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Abstract: The transforming growth factor-β (TGF-β) signaling pathway plays multiple regulatory
roles in the tumorigenesis and development of cancer. TGF-β can inhibit the growth and proliferation
of epithelial cells and induce apoptosis, thereby playing a role in inhibiting breast cancer.
Therefore, the loss of response in epithelial cells that leads to the inhibition of cell proliferation due
to TGF-β is a landmark event in tumorigenesis. As tumors progress, TGF-β can promote tumor
cell invasion, metastasis, and drug resistance. At present, the above-mentioned role of TGF-β is
related to the interaction of multiple signaling pathways in the cell, which can attenuate or abolish
the inhibition of proliferation and apoptosis-promoting effects of TGF-β and enhance its promotion
of tumor progression. This article focuses on the molecular mechanisms through which TGF-β
interacts with multiple intracellular signaling pathways in tumor progression and the effects of these
interactions on tumorigenesis.

Keywords: breast cancer; transforming growth factor-β; epithelial-to-mesenchymal transition;
signaling pathway

1. Introduction

Breast cancer is a common cancer in women worldwide with increasing incidence and mortality
rates. In Latin America, 200,000 women are diagnosed with breast cancer per year, with more than 52,000
deaths annually [1–3]. The high incidence and mortality rate of this disease have led to an increase in
research meant to combat this public health issue. In order to accurately predict the clinical outcome
of breast cancer, several types of scoring systems are used, based on histopathological appearance,
anatomical location, molecular alterations, disease presentation, and clinical features. Moreover, in
a recent study, molecular classification was revealed to be especially important in predicting clinical
outcome, as it was associated with drug resistance [4]. According to current information, breast cancer
can be divided into six major subgroups based on their molecular portrait including normal-like,
HER-2 positive, luminal A and B type, basal-like, and claudin-low. The normal-like subgroup has
an expression profile similar to that of noncancerous breast tissue. The overexpression of ErbB2,
a receptor-like tyrosine kinase oncogene also known as human epidermal growth factor receptor
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2 (HER-2), influences several signaling pathways and promotes dysregulated growth, oncogenesis,
metastasis, and chemoresistance in breast cancer. The HER2 overexpression has been reported with
poor prognosis, especially in patients without chemotherapy and target therapy [5]. The luminal
A and B breast cancer subtypes generally express luminal cytokeratin 8/18 and the estrogen receptor,
but at different levels. The luminal A subtype is generally characterized by higher estrogen receptor
(ER) expression and lower HER-2 expression. In contrast with the luminal A subtype, luminal B
breast cancer is usually characterized by lower ER expression and a higher Ki67 index, leading to
advanced breast cancers with high proliferation rates and a worse prognosis. The basal-like subtype
is characterized by the expression of biomarkers in the basal/myoepithelial cells of normal breast
tissue such as cytokeratin 5/6, cytokeratin 14, cytokeratin 17, vimentin, P-cadherin, and p63 [6–9].
The claudin-low subtype is characterized by the low expression of cell–cell adhesion molecules
including claudins 3, 4, and 7, occludin, and E-cadherin [10,11]. This subtype is also characterized
by the presence of epithelial-to-mesenchymal transition (EMT) processes and stem cell-associated
features [12]. The basal-like and claudin-low subtypes are commonly found in triple-negative breast
cancer (TNBC), which is characterized by the lack of hormone receptors such as PR, ER, and HER-2,
and is associated with higher recurrence and distant metastasis rates. The expression of estrogen
receptor (ER) and the progesterone receptor (PR) are important predictive markers for hormone
therapy [13]. These receptors can be used as targets for adjuvant endocrine therapy in order to
regulate breast carcinogenesis. Patients who receive this type of therapy have been shown to have
a better prognosis including overall survival, disease-free survival, and time to treatment failure [14].
On the other hand, the lack of PR expression in breast cancer leads to a more aggressive progression
and a poorer prognosis. Due to the emergence of molecular analysis methods, the detailed mechanisms
of tumorigenesis in undifferentiated phenotypes are essential in providing novel targets for treatment.

