 5$ larvae each) on wild type (2–5 dpf PTU treated) and nacre-/- (6 dpf). No staining was observed with sense probes for any of the *apoA-IV* genes at any stage. S: somite. Data for *apoA-IVb.1*, *apoA-IVb.2* sense and antisense probes and *apoA-IVb.3* sense probe at 30% E not shown.

Figure S6. SDS-PAGE gel of total larval protein from 2 and 15 days post-fertilization (dpf) larvae (20–30 pool larvae per sample) stained with GelCode. Red boxes represent the regions of the gel (≥ 250 kDa) excised for liquid chromatography mass spectrometry ApoB protein analysis.

Figure S7.

A high-fat meal does not change zebrafish *apoA-Ia*, *apoA-Ib*, *apoBa*, *apoB.1*, *apoEa*, *apoEb*, or *apoA-IVb.3* mRNA expression in the gut (intestine, liver, pancreas). Real-time PCR quantification of apolipoprotein transcriptional response in the 6-dpf zebrafish gut to 1, 2, 3, or 4 hours of a 10% chicken egg yolk feed (n = 3; 10 pooled larvae per n).

Figure S8.

Representative images of real-time PCR reactions run on 1% agarose gels to verify the presence of a single amplicon; n= 4 shown per primer set.

Figure S9.

Representative images of *Tg(hsp70:apoA-IVb.1:mCherry*) larvae ~18 hours post-heat shock. mCherry signal represents mCherry protein; mCherry signal in the digestive organ overview is visible in the pronephros. Larvae are 7 days post-fertilization, anesthetized in tricane and immobilized in 1.2% low melt agarose. Imaging was conducted with a 25X water immersion objective on a Leica SP5 confocal microscope. Scale bars represent 10 microns.

Figure S1.

Top Right: % Identity

		apoA-la	apoA-lb	APOA-I	ароВа	apoBb.1	apoBb.2	APOB	ароЕа	apoEb	APOE	apoA-IVa	apoA-IVb.1	apoA-IVb.2	apoA-IVb.3	APOA-IV
		(Zebrafish)	(Zebrafish)	(Human)	(Zebrafish)	(Zebrafish)	(Zebrafish)	(Human)	(Zebrafish)	(Zebrafish)	(Human)	(Zebrafish)	(Zebrafish)	(Zebrafish)	(Zebrafish)	(Human)
apoA-la	(Zebrafish)	100	38.5	49.1	2.4	2.7	2.9	2.2	19.6	18.5	18.9	45.5	52.7	52.3	52.3	34.5
apoA-lb	(Zebrafish)	61.5	100	45.5	2.2	2.4	2.5	1.9	17	15.6	15.7	37.7	46.2	45.5	46.2	31
APOA-I	(Human)	24.7	22	100	2.4	2.6	3.3	2.2	18.7	20.9	18.6	42.7	47.2	46.4	46.8	32
ароВа	(Zebrafish)	0.8	0.7	0.9	100	30.2	19.5	51.6	1	1	1	0.9	0.8	0.7	8.0	1
apoBb.1	(Zebrafish)	1.1	0.9	1	49.5	100	30.2	42.5	1	1	1.2	0.9	1.1	1	1	1.4
apoBb.2	(Zebrafish)	1.2	0.9	1.4	31.5	42.4	100	27.6	1	1.2	1	1.3	1.4	1.4	1.3	1.1
APOB	(Human)	0.9	0.8	0.9	32	24.4	16.4	100	0.9	1.2	0.9	0.8	1.1	1.1	1	1.3
ароЕа	(Zebrafish)	45.5	40.4	41.4	2.6	2.8	3.2	2.4	100	43.1	23	41.5	49.5	50.2	50.9	32.4
apoEb	(Zebrafish)	43.4	40.4	41.8	2.6	2.8	3.2	2.4	70.1	100	24.4	40.9	48.4	50.2	50.2	35.6
APOE	(Human)	38.2	35.2	37.1	2.7	2.9	3.4	2.3	48.9	49.7	100	32.8	36.6	37.2	37.9	30.5
apoA-IVa	(Zebrafish)	17.8	15.5	17.6	2.2	2.4	3.2	2.2	20.7	19.2	13.6	100	39.7	38.9	38.1	15.8
apoA-IVb.1	(Zebrafish)	24.6	20.3	26.2	2.4	2.8	3.4	2.3	22.7	22.4	18.6	66.5	100	93.3	91.4	19.1
apoA-IVb.2	(Zebrafish)	24.6	19.9	26.2	2.4	2.8	3.4	2.3	24.2	23.1	18.6	66.9	96.5	100	95.7	18.6
apoA-IVb.3	(Zebrafish)	24.2	20.7	24.3	2.5	2.8	3.4	2.3	24.2	21.7	18.6	66.5	96.1	98.8	100	18.3
APOA-IV	(Human)	16.1	12.9	16.5	3.2	3.8	3.7	3.6	13.4	13.3	14.4	32.2	36.1	35.6	36.1	100

Bottom Left: % Similarity

Figure S2.

