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Abstract

Antibiotic production is coordinated in the Streptomyces coelicolor population through the

use of diffusible signaling molecules of the γ-butyrolactone (GBL) family. The GBL regula-

tory system involves a small, and not completely defined two-gene network which governs a

potentially bi-stable switch between the “on” and “off” states of antibiotic production. The

use of this circuit as a tool for synthetic biology has been hampered by a lack of mechanistic

understanding of its functionality. We here present the creation and analysis of a versatile

and adaptable ensemble model of the Streptomyces GBL system (detailed information on

all model mechanisms and parameters is documented in http://www.systemsbiology.ls.

manchester.ac.uk/wiki/index.php/Main_Page). We use the model to explore a range of pre-

viously proposed mechanistic hypotheses, including transcriptional interference, antisense

RNA interactions between the mRNAs of the two genes, and various alternative regulatory

activities. Our results suggest that transcriptional interference alone is not sufficient to

explain the system’s behavior. Instead, antisense RNA interactions seem to be the system’s

driving force, combined with an aggressive scbR promoter. The computational model can

be used to further challenge and refine our understanding of the system’s activity and guide

future experimentation.

Author summary

Streptomyces species are Gram-positive soil-dwelling bacteria, which are known as a pro-

lific source of secondary metabolites, such as antibiotics. Antibiotic production is coordi-

nated in the bacterial population through the use of diffusible signalling molecules of the

γ-butyrolactone (GBL) family. The GBL regulatory system involves a small, yet complex

two-gene network, the mechanism of which has not yet been completely defined. The

complete elucidation of this system could potentially lead to the ability to design reliable

and sensitive engineered cellular switches. We therefore designed a versatile model of the

GBL system in order to investigate the feasibility of various hypothesized mechanisms.

The ensemble modelling analysis that we performed revealed that antisense RNA
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interactions seem to be the system’s driving force, together with an aggressive scbR pro-

moter. Transcriptional interference is also significant; however, it is not sufficient to

explain the system’s behavior by itself. Finally, the model indicates key experiments,

which could completely elucidate the role of the system and the interactions of its compo-

nents and potentially lead to the design of reliable and sensitive systems with significant

applications as orthologous regulatory circuits in synthetic biology and biotechnology.

Introduction

The core aim of synthetic biology is the design and engineering of complex biological systems

with functionalities that do not exist in nature. In order to accomplish this, reliable regulatory

circuits are required, which enable the precise control of gene expression over a wide range of

conditions.[1] The “quorum sensing” (QS) system of the bacterium Vibrio fischeri is a promi-

nent example of such a circuit.[2] However, although the quorum sensing circuit has been

widely employed in synthetic biology with numerous successful applications,[3–5] QS-derived

regulatory systems have some important limitations, such as potential crosstalk between differ-

ent circuits due to the promiscuity of the signaling molecules or the promoters,[6] and the

problematic implementation in eukaryotic organisms.[7] Novel orthogonal circuits would

therefore be very welcome.

A good candidate for this purpose could be the γ-butyrolactone (GBL) signaling circuits of

Streptomyces coelicolor[1], which have been used in proof-of-concept studies in mammalian

and bacterial systems [8, 9]. Streptomycetes are Gram-positive, filamentous, soil bacteria,

which produce antibiotics to eliminate their competitors in unfavorable environmental condi-

tions. As the antibiotic compounds can be toxic even to the producing strains, their biosynthe-

sis needs to be carefully regulated in a population. This is achieved via the SCB1γ-

butyrolactones, a group of signaling molecules associated with the regulation of antibiotic pro-

duction and some aspects of bacterial morphology. The structure of the circuit also has simi-

larities to the quorum sensing system, as it involves two genes and their respective proteins

(ScbR and ScbA). ScbR belongs to the TetR family of repressors and inhibits its own transcrip-

tion, as well as the transcription of the divergently encoded ScbA, which is the synthase of the

butyrolactone signaling molecule SCB1. Furthermore, it represses cpkO, a regulatory gene for

the CPK antibiotic biosynthesis gene cluster.[10, 11] SCB1 binds to ScbR, effectively deactivat-

ing the DNA binding activity and thus leading to the further production of butyrolactones.

The CPK cluster is also activated, leading to the production of antibiotics.

