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ABSTRACT: A data dependent peak model (DDPM) based spectrum
deconvolution method was developed for analysis of high resolution LC-MS data.
To construct the selected ion chromatogram (XIC), a clustering method, the
density based spatial clustering of applications with noise (DBSCAN), is applied to
all m/z values of an LC-MS data set to group the m/z values into each XIC. The
DBSCAN constructs XICs without the need for a user defined m/z variation
window. After the XIC construction, the peaks of molecular ions in each XIC are
detected using both the first and the second derivative tests, followed by an
optimized chromatographic peak model selection method for peak deconvolution. A total of six chromatographic peak models
are considered, including Gaussian, log-normal, Poisson, gamma, exponentially modified Gaussian, and hybrid of exponential and
Gaussian models. The abundant nonoverlapping peaks are chosen to find the optimal peak models that are both data- and
retention-time-dependent. Analysis of 18 spiked-in LC-MS data demonstrates that the proposed DDPM spectrum deconvolution
method outperforms the traditional method. On average, the DDPM approach not only detected 58 more chromatographic
peaks from each of the testing LC-MS data but also improved the retention time and peak area 3% and 6%, respectively.

Liquid chromatography coupled with high resolution mass
spectrometry (LC-MS) is widely used in both proteomics

and metabolomics. Several software packages have been
developed for analysis of the high resolution LC-MS data.1−5

The first step of analysis is to reduce the instrument data into a
peak list, that is, spectrum deconvolution. There are many
analysis steps involved in spectrum deconvolution, including
baseline correction, denoising, peak detection, resolving over-
lapping peaks, etc. Even though every single step can affect the
overall accuracy of spectrum deconvolution, selected ion
chromatogram (XIC) construction and chromatographic peak
integration are the key steps for spectrum deconvolution.
XIC is usually constructed by selecting all signals that have an

m/z value matched to the m/z value of an ion of interest, with a
user defined variation window. There are two potential
challenges in this approach. One is that the user defined m/z
variation windowmay not be optimal, and therefore, it is possible
that the true signals are excluded due to a small m/z variation
window, or multiple signals from the same scan are selected
because of a large m/z variation window. Second, it is always
possible that them/z value of a signal can be assigned to multiple
XICs because the m/z ranges of these XICs overlap within the
user defined m/z variation window. In this situation, it is a
challenge to decide to which XIC a signal in question should be
assigned, even though a common approach is to assign the signal

to an XIC in which the signal in question has a smaller value of
m/z difference with the reference signal of the XIC. TheMetSign
software resolved the second challenge by constructing the XICs
in favor of abundant signals,6 where the XICs are constructed in
descending order of the signal abundance. That is, all signals in an
LC-MS data set are first sorted based on abundance, and them/z
value of the most abundant signal is used as the reference m/z
value to construct the first XIC. After the construction of the first
XIC, the second XIC is constructed using the most abundant
signal of the remaining data. This process is repeated until all data
points in the LC-MS data set are used. However, this approach
still requires a user defined m/z variation window.
To calculate the area of a chromatographic peak from an XIC,

one approach is to sum all signals belonging to the chromato-
graphic peak, while the other approach is to fit the chromato-
graphic peak with a predefined peak model. In the first approach,
the challenge is to accurately define the peak boundary, that is,
the smallest scan number and the largest scan number of a
chromatographic peak, especially in cases of low abundance
peaks that usually have a poor peak shape. Another challenge is
that the accuracy of resolving the overlapping peaks is very poor.
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The overlapping signals cannot be accurately partitioned
between the overlapping peaks without the peak shape
information. In the case of a chromatographic peak model
based approach, the peak model is currently predefined by the
user and only one peak model is used to deconvolute all
chromatographic peaks. It is likely that the predefined peak
model may not be the optimal peak model because the
chromatographic peak shape can be affected by experimental
conditions.7

The objective of this study was to develop a spectrum
deconvolution method for analysis of LC-MS data acquired on a
high resolution mass spectrometer. We first developed a
clustering-based machine learning method to construct XICs
without the use of a user defined m/z variation window. After
removing the background signals and detecting peak position
using the second derivative test,6 an optimal peak model is
selected from a set of predefined peak models, including
Gaussian mixture (GMM), log-normal (LN),8 Poisson,9

gamma,10 hybrid of exponential and Gaussian (EGH),11 and
exponentially modified Gaussian (EMG) models.12 The optimal
peak models are then applied to the entire data set for peak
fitting. The developed methods are entitled “data dependent
peak model (DDPM)” based spectral deconvolution and have
been implemented in MetSign using MATLAB 2010b. The
performance of DDPM was evaluated by analyzing a set of
spiked-in data acquired on an LC-MS system.