2. Epithelial-to-Mesenchymal Transition in Breast Cancer

Breast carcinogenesis is a complex, multiple step process, involving several mechanisms
that mediate cell proliferation, differentiation, apoptosis, epithelial-to-mesenchymal transition,
and angiogenesis [15]. In breast cancers with a poorly differentiated phenotype, the tumor cell is
characterized by stem cell-like features, which arise due to the EMT process. This promotes the process
of dedifferentiation and leads to a worse prognosis [16]. For example, EMT markers such as vimentin,
N-cadherin, and cadherin-11, have been reported to be upregulated in triple-negative breast cancer
(TNBC), thereby promoting extracellular matrix remodeling via matrix metallopeptidases (MMPs)
and decreasing the expression of epithelial markers, finally leading to a poor clinical outcome [17].
In previous studies, invasion and metastasis were shown to be the major risk factors associated with
a poor clinical outcome, which are also related to the EMT process [18–21]. The transcription factors that
are involved in the EMT process such as SNAIL1/2, ZEB1/2, TWIST1/2, and FOXC1/2 play an important
role in mediating embryogenesis and carcinogenesis by regulating the expression of E-cadherin
(Table 1) [22]. Currently, the EMT program is divided into three types: embryogenesis, fibrosis,
and tumorigenesis. Type 1 and 2 EMT contribute to organ development and tissue regeneration [23].
Type 3 EMT is involved in breast carcinogenesis and has been reported to be significantly associated
with local invasion and distant metastasis [24,25]. It is also involved in regulating several cellular
functions including cellular adhesion, migration, proliferation, differentiation, survival, and metastasis
through several processes such as loss of epithelial polarity, detachment of the basement membrane,
and acquisition of mesenchymal features [18,19,26]. Advanced breast cancer is often characterized
as having stem cell-like features, which appear due to the EMT process. This includes loss of hormone
receptors and cell–cell interaction proteins. In vitro, the estrogen knockdown reporter model of
MCF-7 showed that the loss of ER expression was significantly associated with the EMT process,
thereby promoting cell proliferation and migration by increasing the extracellular matrix and reducing
matrix metalloproteases [27]. As such, EMT was thought to be an important step in carcinogenesis
and the formation of distant metastasis [28,29]. In addition, the stem cell-like features induced by
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EMT were shown to contribute to drug resistance [30]. Several EMT-related signaling pathways play
an important role in drug resistance in breast cancer cells. Cells undergoing EMT show similar cancer
stem cell function including an increase in drug efflux pumps and anti-apoptotic effects. The two
features increase drug resistance in cancer cells. Aggressive TNBC tumors such as metaplastic breast
cancer are usually characterized by resistance to chemotherapy due to the activation of the EMT
process, which is associated with worse outcomes [31]. The claudin-low subtype is also linked to
metaplastic breast cancer due to the low expression of GATA3-regulated genes, which are involved in
both the EMT process and cell adhesion. Notably, six critical components including TGF-β signaling,
PI3K/AKT/mTOR signaling, regulatory factors, exosomes, and angiogenesis, were reported to regulate
EMT by genetic or epigenetic alterations, thereby altering interaction with the extracellular matrix in
breast carcinogenesis.

Table 1. List of epithelial-to-mesenchymal transition regulators in cancer progression.

Family Transcription Factor Role Ref.