Apart from this general scheme, little further mechanistic detail is known about the GBL

circuits, although various hypotheses have been put forward. The two genes are transcribed in

opposite directions and their promoters overlap by 53 base pairs. In previous studies it has

been generally reported that sometimes divergent overlapping promoters are responsible for

regulating the expression of genes.[12–14] This topology has been suggested to also be impor-

tant in the GBL circuit, determining the precise switch of the system at relatively low concen-

trations.[1, 15] Another scenario that has been suggested is the formation of a putative

complex between ScbA and ScbR proteins which acts in a similar manner as the LuxR–AHL

complex in quorum sensing and further enhances the transcription of the scbA gene.[16]

Alternatively, ScbR protein alone has also been hypothesized to have both repressor and acti-

vator functions (repressing itself and activating scbA).[17] Finally, studies in different bacteria

and eukaryotes have shown that, generally, small RNA (antisense RNA) interactions can play

an important role in cellular processes (e.g. transcription, translation, gene regulation).[18, 19]
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This has also been suggested to occur in the GBL system in S. coelicolor, where RNA transcripts

from genes with overlapping promoters might interfere with each other’s activity by binding

to each other and thus induce a form of internal regulation.[15, 20]

Previous computational modelling work on the GBL system is limited to two published

models which investigated some of these scenarios. Mehra et al.[16] proposed a model based

on the scenario of the ScbA–ScbR complex formation and Chatterjee et al.[15] focused on the

effects of the overlapping promoters and antisense interaction. Both previously published

models of the GBL circuit were focusing mostly on testing different parameter values and

detecting the optimal combination for bistable behaviour. This approach was useful as a proof-

of-concept application attempting to reproduce the qualitative behavior of the system. How-

ever, there is still doubt about whether the outcomes of the models are realistic and biologically

plausible representations of the behavior expected for this circuit topology, rather than suc-

cessful outliers. On top of all that, Mehra et al. reported that under no parameter set did the

behavior of scbR manage to accurate predict the main qualitative features of the experimental

data. Undoubtedly, in both previous studies, the limited availability of quantitative, precise

parameter information has been hampering the modelling effort. This system therefore pro-

vides a good opportunity for the application of ensemble modelling strategies [21–24] that are

able to cope with this limitation. In ensemble modelling entire ranges of plausible parameter

values are considered, and a consensus regarding the possible behaviour of the circuit is

achieved; this can potentially allow us to discriminate between the various proposed mecha-

nisms, using the available experimental data on circuit behavior.

An ensemble modelling approach will therefore allow us to attempt to more clearly define

the elusive regulatory mechanism of the GBL system while at the same time establishing a

comprehensive computational model of the system, with sufficient predictive power to guide

synthetic biology engineering strategies and future experimental work. This approach com-

bined with the use of the same nomenclature as employed in key previous publications and the

meticulous documentation of our modelling methods, parameters, assumptions and back-

ground information in a Media Wiki resource enables us to revisit, update and compare exist-

ing models. In this way, a principled evaluation of the different mechanistic proposals can be

achieved, and we can move forward by rejecting previous assumptions a posteriori, on the

basis of new evidence; this has previously been very challenging and has long been a desidera-

tum of the modelling community.

More detailed explanations on the theoretical background of the GBL system and on the

previous modelling work, can be found in the relevant MediaWiki page: http://www.

systemsbiology.ls.manchester.ac.uk/wiki/index.php/Background_Information_on_GBL_

system

Methods and models

Modelling of the scbR/scbA gene regulatory network

As the regulatory interactions in the GBL system have not yet been fully elucidated, our aim

was to explore all the previously proposed mechanisms [15, 16] under the scope of realistic

parameter values retrieved from the literature. In order to achieve this, we designed a unified

meta-model that includes all the potential mechanisms and enables their individual or com-

bined use by switching certain reactions “on” and “off”. Many aspects of the model are adapted

from the quorum sensing model by Weber et al.[25]

A schematic representation of the regulatory interactions considered in our model is shown

in Fig 1. The ScbR homo-dimer binds to the operators of both scbR and scbA genes and

represses their activity. As reported by Bhukya et al.,[26] two ScbR homo-dimers can bind to
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the operator. When one homo-dimer is bound, the mRNA transcription is already being

repressed. As the concentration of ScbR rises, a second homo-dimer may bind to the already

suppressed operator and further enhance the suppression of the transcription. ScbA protein

(A), through an enzymatic reaction with glycerol derivatives and β-keto acid derivative precur-

sors (S), produces the γ-butyrolactones (C). Our model considers the production of C to be

proportional to the concentration of A. γ-butyrolactone (C) then creates a complex with the

ScbR protein (C2•R2) and thus effectively deactivates it, enabling further production of ScbA.