■ EXPERIMENTAL SECTION
Spiked-in Samples. A total of 14 mouse liver samples were

used to prepare a pooled sample. About 60mg of liver tissue from
each mouse was mixed with deionized water at a ratio of 100 mg/
mL. The mixture was then homogenized for 2 min and stored at
−80 °C until use. To extract metabolites from liver tissue, 100 μL
of each homogenized liver sample was mixed with 20 μL of
butylated hydroxytoluene (BHT) mixture (50 mg of BHT into 1
mL methanol) and 800 μL methanol. The mixture was vortexed
for 1 min followed by centrifugation at 4 °C for 10 min at 15 000
rpm. A portion (700 μL) of the supernatant was aspirated into a
plastic tube and dried by N2 flow. After dissolving the dried
sample with 100 μL of methanol, a stock solution was prepared
by diluting the sample 10 times. Twenty microliter aliquots of
each of 14 mouse liver exacts were combined to make a pooled
sample for this work.
A mixture of 16 compound standards was prepared at a

concentration of 100 μg/mL for each compound, including three
fatty acid (heptadecanoic acid, heneicosanoic acid, and non-
adecanoic acid), five triglycerides (trilauroyl-glycerol, trimyristin,
tripalmitin, tricaprylin, and tricaprin), and eight phospholipids
(PC(16:0/16:0), PC(16:0/14:0), PC(12:0/12:0), PC(6:0/6:0),
LysoPC(16:0/0:0), LysoPC(10:0), PC(18:2(9Z,12Z)/18:2-
(9Z,12Z)), and PC(24:1(15Z)/24:1(15Z)). To prepare the
spiked-in samples 100 μL of the pooled sample was added to
each of three sample vials, followed by addition of 20, 50, and 80
μL of the standard mixture to the first, second, and third vial,
respectively. Dichloromethane/methanol (v/v = 2:1) was then
added to each of the three vials to make the total volume of 200
μL. This resulted in three sample groups with spiked-in
compound standards. The concentration of compound stand-
ards in each of the spiked-in sample groups was 10, 25, and 40
μg/mL, respectively.
LC-MS Analysis. A Citius LC-HRT high resolution mass

spectrometer (LECO Corp., St. Joseph, MI) equipped with an
Agilent 1290 Infinity UHPLC with a Waters Acquity UPLC and

a BEH hydrophilic interaction chromatography (HILIC) 1.7 μm,
2.1 mm × 150 mm, column was used in this work. The sample
was loaded in H2O + 5 mM NH4OAc + 0.2% acetic acid (buffer
A) and separated using a binary gradient consisting of buffer A
and buffer B (90/10 acetonitrile/H2O + 5 mM NH4OAc + 0.2%
acetic acid). Flow rate was set at 250 μL/min on the column, with
100% B for 4 min, 45% B at 12 min holding to 20 min, 100% B at
21 min and holding to 60 min for the gradient. The Citius LC-
HRT was operated with an electrospray ionization source in
positive ion mode with spray voltage set at 3.0 kV, nozzle
temperature at 125 °C, desolvation heater temperature at 900
°C, desolvation flow at 7.5 L/min and nebulizer pressure at 50
psi. The system was optimized in high resolution mode (R = 50
000 (fwhm)) with folded flight path (FFP) technology and was
mass calibrated externally using Agilent ESI tune mixture
(G2421A). The mass spectrometry was operated in a full mass
mode (low energy) followed by a tandem MS/MS mode (high
energy) with a mass range of m/z = 50−1000. The scan
frequency for acquiring the full mass spectra andMS/MS spectra
is five spectra per second. Each spiked-in sample was analyzed six
times via repetitive injection on LC-MS.

■ THEORETICAL BASIS

Machine Learning-Based XIC Construction. To detect
metabolite peaks at the chromatographic dimension, the selected
ion chromatogram, XIC, is first constructed for eachm/z value of
the metabolite ions. To avoid the use of a user defined m/z
variation window, the density based spatial clustering of
applications with noise (DBSCAN)13 was used in this study to
cluster the m/z values of the LC-MS data.
DBSCAN generates a number of clusters starting from an

estimated density distribution of data points. It requires two
input parameters, Eps andMinPts. Eps is a distance constraint for
Eps-neighborhood, and MinPts is a minimum number of data
points in an Eps-neighborhood. In this study, the Eps-
neighborhood refers to all m/z values in an LC-MS data set,
and each data point in the Eps-neighborhood is a m/z value. We
used the Euclidean distance, Ep,q, as the measure of distance
between twom/z values p and q, that is, Ep,q = |(m/z)p− (m/z)q|.
We further assumed that allm/z values acquired in a LC-MS data
set are the true signals, that is, each m/z value can be clustered
into a cluster. Therefore, Eps can be estimated as follows:14