Zinc-finger domain

SNAIL Snail blocks the cell cycle and confers resistance to cell death. [32]

SLUG Downregulation of E-cadherin expression occurs during
the EMT, a process also exploited by invasive cancer cells. [33]

ZEB1 Represses E-cadherin promoter and induces EMT by
recruiting SMARCA4/BRG1. [34]

ZEB2 ZEB2 protein is involved in chemical signaling pathways that
regulate early growth and development. [35]

bHLH TWIST1 Overexpression of TWIST1 induces EMT, a key process in
the metastasis formation of cancer. [36]

FOX
FOXC1

FOXC1 partially promotes tumor metastasis by regulating
EMT programs to support microvascular invasion, thereby

increasing angiogenesis.
[37]

FOXC2 Transcriptional activator that are upregulated in breast cancer. [38]

Homeobox

SIX1
Six1 can promote the metastasis of human tumors,
and the increased expression of Six1 can be used

as an indicator for predicting breast cancer metastasis.
[39]

LBX1
LBX1 is upregulated in the unfavorable estrogen receptor

(ER)/progesterone (PR)/HER2 triple-negative
basal-like subtype.

[40]

cadherin
E-cadherin E-cadherin an active suppressor of invasion and growth of

many epithelial cancers. [41,42]

N-cadherin It is dependent on its association with the actin-cytoskeleton
and is mediated through interactions with catenin proteins. [43]

3. The Role of the TGF-β Pathway in Breast Cancer

Transforming growth factor-β (TGF-β), a multifunctional cytokine, directly regulates cell
development, differentiation, homeostasis, proliferation, and transformation. TGF-β signaling plays
an important role in the activation of the EMT and interacts with downstream signaling pathways
in breast tumorigenesis [44]. The activation of TGF-β induces both canonical SMAD2/3-dependent
signaling and non-SMAD signaling in order to promote the EMT process. In SMAD-mediated
signaling, TGF-β directly binds to the membrane receptors, leading to the formation of the SMAD
complex by activating SMAD2/3/4. In non-SMAD signaling pathways, TGF-β triggers the AKT/PI3K
pathway, Ras/Raf/MEK/ERK signaling pathway, and Wnt/β-catenin signaling pathway in order to
induce the expression of epithelial proteins [45,46]. Moreover, the TGF-β type I receptor interacts with
the Src homology 2 domain-containing transforming protein 1 (SHC1) to activate the growth factor
receptor-bound protein 2 (GRB2) and son of sevenless (SOS) in order to induce Ras/Raf/MEK/ERK
signaling. In addition, TGF-β may phosphorylate Par6 directly via the type II receptor, thereby
promoting the degeneration of RhoA via Smurf1 and inducing the dissolution of the tight junctions [47].
Par6 plays an important role in stress fiber formation, thereby regulating cell polarity and junction
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stability. In breast carcinogenesis, the partitioning defective 6 (PAR6) promotes the loss of polarity
via TGF-β-dependent signaling and induces mesenchymal-like invasive mammary tumor cells.
Notably, studies have shown that by blocking Par6 signaling, the EMT process can be curbed [48].
These results were confirmed by the formation of ZO-1-positive epithelium-like structures in breast
carcinogenesis. Moreover, distant metastasis was also suppressed [20,48]. The TGF-β receptor also
induced the expression of three Ras-related GTP-binding proteins, namely RhoA, RAC1, and CDC42,
leading to cytoskeletal changes by regulating the actin cytoskeleton in response to extracellular
signals [49]. In addition, TGF-β interacts with the PI3K/AKT pathway for translational regulation.
In the study by Fei Huang et al. [50], HER2/EGFR signaling switched the TGF-β function in breast cancer
to activate phosphorylation of Smad3 through AKT, promoting epithelial–mesenchymal transition
and migration. TGF-β also interacts with Wnt signaling via β-catenin. In the study by Anders
Sundqvist et al. [51], TGF-β triggered Wnt7a/7b via Smad2/3, enhancing TGF-β-induced EMT of
the mammary epithelial cells, and the components of the WNT signaling pathway were enriched within
the late TGF-β target genes. Moreover, glycogen synthase kinase-3β (GSK3β) inhibits the β-catenin
in the nucleus and activates the lymphoid enhancer-binding factor 1 (LEF) and T cell factor (TCF),
thereby inducing the EMT process [52]. In an inducible c-fos estrogen receptor (FosER) cell model,
β-catenin and TGF-β signaling cooperated to induce a mesenchymal phenotype during the EMT
process. Inhibition of both signaling pathways in FosER cells led to a reversion from a mesenchymal
phenotype to a polarized epithelial phenotype [53].