The signaling molecules (C) diffuse passively between the cells and the environment (Ce) and

thus accumulate in the culture medium. The model assumes that internal and external SCBs

degrade at the same rate. Additionally, we assume that all molecules are homogeneously dis-

tributed both in the cytoplasm and in the medium. DNA duplication, degradation of chemical

species and their dilution due to cellular growth are also considered.

The following alternative scenarios are investigated:

1. TI–The effect of transcriptional interference (collisions between the elongating RNAPs

which leads to transcriptional termination) due to the overlap of the two genes’ promoter

regions by 53 bp and by the convergent transcription of the two genes. This results in a

decrease in expression of full-length mRNAs from both promoters and production of trun-

cated mRNAs. Note: The transcriptional interference mechanism is considered to be pres-

ent in all subsequent scenarios due to the gene topology in the native GBL system.

Fig 1. Schematic representation of the potential mechanisms of the ScbA/ScbR system. The scbR and scbA genes

are divergently encoded and their promoter regions (OR and OA operators respectively) overlap by 53bp. Due to this

promoter structure, RNA polymerase collisions prevent the transcription from both promoters at the same time. The

mRNAs transcribed from scbR (r) and scbA (a) may also form a complex (r•a) which rapidly degrades, thus resulting

in translational inhibition. The ScbR protein forms a homo-dimer (R2) which represses its own transcription as well as

the transcription of scbA. The ScbA protein (A) is responsible for the production of the γ-butyrolactones (C) which

bind to R2 and prevent it from binding to the OR and OA operators. Additionally, A may form a complex with R2

which simultaneously prevents R2 inhibition and activates the transcription of a by binding to a hypothetical OA’

operator. Alternatively, R2 may bind to its own operator and act as a repressor while at the same time activate the

transcription of a. Finally, C diffuses freely from the cell to the external environment where it accumulates and can

potentially diffuse into other neighbouring cells. In the modelled scenarios, some of the proposed regulatory

mechanisms are selectively removed. The figure shown here corresponds to Scenario H; see Supplementary Fig Sp1 in
S4 Appendix for the resulting circuits for scenarios A-G.

https://doi.org/10.1371/journal.pcbi.1008039.g001
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2. AS–The antisense effect conferred by convergent transcription of the scbR and scbA genes.

In this case, transcripts with a segment of complementary sequence may lead to interactions

between sense-antisense full length transcripts of the two genes, thus leading to the forma-

tion of a fast degrading complex of the two mRNAs and subsequent inhibition of

translation.

3. RA–The formation of a complex between ScbA and ScbR proteins (ScbA–ScbR), which

relieves ScbR repression, while at the same time activating the transcription of scbA and, in

effect, the production of SCBs.

4. Ract−The potential dual role of ScbR protein, which acts as a repressor for its own gene and

as an activator for scbA[17)

5. Different combinations of the above scenarios (see Table 1 and Fig 1), in order to evaluate

both the effect of each isolated mechanism (except for Transcriptional Interference which

was present in all scenarios) and their cumulative influence on the system’s behaviour.

The full model comprises two compartments (cell and environment), 41 chemical reactions

and 51 parameters. The initial concentrations for all species are zero; the only exceptions are

the operators OR and OA: for these one copy of each gene and, therefore, one copy of its corre-

sponding promoter/operator are assumed for each cell. The list of the model species and the

complete set of reactions for all scenarios are listed in Supplementary Tables St1 and St2 in

S1 Appendix. The corresponding differential equations for each species are shown in Supple-

mentary Table St3 in S1 Appendix.

State of promoters and transcription

In order to describe the overlapping promoter effects, the transcription reactions of each gene

need to take into account the strength and the state of the gene’s promoter (free or occupied),

as well as the potential interference from the transcription of the opposite gene. In order to

accomplish this, a mathematical model for overlapping promoters proposed by Bendtsen et al.
[27] was employed as described in S1 Appendix and in the Media Wiki page (http://www.

systemsbiology.ls.manchester.ac.uk/wiki/index.php/Background_Information_on_GBL_

system#Assumptions_in_the_improved_model)

Note: In the model, the activity of the two promoters is inferred by their corresponding

parameters of promoter occupancy, promoter aspect ratio and promoter firing rates. In the

Table 1. The simulated scenarios that include different combinations of the four investigated mechanisms.

Mechanisms

Scenarios TI RA AS Ract

A

B

C

D

E

F

G

H

https://doi.org/10.1371/journal.pcbi.1008039.t001
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ODEs, only the gene operators (OR and OA) appear as species, in order to comply with the

modelling nomenclature of the previous works and to reduce unnecessary complexity in the

model.