π
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⎝
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⎞
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d
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where X is the input of allm/z values, Xmax is the maximum ofm/
z values, Xmin is the minimum of m/z values, k is a constant
coefficient and is set toMinPts, Γ is the gamma function, d is the
dimensionality of X vector, and L is the total number of m/z
values in X. In this study, MinPts and d were set to 2 and 1,
respectively.
In DBSCAN, a cluster C is defined as a nonempty subset ofm/

z values satisfying two conditions. First, given any twom/z values
p and q, if p∈C and Ep,q≤ Eps, then q∈C. Second, given any two
m/z values p and q in a cluster, Ep,q ≤ Eps, that is, p is density
reachable to q. Thus, for allm/z values in a data set, starting from
a selected one, if it has not been classified, DBSCAN searches all
density reachable points by Euclidean distance measurement
within threshold Eps. By iteratively considering each point, allm/
z values are grouped into several density-based clusters, of which
each contains all signals belonging to one XIC.
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To reduce the computation burden, all m/z values acquired in
an LC-MS experiment are grouped into multiple subgroups after
sorting the m/z values in an ascending order. The initial number
of m/z values in a subgroup, Ninit, is defined as

α
=N

n
n
mz

init
sc (2)

where nmz is the total number ofm/z values in an LC-MS data set,
nsc is the number of scans with mslevel equal to 1 (i.e., excluding
the scans of MS/MS data), and a is the number of initial
subgroups with a condition of a ≥ 2. Starting from the minimum
m/z value, the first Ninit m/z values are selected. Within these
selected m/z values, the maximum m/z difference between two
adjacent m/z values are detected. Then, the selected Ninit m/z
values are split into two parts by these two adjacent m/z values.
The first part is considered as the first subgroup. The second part
is put back to them/z pool for the selection of the next subgroup.
The aforementioned process is repeated to construct the
remaining subgroups until all m/z values are used up. In this
work, the constant a was set to 5.
The Silhouette score15 is used to evaluate the clustering

performance as follows:

=
−

S
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where Si is the Silhouette score of the ith cluster, dintra is the
average pairwise m/z value difference within the ith cluster, dinter
is the minimum average distance between the ith cluster and all
other clusters. The range of Si is from −1 to 1, with a negative
value meaning bad clustering result and a value close to 1
referring to better performance achieved by clustering.
Chromatographic Peak Models. After construction of the

XICs, the noise in each XIC is estimated using the approaches
described by Wei et al. in MetSign software.6 Briefly, each XIC is
first segmented into several peak groups based on the continuity
of scan number, and the noise level is estimated by all XIC
signals, except the regions potentially with presence of
chromatographic peaks. After removal of noise, the chromato-
graphic peaks in the XIC are detected using both the first and the
second derivative tests. To fit each chromatographic peak or peak
cluster, six peak models are selected in this work based on a
literature study.7 Each of the selected chromatographic peak
models is described as follows:
The ideal chromatographic peak shape is the Gaussian model

(GM) defined as

= − −f x a( ) e x b c( ) /(2 )2 2

(4)

where a is the height of the peak, b is the center of the peak, and c
denotes the deviation of the peak.
Log-normal model (LNM) assumes that a chromatographic

peak is the logarithm of a normal distribution and is defined as8
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where h is the height of the peak, s and w control the peak
variance, and z is the peak center.
Poisson model (PM) is chosen where the mutual correlation

of parameters is less than others and is defined as9
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where h is peak height, a is a constant with a > 1, and z is a
normalization value to input x.
The gamma model (GaM) is defined as10
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where h is the peak height, s describes the peak shape, z is the
peak center, and w is the peak deviation, and x ≥ w + z − sw.
The exponentially modifiedGaussianmodel (EMG) is defined

as12
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where λ = {y0,A,xc,w,t0}, y0 is the initial value, A is the amplitude,
xc is the center of the peak, w is the width of the peak, t0 is the
modification factor, and z = (x − xc)/w − w/t0; erf is the error
function.
The hybrid of exponential and Gaussian (EGH) mixture

model11 is a mixture of a hybrid of exponential and Gaussian
distributions, which is defined as

σ τ
σ τ

σ τ

≡

− −
+ −

+ − >

+ − ≤

⎧
⎨
⎪⎪

⎩
⎪⎪

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

f t
H

t t
t t

t t

t t

( )
exp

( )
2 ( )

, 2 ( ) 0

0, 2 ( ) 0

egh

R
2

g
2

R
g

2
R

g
2

R

(9)

whereH denotes the maximum of peak height, σg is the standard
deviation of the Gaussian component, tR is the peak center, and τ
is the time constant of the exponential component.