4. Relevant Regulatory Factors of EMT

The activation of EMT is characterized by the decrease in the expression of epithelial cell
markers such as E-cadherin, occludin, tight junction proteins, and desmoglein, which are inhibited
by transcription, resulting in a loss of adhesion between cells. Moreover, it is accompanied by
a simultaneous upregulation of mesenchymal cell markers including N-cadherin, cytokeratin, actin,
and fibronectin [54]. E-cadherin is an important molecule in the development of EMT and its
downregulation is closely related to tumor invasion and metastasis. Studies have found that disruption
of E-cadherin expression in intercellular adhesions causes tumor cell metastasis [55]. In addition,
E-cadherin loss also induced multiple transcription factors such as Twist for E-cadherin loss-induced
metastasis, effectively inducing EMT and causing tumor cell metastasis. The transcription factors
including Snail, Slug, ZEBl/ZEB2, and Twistl/Twist2 directly act on the E-box sequence of the CDH1
promoter to inhibit transcription and promote EMT activation [56]. Other transcription factors such
as SIX Homeobox 1 (Six1), Goosecoid Homeobox (GSC), and Forkhead Box C2 (FOXC2) also promote
EMT by indirectly inhibiting CDH1 [57,58]. However, the detailed mechanism is unclear. In the MCF7
breast cancer cell line, Six1 induces tumor-associated EMT by activating the TGF-β signaling pathway
in order to downregulate E-cadherin. Furthermore, the SOX4 gene was found to be abnormally
overexpressed in clinical specimens of human breast cancer. After overexpressing SOX4, human
mammary epithelial cells leads to mesenchymal cell characteristics, enhanced cell migration as well
as invasion [59]. SOX4 promotes EMT activation by upregulating the expression of the epigener of
zeste 2 polycomb repressive complex 2 subunit (EZH2) [60]. Moreover, the downregulation of cellular
communication network factor 6 (CCN6) is associated with EMT activation in breast cancer cells as well
as with axillary lymph node metastasis in breast cancer. Knockdown of CCN6 in breast cancer cells
upregulates Snail and ZEB1 expression at the RNA and protein level by activating the IGF1 receptor
signaling pathway. It also indirectly inhibits the expression of epithelial cell markers such as E-cadherin
and entry to initiate EMT activation [61]. In addition, inhibition of the growth family member 5
(ING5) leads to a decrease in the EMT conversion of breast cancer cells by inhibiting the P13K/AKT
signaling pathway [62]. Moreover, studies have shown that cytoplasmic polyadenylation element
binding protein 1 (CPEB1) inhibits breast cancer metastasis by reducing the expression of matrix
metallopeptidase 9 (MMP9) mRNA [63].
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EMT activation is regulated by precise intracellular signal transduction mechanisms,
where a variety of extracellular signals bind to specific receptors on the cell surface. EMT is accomplished
by transducing the signal into the cell and activating the relevant transcription factors in order to
regulate gene expression through the intracellular signal transduction pathway. The occurrence of
EMT involves multiple signaling pathways including TGF-β, PI3K/AKT, Ras/MAPK, Wnt, Notch,
and Hedgehog pathways. These signaling pathways function by activating related transcription factors.
For example, TGF-β activates Snail/2, Twist1, and ZEB1/2, and upregulates FOXC2, thereby inducing
EMT activation [54]. In addition, the Notch, Hedgehog, and Wnt pathways act on EMT by activating
Snail1/2. TGF-β, a canonical and non-canonical Wnt3 signaling pathway, synergistically induces EMT
in cells, followed by the autocrine maintenance of interstitial cell status [64]. Studies have shown that
downregulation of endogenous autocrine signaling inhibitors in epithelial cells induces cell-activated
EMT processes including inhibitors of the TGF-β Receptor Type I (TGFBRI) (A83-01, SB435142) focused
on TGF-β as well as canonical and non-canonical Wnt signaling. Conversely, the activation of specific
signaling pathway inhibitors disrupts autocrine signaling in cells (Figure 1) [65]. In the study by
Christina Scheel et al. [65], two TGFBRI inhibitors (A83-01, SB435142) disrupts the autocrine signaling
result, which showed that due to these changes, the ability of primary mammary epithelial cells to
migrate and self-renew was inhibited, and tumor formation and metastasis induced by the transformed
derivatives were reduced. Recent studies in human breast cancer patients have demonstrated that
TGF-β mediates the conversion of epithelial cells to stromal cells and that TGF-β originates from
platelets [66,67].
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5. Exosomes in EMT