Cell growth and division

As the experimental time simulated is over 60 hours, the effects of cell growth must be taken

into consideration in addition to the various regulatory mechanisms. In our model, the num-

ber of cells is described by a six-parameter Baranyi–Roberts model,[28, 29] (Fig 2) which takes

into account the lag phase by using an adjustment function (S1 Appendix).

Parameters

For each parameter of the model, a probability distribution was defined according to the avail-

able information from literature and experiments. In order to achieve this, a dedicated Media

Wiki-based website was created (http://www.systemsbiology.ls.manchester.ac.uk/wiki/index.

php/Welcome_to_the_In-Silico_Model_of_butyrolactone_regulation_in_Streptomyces_

coelicolor) with the purpose of documenting parameter values along with explicit information

on their sources and subsequent justification of conclusions about the most plausible values.

By using this information, the log-normal probability distributions describing each parameter

were inferred, according to a standardized protocol (https://doi.org/10.1038/s41596-018-

0056-z) that systematically ranks the parameter information collected from all available

sources (experiments, literature, databases etc.) and thus derives log-normal distributions that

can be used as priors for sampling in an ensemble modelling framework.[22]

The parameter information of the probability distributions generated by this protocol is

summarized in Supplementary Table St4 in S1 Appendix. The full information on the

Fig 2. Fitting the Baranyi growth curve (Equation (9)-S1 Appendix) to the reported experimental data by Nieselt

et al.[30] The carrying capacity (K) is the maximum plateau reached after 50h of growth. μmax is the maximal

growth rate achieved during the exponential phase of the growth. The range of parameter values used for fitting the

experimental data to the equation are summarized in Table 2.

https://doi.org/10.1371/journal.pcbi.1008039.g002
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parameter values retrieved from the literature and the design of the corresponding probability

distributions is included in the Wiki page.

The parameters for the cellular growth were derived from the experimental data for Strepto-
myces growth reported by Nieselt et al.[30] by performing a nonlinear least squares curve-fit-

ting. By fitting the six-parameter Baranyi–Roberts equation (Equation (9)-S1 Appendix) for

bacterial growth to the number of cells (approximately calculated from the reported biomass

values), the carrying capacity, the initial cell number and the maximum growth rate were esti-

mated. As there were only 11 available experimental data points, a number of different parame-

ter sets that all fitted the Baranyi–Roberts equation were identified, thus defining a confidence

interval around the fitted data (Fig 2). The prediction of the carrying capacity by the logistic

equation was 7.14�1012–9�1012 cells, which is very close to the 8.24�1012 cells calculated from the

final biomass. The parameter values for cellular growth are summarised in Table 2.

Ensemble modelling–Prior predictive check

Values for all parameters were sampled independently from the defined priors, and used for the

simulation of the time course of all molecular species over 60 hours in each of the 8 scenarios.

Possible correlations between parameters were not taken into account, as the relevant experi-

mental information was not available. In the case of enzymatic reactions, where the kinetic

parameter values are correlated as a result of thermodynamic constraints, the method intro-

duced by Tsigkinopoulou et al.[22] could be used to account for the these correlations. A total

of 10,000 parameter sets were examined in the ensemble, each representing a unique combina-

tion of plausible parameter values (the same parameter sets were used for all 8 scenarios). This

means we were able to conduct a prior predictive check on the models to evaluate whether they

can accommodate the available experimental data. This is a recommended and standard

method for Bayesian model analysis, which recently has seen resurgent interest[31], although

the underlying rationale was already eloquently presented by Box[32], who formally argued for

the central importance of this approach as part of the model construction process. Model sce-

narios that added more complex molecular mechanisms, without improving the parametric

robustness of the ensemble of models, could be rejected based on a parsimony argument. The

more complex mechanisms might still be active, but do not appear to substantially influence the

model behaviour within the range of plausible parameter combinations. The simulations were

conducted by using the stiff ordinary differential equation solver ode15s in MATLAB R2016A.

The Matlab files for all modelling scenarios are included in S3 Appendix.

Results

The prior predictive check of the improved model was based on comparing the simulation

results with transcriptomics data (Supplementary Fig Sp2 in S4 Appendix) reported in the

Table 2. Parameters for cell culture growth.

Parameter Description Range of values Units

K Carrying capacity 7.14�1012 − 9�1012 cells

No Initial number of cells 5�1010 − 2�1011 cells

μmax Maximum growth rate 0.003368

− 0.007499

min−1

v Curvature of the growth curve during the transition from lag to the

exponential phase

0.001482 − 0.5814 min−1

m Curvature of the growth curve during the transition from exponential to

the stationary phase

0.47 − 2.46 n.a.