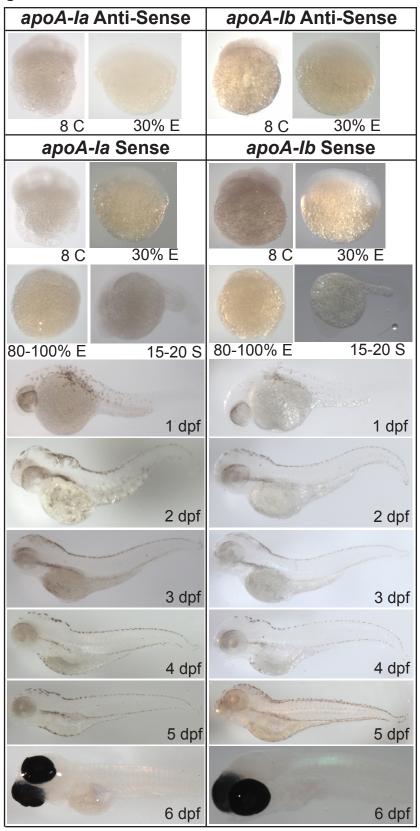


Figure S3.

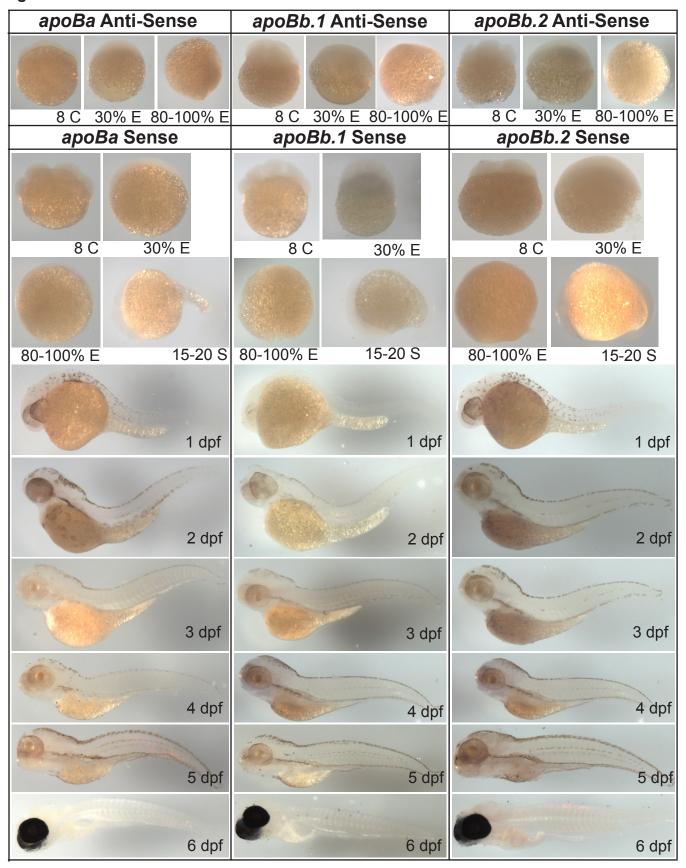


Figure S4.

<i>apoEa</i> An	ti-Sense	apoEb Anti-Sense					
8 C 30% E apoEa \$	80-100% E Sense	8 C apoEb	Sense				
	Janes .						
8 C	30% E	8 C	30% E				
80-100% E	15-20 S	80-100% E	15-20 S				
	1 dpf		1 dpf				
1	2 dpf		2 dpf				
	3 dpf	1	3 dpf				
	4 dpf	in	4 dpf				
San	5 dpf	6	5 dpf				
0	6 dpf		6 dpf				

Figure S5.