In breast cancer and various other cancer studies, many regulatory factors that induce the activation
of type III EMT also play an important role in type I EMT. This suggests that inappropriate
activation-related regulatory factors in healthy individuals (e.g., transcription factors Twistl, Sixl,
Snail, LBXl, and signaling pathways Wnt, TGF-β, etc.) will lead to the activation of type III EMT,
thereby resulting in the occurrence and development of malignant tumors [68]. In the EMT field,
exosomes are currently being intensely researched to determine their role in breast cancer invasion.
In order for metastasis to occur, cells must communicate with their local environment to initiate
growth and invasion. By transferring molecules such as mRNA, miRNA, and proteins between cells,
exosomes have become important mediators of cell-to-cell signaling. Many studies have demonstrated
that breast cancer cells promote tumor invasion and metastasis by transmitting molecules or signals
through exosomes [69,70]. Moreover, breast cancer cells with metastatic potential secrete exosomes
of chemokines with different protein characteristics which stimulate cell movement, indicating that
the released exosomes can play a positive role in metastasis [71]. The exosomes further stimulate
cancer cell invasion by direct feedback from extracellular matrix metalloproteinase inducers that rely
on being highly glycosylated [72,73]. By using a microfluidic chip to quantify exosomes, circulating
EpCAM-positive exosomes were detected in six breast cancer patients and three healthy controls
and were found to be comparative with healthy controls. The level of EpCAM-positive exosomes in
these breast cancer patients was significantly increased [74]. EpCAM also supports the regulation of
EMT by inhibiting ERK activity and expressing SNAIL2, which defines a double negative feedback
loop [75]. Exosome composition is significantly different between untransformed and transformed
cells [76]. In addition, there is increasing evidence that tumor-derived exosomes (TDEs) and tumors
from microenvironment (TME) are significantly associated with regulating tumor growth and survival
as well as tumor invasion, angiogenesis, and metastasis.

6. Angiogenesis in EMT

Breast cancer invasion and metastasis are closely aligned with angiogenesis. Vascular endothelial
growth factor (VEGF) is the most potent angiogenic factor currently discovered, which can specifically
stimulate endothelial cell proliferation, promote vascular permeability, and provide a matrix for vascular
endothelial cell migration and tumor cell metastasis [77]. TGF-β1 is a potent inducer of vascular endothelial
growth factor (VEGF) in tumor cells. It is also involved in the tumor microenvironment, regulating tumor
cell invasion and angiogenesis. Using bioluminescence imaging technology, studies have found that
inducible VEGF may promote cell proliferation and reduce apoptosis induced by oxidative stress through
autocrine mechanisms. Moreover, immunohistochemistry analysis confirmed that the induction of VEGF
overexpression promoted cell survival and tumor neovascularization [78]. Notably, the expression levels
of VEGF-A and VEGF-C in cancer cells of patients with breast cancer lymph node metastasis were
significantly higher than those in non-metastatic breast cancer. The key role of VEGF-A is to promote
breast cancer cell proliferation and accelerate tumor growth, while VEGF-C mainly promotes the formation
of lymphatic vessels in the peri-cancer region, which is important for the invasion and metastasis of breast
cancer [79,80].