λ Lag phase 330.52 − 883 min

https://doi.org/10.1371/journal.pcbi.1008039.t002
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publication by Nieselt et al.[30], as described in Supplementary Table St5 in S1 Appendix.

The behavioral features that formed the basis of the comparison were the profiles of the

mRNA transcripts of scbR and scbA genes, and the activation threshold of the GBL system in

terms of butyrolactone concentration. The choice of these features was based on the availabil-

ity of experimental measurements of the system’s components and on the fundamental interest

in the mRNA oscillatory behavior, which makes the circuit interesting as a target for applica-

tions in biotechnology. [8]

The focus of the analysis was not to find the “best fit” model, but to conduct a prior predic-

tive check and assess the performance of all models under the full range of biologically feasible

parameters. We use the parametric robustness of the models as an indicator to decide whether

a potential mechanism is plausible (or influential) based on the number of models that seem to

better accommodate the available experimental data. The parametric robustness here serves as

an easily calculated proxy for the posterior probability of a particular model scenario. Each

ensemble of models represents a specific hypothesis about the molecular mechanism of the

biological system. An ensemble where many models (plausible parameter combinations) have

a high total-log likelihood has a higher predictive density associated with this particular data

set (in the sense of Box [32]), i.e. is a more plausible description of the biological system than

alternative descriptions that are a priori equally credible, but result in a poorer overall fit or are

more complex. In this way, we avoid the pitfall of overfitting and creating a model that primar-

ily captures the features of experimental noise, but instead survey the entire lanscape of solu-

tions and evaluate alternative options that may explain the experimental data equally well. The

criterion for accommodating the data was set as a model having a total log-likelihood (TLL)

>−140.

The total log-likelihood for the ensemble of 10,000 models in each of the 8 scenarios is

shown in Fig 3. The complete likelihood profiles can be found in Supplementary Figures

Sp3-Sp5 in S4 Appendix.

Fig 3. Total log-likelihood profiles for the 8 scenarios of the GBL model. Log-likelihood values closer to 0 (less

negative) indicate a better overall fit to the experimental observations. Only the likelihood profiles of the highest

ranked models, TLL>−140, are shown. Scenarios G and H (identical, overlapping curves) have the largest number of

models with high TLL (>−140); however, it should be noted that scenarios A, B, C and E have a larger number of

successful models in the highest ranks. Only scenarios D and F result in very low log likelihood profiles according to

the experimental observations. The complete likelihood profiles are presented in S4 Appendix (Supplementary Figs

Sp3(iii), Sp4(iii) and Sp5(iii)).

https://doi.org/10.1371/journal.pcbi.1008039.g003
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The log-likelihood analysis showed that the assumption of an AR complex did not improve

any of the scenarios (B, E, F and H), as the number of models with high log likelihood scores

essentially remained the same to the ones achieved by the rest of the mechanisms alone. Thus,

this assumption can be rejected based on a parsimony argument. Similarly, ScbR being an acti-

vator achieved very low scoring results (scenarios D and F) unless it was combined with anti-

sense RNA (scenarios G and H) where it showed a small but real improvement. However, even

in those cases, the models do not manage to achieve high likelihood scores (models with TLL

> −50) and the best results are lost. The best mechanisms seem to be A (transcriptional inter-

ference, TI) and C (TI combined with antisense RNA), with the latter resulting a slightly more

robust ensemble of models, i.e. showing a consistently larger number of highly scoring models

under different promoter strengths (i.e. different RNAP firing rates; S2 Appendix). These

results are also supported by comparison of the average likelihood of each ensemble, i.e. its

predictive density (S2 Appendix), based on the rationale presented by Box [32]. It therefore

seems that among the three optional alternative mechanisms (AR complex, antisense RNA

interaction, dual role of ScbR protein), only the presence of the antisense interaction had a

consistent positive influence on parametric robustness, i.e. the quality of the fit of the model to

the experimental observations across the range of plausible parameter values; its inclusion in

the model is therefore most strongly supported by the experimental evidence.

The time course of the models in each ensemble that achieved the highest log-likelihood

score against the experimental data (Fig 4) shows that the defined quality criteria were success-

ful in capturing the features of interest in the two molecular species (scbA and scbR transcript).

Furthermore, the models that best describe the experimental data seem to be scenarios A, B, C

and E which do not include the ScbR activator mechanism (Ract), although these very good

matches (highest likelihood scores) are achieved only for a small part of the plausible parame-

ter range. Furthermore, the fact that the curves for the scenarios C and E completely overlap,

reinforces our belief that the AR complex and the transcriptional interference individually

have a minimal effect on the model’s behavior once they are acting alongside the antisense

RNA mechanism. Another interesting point is that none of the models were able to explain the

difference in the width of the scbR and scbA peaks, although the Ract scenarios combined with

antisense RNA (G and H) seem to better approximate the sharp decrease of scbA, albeit with

incorrect timing. This might indicate that there is an additional regulatory effect that is not

considered in our models (e.g., an additional undiscovered activator).