Data Dependent Peak Fitting. The retention time
dependent optimal peak models are selected using a training-
based approach, where a number of XICs with intense
chromatographic peaks are first selected. In each selected XIC,
the top 50% of abundant chromatographic peaks that do not
overlap with other peaks are collected and fitted with each of the
six peak models, respectively. The best fitting model for each
peak is then determined based on fitting scores:
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where Mj,t
o is the optimal peak model for the jth peak with fitted

peak location at retention time t, Ri,j,t
2 is fitting score indicating

the quality of the ith peak model for fitting the jth peak located at
t; xj(t) is the original intensity value of the jth peak at retention
time t, n is the number of peak intensity values in the jth peak,
xî,j(t) is the fitted intensity values of the jth peak by peak model i
at t, and x(̅t) = (1/n)∑j=1

n xj(t) is the mean intensity value in the
jth peak.
The retention times of all fitted chromatographic peaks of the

selected XICs are then sorted in ascending order, and each
retention time is associated with the best peak model of its
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corresponding chromatographic peak. The retention time
dependent optimal peak models are then determined using a
voting mechanism, within a retention time window covered by
five fitted chromatographic peaks. If two adjacent chromato-
graphic peaks have different optimal peak models, the middle
point of these two peaks is selected as the break point for the
application of the two optimal peak models.

■ RESULTS

About 35−42 m/z subgroups were generated from each of the
LC-MS data of the 18 spiked-in samples for DBSCAN clustering,
and 14−781 clusters were created from each m/z subgroup by
DBSCAN, with one cluster denoting one XIC. In each LC-MS
data set, 5164−6033 clusters (XICs) were obtained. In the case
of the first spiked-in sample, S25

1 , the raw LC-MS data were split
into 39 m/z subgroups, and DBSCAN clustered all these data
into 5646 m/z clusters (XICs). For instance, one m/z subgroup
has 266m/z clusters (XICs). The mean of the standard deviation
of the m/z values in each cluster is STD = 0.0021 ± 0.0011. This
magnitude of m/z variation within each cluster agrees with the
vendor suggested instrument variation. Figure 1A depicts the
cumulative distribution of the number of XICs with respect to
the span of m/z values within each XIC. The span of the m/z
values within an XIC ranges from 0.49 to 37 ppm. However, as
shown in Figure 1B, the number of chromatographic peaks
detected in an XIC decreases with the increase of them/z span in
an XIC, meaning that each of the XICs with a large m/z span is a
collection of noise. Figure 2 depicts the histogram of Silhouette
scores of all clusters obtained by DBSCAN from the entire LC-
MS data of sample S25

1 .
Figure 3 is an example of an XIC generated by using the

DBSCAN and a set of user definedm/z variation windows of 4, 5,
6, 7, and 8 ppm. The DBSCANmethod detected 140 data points
with m/z ranges from 812.6105 to 812.6217 and retention time
ranges from 437.75 to 470.50 s. However, the user defined m/z
variation window approach generated different XICs for the
same data depending on the size of user defined m/z window,
Δm/z. For example, a total of 114 data points were found for this
XIC with m/z ranges from 812.6123 to 812.6127 and retention
time ranges from 441.75 to 470.00 s, when Δm/z was set as ≤6
ppm. The DBSCAN method created a complete XIC, while the

m/z variation window approach created partial XIC until Δm/z
was increased to≤8 ppm. Upon increase of the variation window
to 9, 10, and 11 ppm, the same XICs were generated as those
usingΔm/z≤ 8 ppm. WhenΔm/z was further increased to ≤12
ppm, multiple data points were selected from the same scan for
the construction of XICs.
Figures S1−S4 in the Supporting Information depict the other

example XICs constructed by the m/z variation window
approach with different Δm/z values. These XICs were selected
based on the height of their chromatographic peaks, ranging from
low to high. It can be seen that DBSCAN constructed a complete
XIC for each of these chromatographic peaks of interest.
However, the optimal size of m/z variation window is data
dependent in the m/z variation window approach. The m/z
variation windows for the construction of a complete XIC for
these randomly selected chromatographic peaks are ≤15, ≤9,
≤7, and≤11 ppm for the data displayed in Figures S1, S2, S3, and
S4, respectively.
Table 1 summarizes the analysis results of all 18 spiked-in LC-