7. ECM Remodeling during EMT

Breast cancer invasion is associated with the expression of matrix metalloproteinases (MMPs),
which degrade the extracellular matrix and basement membrane, allowing tumor cells to penetrate
and pass through. This is thought to be closely related to local invasion and distant metastasis of breast
cancer cells. Moreover, a higher expression of MMPs was associated with a poorer prognosis in breast
cancer patients, with MMP-2 and MMP-9 being the major enzymes involved in this process [81,82].
Previous studies confirmed that the gene-transfected MMPs breast cancer cell line MDA-MB-436 was
inoculated into nude mice and induced the over production of MMP-2 and MMP-9. In mice containing



Biomolecules 2019, 9, 476 7 of 14

cells transfected with MMP, the metastatic ability of cancer cells was significantly enhanced, indicating
that MMP-2 and MMP-9 may promote invasion and metastasis of breast cancer [82]. In addition,
the MMP-2 gene was transfected into another breast cancer cell line, MDA-MB-231. The invasive ability
of the cell line was also found to increase. When the cell line was implanted in the mammary gland of
nude mice, the tumor cells rapidly proliferated, while the metastasis rate of tumors in various parts of
the viscera significantly increased. This suggests that MMP-2 not only accelerates the proliferation of
cancer cells, but is also closely related to tumor invasion and metastasis [83]. Unlike normal human
breast tissue which has little to no expression of MMP-9, triple negative HER-2 positive and lymph
node metastatic breast cancer cells often overexpress MMP-9 [84]. The overexpression of MMP-9 is
associated with higher rates of metastasis, shorter recurrence latency, and shorter post-recurrence
survival as well as with breast cancer invasiveness [85–87]. The ECM is characterized by a gradual
change during cancer progression.

8. PI3K/AKT/mTOR Signaling in EMT

PI3K CA (phosphatidylinositol 3-kinase catalytic subunit alpha) is a 34 kb gene located on
chromosome 3q26.3. Mutation of PIK3CA triggers the activation of proto-oncogenes [88,89]. There are
three mutation sites, namely E542K, E545K, and H1047R, which are mainly involved in the activation
of PI3K mutations. Once the gene is mutated, the cells will phosphorylate AKT, P70S6K, and 4EBP1,
respectively. P70S6K and 4EBP1 are regulated by mTOR and affect protein synthesis, while AKT
activates and initiates the growth and transformation of mammary epithelial cells and inhibits
apoptosis [90]. Although the three mutation sites affect the PI3K pathway differently, all three mutation
sites lead to an increase in PI3K activity and initiate the signal transduction of carcinogenic mutant
genes. PTEN is located on chromosome 10q23 and acts as a tumor suppressor gene through the action
of its phosphatase protein product. It dephosphorylates PI (3,4,5) P3, a product of PI3K, and converts
PIP3 into PIP2. Deletion of the tumor suppressor gene PTEN triggers overactivation of the PI3K
pathway, which in turn leads to accumulation of intracellular PIP3 and activation of downstream factors
(PDK1 and Akt/PKB). In addition, the sensitivity of the PTEN mutation to apoptotic factors is reduced.
Studies have shown that Pten knockout mouse models form basal-like breast cancer, and that Pten
heterozygous loss is associated with human basal-like breast cancer formation. However, the detailed
mechanisms underlying these processes need to be further clarified [91]. Notably, in primary breast
cancer and metastatic breast cancer, the overall level of PIK3CA mutation is approximately 40.4%,
while the overall level of PTEN loss is approximately 30.4% [92]. Previous studies have also shown
that PI3Kβ-silenced breast cancer cells reduce metastasis by regulating extravasation, which may be
associated with disrupting macrophage-induced tumor cell invasion and reducing the metastasis of
breast cancer cells [93].