We also explored the effect of different promoter strengths on the quality of the model pre-

dictions. As can be seen in Fig 5, models with a stronger scbR promoter (kFR>kFA) had a sub-

stantially improved overall performance (increase in the number of highly ranked models; S2

Appendix).

In order to investigate which parameters are significantly affecting the model behavior in

each scenario, we applied a Kolmogorov–Smirnov test[33] (K–S test) to those models from

each scenario that had a TLL >−140, to see if the distribution of parameter values in the high-

performing models differs significantly from the sampled values in the entire ensemble of

models. The family-wise error rate was controlled by dividing the significance level by the

number of tests performed (i.e., 44) to achieve a strict Bonferroni correction[34] for multiple

testing. The complete K–S analysis results are included in S2 Appendix. The parameters that

most prominently stood out in this analysis were the degradation rate of ScbA protein, the syn-

thesis rate of SCB, the affinity parameters of the two promoters, and the heterogeneity factor

describing the difference in promoter strength (most notably in the cases where χ<1). In

order to more deeply investigate the regions of the parameter distributions which were more

commonly encountered in the highly ranked models (TLL>−140), comparison plots between

the defined priors and the actual parameters that belonged to the best models were designed
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(Fig 6 and Supplementary Figs Sp6-Sp29 in S4 Appendix). In order to ensure that the

observed enrichment or depletion of specific regions of the distributions was statistically sig-

nificant, a two-tailed binomial test was performed to compare the theoretically expected and

the actually observed parameter values in each bin. The p-values were corrected according to

Benjamini and Hochberg to control the false discovery rate at 0.05.[35]. The resulting plots

indicate the direction in which our prior beliefs about the parameter values should shift, i.e.

they describe the updated beliefs that would be represented in the posterior distribution for

each parameter. The parameter analysis revealed that a fast degradation of ScbA protein (Fig

6A) improved the behaviour of the models in all scenarios (particularly for dA> 0.01 min-1).

The synthesis rate of GBLs (kC) also seemed to consistently be significant in all scenarios. In

Fig 4. Comparison of the highest ranked models of the eight scenarios with the transcriptomics data. While all

scenarios are able to explain scbR transcript dynamics reasonably well, only models A, B, C and E achieve a high log

likelihood score for the scbA transcript. The scenarios C and E overlap completely, as do models D and F. None of the

scenarios seems able to explain why the two peaks are so different in width.

https://doi.org/10.1371/journal.pcbi.1008039.g004

PLOS COMPUTATIONAL BIOLOGY Ensemble modelling for GBL network in Streptomyces coelicolor

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008039 July 10, 2020 10 / 17

https://doi.org/10.1371/journal.pcbi.1008039.g004
https://doi.org/10.1371/journal.pcbi.1008039


this case however, the extreme values were not preferred in the models with the highest log

probability density, with the region of 0.01–1 min-1 being enriched (Fig 6B, Supplementary

Figs Sp6-Sp29 in S4 Appendix). Furthermore, ratios of Kd1 (dissociation constant of binding

of ScbR to OR) over Kd2 (dissociation constant of binding of ScbR to OA) which were larger

than 1 were preferred over smaller ratios (Fig 6C). The same applied for ratios of Kd7 (dissocia-

tion constant of binding of ScbR to ScbR-OR) over Kd8 (dissociation constant of binding of

ScbR to ScbR-OA) (Fig 6D). These findings suggest that OA has a higher affinity than OR for

the ScbR protein. Finally, an investigation of the heterogeneity factor χ, revealed that in the

simulations where the scbA promoter was stronger than the scbR promoter (kFR<KFA; χ< 1),

the parameters of the optimal result models seem to cluster in the larger value region of χ (0.7

< χ< 0.9; Supplementary Figs Sp11G, Sp14H and Sp20H in S4 Appendix), meaning that

the highest rankings in this group were achieved when the difference between the strengths of

the two promoters was minimized. This, combined with the fact that in the simulations where

scbR promoter was stronger than scbA (χ> 1), the heterogeneity factor was not influential any

more, suggested that relative promoter strength is a defining factor for the model’s behaviour.