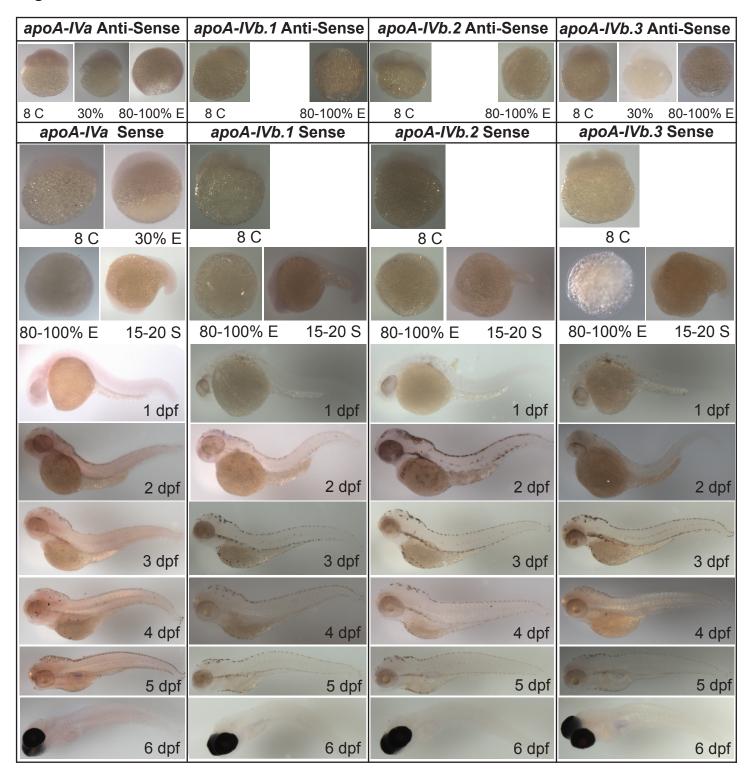


Figure S6.

Figure S7.

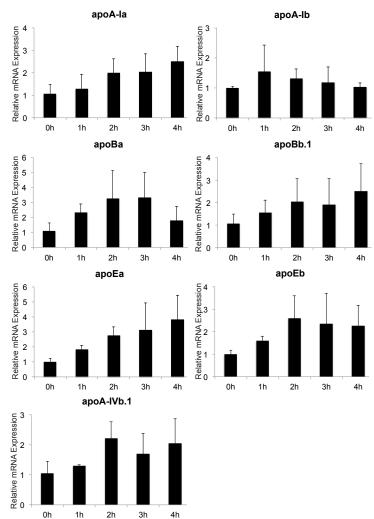


Figure S8.

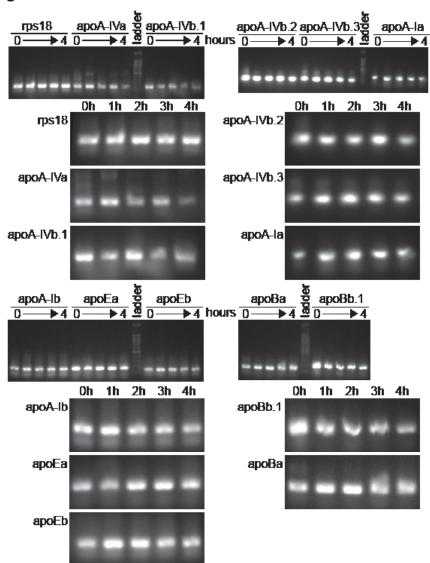


Figure S9.

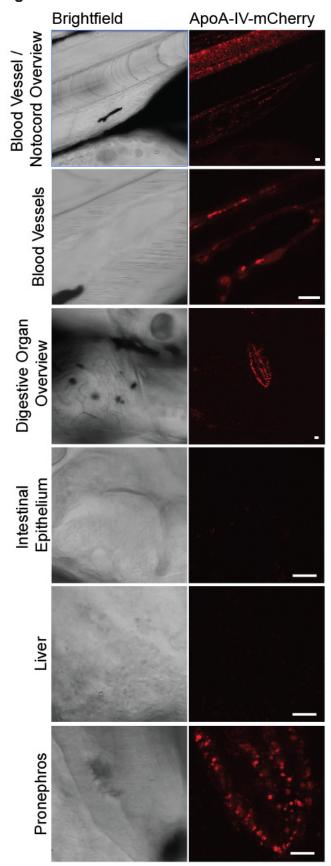


Table S1. Accession numbers of zebrafish and human apolipoproteins genes.

Gene	Species	Accession Number(s)	Historic Name	Chromosome
apoA-Ia	Danio rerio	ENSDARG00000012076	n/a	5
apoA-Ib	Danio rerio	ENSDARG00000086583	n/a	15
ароВа	Danio rerio	ENSDARG00000042780	apoB (2)	17
		(for LC-MS/MS: Q5TZ29)		
apoBb.1	Danio rerio	ENSDARG00000022767,	ароВЬ	20
		(for LC-MS/MS: E7FBD3)		
apoBb.2	Danio rerio	ENSDARG00000075016,	apoB like	20
		(for LC-MS/MS: F1QMP5)		
apoEa	Danio rerio	ENSDARG00000086370	n/a	19
apoEb	Danio rerio	ENSDARG00000040295	n/a	6
apoA-IVa	Danio rerio	ENSDARG00000086281	apoA-IV (3)	19
apoA-IVb.1	Danio rerio	ENSDARG00000049298	apoA-IV	16
apoA-IVb.2	Danio rerio	ENSDARG00000020866	apoA-IV like	16
apoA-IVb.3	Danio rerio	ENSDARG00000094929	apoA-IV (4)	16
APOA-I	Homo sapiens	NP_000030.1	n/a	11
APOB	Homo sapiens	NP_000375.2	n/a	2
APOE	Homo sapiens	NP_000473.2	n/a	19
APOA-IV	Homo sapiens	NP_000032.1	n/a	11

Table S2. Primers used to synthesize in situ hybridization probes.