The PI3K signaling pathway involves multiple genes. When the proto-oncogene activation or
tumor suppressor gene are inactivated, molecular signaling is over-activated, thereby regulating
the downstream signaling pathway and triggering tumor formation through multiple mechanisms:
(1) Promoting excessive cell proliferation: The phosphorylation of 4EBP1 after mTOR activation
separates eIF4E from 4EBP1 and binds to other translation initiation factors to initiate translation
of proliferation-related proteins, thereby accelerating cell proliferation; and (2) Inhibit apoptosis:
AKT inhibits apoptosis-related proteins through phosphorylation such as the proapoptotic factor BAD,
proteolytic enzyme caspase 9, and the Forkhead family transcription factor FKHR, which inactivates
the Fas ligand, thereby impeding the normal transmission of apoptotic signaling pathways [94].
In addition, AKT activates phosphorylation of the tumor suppressor gene TSC2, which abolishes
the inhibition of Rheb by TSCl/2, and then activates mTOR, which is involved in protein synthesis,
to exert an anti-apoptotic effect [95].
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9. Tumor Microenvironment and EMT Formation

The tumor microenvironment contains immune system cells, tumor vasculature, and lymphatic
cells as well as fibroblasts, pericytes, and sometimes adipocytes. The tumor microenvironment
also includes a matrix that interacts with the area surrounding cells. [96]. As the tumor progresses,
the tumor microenvironment effectively blocks the infiltration of cytotoxic leukocytes from the host,
promotes the inflammatory response, and recruits tumor-infiltrating lymphocytes to adapt to the host
response [96]. Extracellular matrix (ECM) constitutes a scaffold of tissues and organs that provides
biochemical and basic structural support for its cellular components. TGFβ secreted by tumor cells,
related fibroblasts, or immune cells can induce new ECM synthesis, based on ECM remodeling
by metalloproteinases and promote phenotypic changes in cell invasion [22]. TGFβ can induce
the expression and stability of several ECM components. The TGFβ pathway regulates various ECM
genes through SMAD and MAP-kinase signaling. Induction of various ECM remodeling enzymes in
breast cancer promotes EMT signaling pathways and metastasis. The different pathways regulated
by ECM during remodeling in breast cancer development are Wnt, PI3K, AKT, ERK, JNK, Src-FAK,
etc. [97–99].

Recent studies have found that the inflammatory factors TNF-α and IL-1β in the tumor
microenvironment stimulate normal breast epithelial cells adjacent to the cancer to cause structural
remodeling and EMT activation, leading to malignant transformation of normal tissues and recurrence
of disease [96,100,101]. In the tumor environment, the increase of inflammatory cytokines (TNF-α, IL-6,
and LPS) and ROS expression under oxidative stress is crucial for the induction of the NF-κB pathway,
and NF-κB can also directly activate the expression of potent EMT inducers including Snail and ZEB
factors [102]. NF-κB has been found to inhibit the expression of the epithelial-specific gene E-cadherin
and induce the expression of mesenchymal-specific gene vimentin. Snail is one of the important
transcription factors for epithelial phenotype loss to inhibit E-cadherin expression, and NF-κB has been
found to induce Snail expression, resulting in the downregulation of E-cadherin [103]. NF-κB also
upregulates the transcription factors ZEB1 and ZEB2, leading to the inhibition of E-cadherin expression
during EMT [104]. While the cells have entered the EMT process, blocking NF-κB activity leads to
partial reversal of the mesenchymal phenotype [101].

10. Conclusions

During the EMT, tumor cells acquire invasive traits through overexpression, oncogene mutations,
and inhibition of tumor suppressors, leading to aberrant expression of signaling pathways,
further leading to tumor cells undergoing distant metastasis or migration to other organs after
EMT. However, EMT is not an irreversible process, and reversing or inhibiting EMT may be an effective
way to inhibit tumor cell migration or distant metastasis. Therefore, further study of EMT-related
regulatory factors not only helps to better understand the mechanism of the EMT process in tumor
cells, but also provides a new perspective for understanding the mechanism of tumor metastasis
and recurrence and provides new clues for the treatment of tumors.
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