Additional simulations on the scenarios where the value of χ was varied between 0.1 and 10

further supported this hypothesis, as the region between 1 and 10 was clearly enriched in the

highly ranked models (most notably the values between 2 and 8; Fig 6E).

An investigation on the parameters of the growth curve showed that a longer lag phase was

important for the quality of the models (Fig 6F), with the region between 10–14h being highly

preferred in contrast to shorter lag phases (5–9 h). The maximum growth rate seemed to also

affect the models’ performance on a secondary level, as faster growth rates (0.005–0.0065 min-

1) seemed to be preferred (Fig 6G). As the growth parameters were not sampled from priors

but were generated during the fitting of the experimental data to the growth equation, a two-

sample Kolmogorov–Smirnov test (with an appropriate Bonferroni correction) was used to

compare the initial parameters and the selected parameters in the highest ranked models (TLL

>−140).

Fig 5. Comparison between the log-likelihood profiles of scenario C with varying promoter strengths. The amount

of models that achieve highest rankings decrease when kFR < kFA and increase when kFR > kFA. Furthermore, a

stronger scbR promoter seems to significantly improve the behavior of scbA.

https://doi.org/10.1371/journal.pcbi.1008039.g005
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Discussion

The simulation of the GBL model in all 8 regulatory scenarios revealed a surprisingly volatile

system (Fig 7) with different sets of plausible parameters leading to completely different behav-

iors (e.g., a peak and decline vs. a smooth increase). A large number of models in all scenarios

achieved very low to non-calculable likelihood scores, i.e. their predictions had no resemblance

to the experimental observations. This is in striking contrast to the quorum sensing circuits

Fig 6. Comparison between the expected parameter values according to the defined priors and the actual

parameters of models that had a TLL > −140. The bar plots represent the log-ratio of the actual parameter values

over the expected ones in each bin, and the light blue lines in the background shows the original distribution of the

sampled values. Purple bar plots correspond to statistically significant differences between the expected and the actual

parameter values (two-tailed binomial test p-value< 0.05 corrected for multiple testing according to the number of

bins), and the grey bar plots represent statistically insignificant deviations. The parameters with the most pronounced

differences were the degradation rate of ScbA (6A), the synthesis rate of GBLs (6B), the ratio of Kd1 (dissociation

constant of binding of ScbR to OR) over Kd2 (dissociation constant of binding of ScbR to OA) (6C), the ratio of Kd7

(dissociation constant of binding of ScbR to ScbR-OR) over Kd8 (dissociation constant of binding of ScbR to ScbR-OA)

(6D) and the heterogeneity factor χ. With regards to the cellular growth, the most significant differences were observed

in the lag phase λ (6F), the maximum growth rate μmax (6G) and the initial number of cells No (6H).

https://doi.org/10.1371/journal.pcbi.1008039.g006
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[25] which, with a very similar topology achieve a remarkably robust model behavior when

modelled computationally (Fig 7). The rather obvious explanation for this difference in behav-

ior is that in this kind of complex non-linear system small variations in topology (and parame-

ter values) can lead to major differences in emergent behavior. Although the reason for the

different behavior of the GBL model is not entirely clear, it is biologically plausible: the fila-

mentous nature of the actinomycetes entails a different signaling paradigm, and consequently

both the experimental data and the model predictions indicate that GBL signaling shows more

similarity with an endocrine signaling mechanism, rather than an AHL-like quorum sensing

system. It therefore becomes obvious that our understanding of the molecular mechanisms

underlying the GBL system is still incomplete, and that none of the proposed mechanism can

fully and satisfactorily explain the circuit behavior, alone or in combination.

Nevertheless, the systematic investigation of the different scenarios elucidated some impor-

tant features of the system and revealed behaviors that cannot be explained by any combina-

tion of plausible parameter values. The hypothesis of a putative ScbR–ScbA complex playing

an important regulatory role is not supported by the available evidence, as it only adds to the

complexity of the model without actually contributing to its quality. Of course that does not

exclude the possibility that it plays an important role in other conditions or with respect to sys-

tems variables that were not measured in the experiments available. Similarly, transcriptional

interference by itself or combined with the ScbR protein being an activator (Ract mechanism),

does not sufficiently explain the experimental results. However, when any of the scenarios is

combined with the antisense RNA mechanism, the number of successful models is clearly

enhanced, suggesting that this mechanism is critical for the observed behavior of the system in

the experimental conditions analysed.

Additionally, including the Ract mechanism in the models improved the prediction of scbA
transcript dynamics, but at the cost of the scbR mRNA predictions. This suggests that, although

the modelling results do not support the idea that ScbR is activating scbA transcription, there

probably is an unidentified activator involved; this unknown activator could also explain the

difference in the peak width of the two mRNAs, which none of the scenarios so far managed to

sufficiently reproduce.