Gene	Primers
ApoA-Ia	F: TCG TGG CTC TTG CAC TGA C
11p 011 1w	R: TCC ATG TAG GGC TCC ATG C
ApoA-Ib	F: CTC GCC CTC ACC GTA TTC CT
	R: CGA ACT TCT GGA GGG CCT TG
АроВа	F: TCA GTT TCC CGT CCC TCA C
np ob w	R: AAG ATC ATC CTG GGG AAA GC
ApoBb.1	F: GTC GTT ATG CTT TTG CAC CA
	R: CGA TGG CAT TGT CAA TCA AG
ApoBb.2	F: TCC ATG CCA ATC TCA ATC AAG TC
T · · ·	R: AGT CCA ACA GGC TGC CAT AC
ApoEa	F: GAA CGA CTG CGA TCC AAG C
<i>r</i>	R: GAG CTC CTG CAT TCG TGA GT
ApoEb	F: ACG GCA TGG TGC AAA ACA TC
1	R: TGT CCA GTA AAG GAC AGT GC
ApoA-IVa	F: GAA CGA GTC ACA CGG CAT GT
1	R: CCA GCT TTG CCT TCA GCT CT
ApoA-IVb.1	F: GTC TTA CAC CCT ATG CTG AAG AC
T ·	R: GAACAA AAC CAA TCC CCA ATT CC
ApoA-IVb.2	F: AGG AGT TCC AGA AGA CCG TGA C
1	R: GCA GCA GTT TTC AAA AGT CTG TTG G
ApoA-IVb.3	F: ACA GAC TAA AAG TGA AGA CCA TGA AG
1	R: G GAT CAA ATA TGT CAA ATT TCG AAG TTT GTG

Table S3. Real-time PCR primers used in this study.

Gene	Pri	mers									
							~=~				
ApoA-Ia	F:	CCA	ATT	TGT	TCC	AGG	CTG	AT			
1	R:	CAA	CTG	GGT	GGA	GAT	GGT	CT			
ApoA-Ib	F:	GCC	CTA	CGT	CCA	GGA	GTA	CA			
117 011 10	R:	TTA	CTC	CTT	GCT	GGC	GAA	CT			
АроВа	F:	TGA	CCT	CAA	GCA	CGT	CAC	TC			
прови	R:	GGG	GAA	AAC	CAG	CAC	TTG	TA			
ApoBb.1	F:	GCT	TGA	AGG	AAC	CAG	CAG	TC			
провол	R:	AGT	TGG	TGG	TTG	GCA	TTA	GC			
ApoEa	F:	GCA	GAA	CTC	TGA	TGA	GCT	CAA	GAA	CAA	AGC
117020	R:	AAG	TAA	GGC	TCC	AGA	CGA	TCC	TTC	ACA	TCT
ApoEb	F:	CTC	TTG	TGG	TAT	TCT	TTG	CTC	TGG	CAG	TTT
117020	R:	TTG	CAC	CAT	GCC	GTC	AGT	TTG	TGT	GTT	GAG
ApoA-IVa	F:	GAC	CCA	GCT	CAA	GCC	TTA	ΤG			
117 011 17 4	R:	GAC	CCA	GCT	CAA	GCC	TTA	TG			
ApoA-IVb.1	F:	GAG	TTC	CAG	AAA	ACT	GTG	AGT	CCT	CTA	GCT
inpoint it out	R:	TCG	TAC	AGA	GAG	ATC	AGC	TGG	TCT	TTT	AGG
ApoA-IVb.2	F:	TTG	TGG	TCT	TTG	CAC	TTG	СТ			
11011 17 0.2	R:	TCA	TCT	TGA	CGG	TTT	CCT	CTG			
ApoA-IVb.3	F:	TGA	AGG	TTC	TTG	TGG	TGC	TC			
117 011 17 0.0	R:	AAT	GGA	TTC	CTC	TGC	GGT	TT			
18S	F:	TGC	AGA	ACC	CTC	GCC	AGT	ACA	AAA	TCC	CAG
	R:	CCA	GAA	GTG	ACG	GAG	ACC	ACG	GTG	AGC	CCT