The relative promoter strengths seem to also significantly contribute to the log likelihood

scores of the models, with the scbR promoter seemingly being 3–8 times more aggressive

(kFR > kFA) in the most successful models than its scbA counterpart. This result is supported

by recent experimental data[8], which show that scbR has the strongest promoter in the GBL

system, followed by the promoter of the CPK cluster and finally of scbA. Furthermore, the

model suggests that the affinity of ScbR for the scbA promoter, seems to be higher than for

scbR, in agreement with the results of a previously published DNase protection assay.[17]

Fig 7. Outputs from ensemble modelling simulations on the LuxI protein from the quorum sensing (QS) model (A)

by Weber et al.[25] and the scbA mRNA of the GBL model (B). While QS produced consistent and robust modelling

results, the GBL model was very unpredictable and different sets of parameters led to completely different behaviours.

https://doi.org/10.1371/journal.pcbi.1008039.g007
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The parameter analysis revealed that diffusion does not seem to majorly affect the GBL

model. On the other hand, the importance of the degradation of ScbA protein and the synthe-

sis of γ-butyrolactones seemed to be a recurring issue in most groups of simulations. Finally,

growth seemed to also significantly affect the model, with the lag phase (λ) playing a promi-

nent role in all scenarios, followed by the maximum growth rate (μmax).

These findings suggest that the GBL system behavior does not stem from a population-wide

regulation (despite the similarities of the circuitry to well-known quorum sensing systems),

but from a growth-dependent response of the system to its external environment. If the diffu-

sion of the SCBs is not an important factor for the model behavior, it might be possible that

intercellular bacterial communication is not actually involved and there is very limited coordi-

nation within the colony to trigger the antibiotic production, but the transition is performed

by the cells individually once they reach their stationary phase, at least under the laboratory

conditions used in our reference experiments. Additional experiments and simulations will

need to be performed in order to fully clarify the role of the two genes and their interactions,

as well as the existence of another activating agent and the stability of ScbR and ScbA proteins.

An option to test the existence and significance of the antisense RNA and transcriptional inter-

ference mechanisms would be to conduct a series of experiments (and simulations) using syn-

thetic genetic circuits, with the scbR and scbA promoters uncoupled and coupled, and with

either one or both of the genes being replaced by reporter constructs that lack the scbA/R

functionality.

Unquestionably, the availability of more experimental data would also greatly assist in the

further validation and improvement of the model (within the limitations imposed by the

inherent “sloppiness” of the system;[36] S5 Appendix). Additional quantitative transcrip-

tomics results for scbA and scbR genes could validate the difference in the width of the two

peaks, and more precise measurements on the degradation rates of the ScbA and ScbR proteins

would help to fine-tune the probability distributions for these parameters and assess the bio-

logical plausibility of the previously suggested mechanisms. Finally, quantitative proteomics

results from an experiment where cells do not produce γ-butyrolactones but are added exter-

nally in different concentrations would also be of interest, as it would assist with the validation

of the model in a protein level additional to the mRNA level.

Previous studies have shown that in a system involving a small number of molecules, such

as a regulatory or signaling system, stochasticity (fluctuations in transcription and translation

or randomness in the autoinducer diffusion from the cell to the environment) can have a sig-

nificant impact on the switch induction.[37, 38] Therefore, the small-size GBL system provides

a good opportunity for stochastic modelling, in order to study the sensitivity of this system to

internal or external fluctuations in the future. Furthermore, the stochastic analysis could reveal

more information on the type of communication (if any) that takes place within a Streptomyces
colony. The stochastic modelling should be able to represent the heterogeneity arising from

intrinsic or extrinsic noise and thus achieve a more realistic description of key properties of

the system, such as population-wide bet hedging.

The improved GBL model clarified some aspects of the system, but also raised some inter-

esting questions. However, most importantly, it became clear that the model can now be used

as a versatile and adaptable tool which will challenge and refine our understanding of the pro-

posed functioning of this system, and perhaps even suggest a different biological role than

originally envisaged. The developed framework of analysis with the explicit consideration and

documentation of uncertainty will now form the basis for a further extension of the model

using alternative topologies and will allow us to quantify our posterior belief about the model’s

parameters in the face of new experimental data. Finally, the model indicates key experiments,

which could more completely elucidate the role of the system and the interactions of its
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components and potentially lead to the design of reliable and sensitive systems with significant

applications as orthologous regulatory circuits in synthetic biology and biotechnology.
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