MS data sets using the user definedm/z variation window (Δm/z
≤ 7 ppm) and the DBSCAN approach, respectively. NXIC is the
average of XICs constructed in all 18 spiked-in samples, andNpeak
is the average of the chromatographic peaks detected. In order to

Figure 1. Information of m/z span within the XICs generated by DBCSAN for analysis of LC-MS data acquired from sample S25
1 : (A) the cumulative

distribution of the Δm/z values of all XICs; (B) the relationship of m/z span in XICs and the number of chromatographic peaks detected in the
corresponding XICs.

Figure 2.The distribution of Silhouette scores of all clusters obtained by
DBSCAN from the entire LC-MS data of sample S25

1 .
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investigate the accuracy of the detected chromatographic peaks
in terms of peak area and retention time, all 18 peak lists

generated from the spiked-in data were aligned using algorithm
reported previously,2,6 where the chromatographic peaks

Figure 3. An example of XICs generated using different user definedm/z variation windows and DBSCAN approach: (A)Δm/z≤ 4 ppm; (B)Δm/z≤
5 ppm; (C) Δm/z ≤ 6 ppm; (D) Δm/z ≤ 7 ppm; (E) Δm/z ≤ 8 ppm; (F) DBSCAN approach.

Table 1. The Analysis Results of All Spiked-in LC-MS Data Set Using the User Defined m/z Variation Window (Δm/z ≤ 7 ppm)
and the DBSCAN Approach

NXIC Npeak μrt_10 (%) μarea_10 (%) μrt_25 (%) μarea_25 (%) μrt_40 (%) μarea_40 (%)

Δm/z ≤ 7 ppm 5141 1827 0.41 14.3 0.41 14.5 0.38 14.2
DBSCAN 5557 1885 0.39 14.3 0.34 13.7 0.33 13.7
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generated by the same metabolite in different samples are
recognized based on the similarity of retention time and mass of
parent ions. After alignment, the relative standard deviation
(RSD) of retention time and peak area of each aligned peak were
respectively calculated for sample groups 10 μg/mL, 25 μg/mL
and 40 μg/mL. The mean of RSDs of peak area and retention
time of the aligned peaks were further calculated for each sample
group. μrt_10, μrt_25 and μrt_40 are respectively the mean of the
RSDs of the retention times of the aligned peaks in sample group
10 μg/mL, 25 μg/mL and 40 μg/mL. μarea_10, μarea_25 and μarea_40
are respectively the means of the RSDs of the peak areas of the
aligned peaks in sample group 10 μg/mL, 25 μg/mL and 40 μg/
mL.

■ DISCUSSION
DBSCAN Clustering. The k-means clustering and hierarch-

ical clustering are the two popular clustering methods. However,
these two methods face challenges in the convergence condition
and determining the number of clusters for the XIC construction.
The DBSCAN clustering can find any shape of the clusters
without requiring one to specify the number of clusters in the
data a priori.13 Theoretically, the DBSCAN assigns data points
into clusters based on density reachability, wherein the data
points within a cluster contain high density while the noise points
have less density than any clusters. Even though DBSCAN was
designed to solve the class identification problem in a two-
dimensional space data, it can be applied to different dimensional
data. We adopted it to construct XICs (one-dimensional data in
terms of m/z values) from an LC-MS data set and use the
Euclidean distance to measure the distance reachability between
two m/z values.
As discussed in the original paper,13 DBSCAN requires two

input parameters, Eps (a distance constraint for Eps-neighbor-
hood) and MinPts (a minimum number of points in Eps-
neighborhood). For the LC-MS data, we assume no noise point
in the data in order to assign every m/z value to a closest cluster.
Thus, MinPts is simply set to 2. Eps is estimated through the
statistics of the data calculated by eq 1. For eachm/z value that is
not yet classified, the DBSCAN algorithm searches all of its
density reachable or density connected points by Euclidean
distance within threshold Eps. A data point is entered into a
cluster if its distance to a member in that cluster is less than Eps.
By iteratively considering each data point, all m/z values would
be grouped into several density-based clusters. Each cluster
contains all m/z values belonging to one XIC.
Preprocessing of LC-MS Data. A high resolution LC-MS

data set contains a large number ofm/z values. For instance, over
2 500 000 data points are present in the data set acquired in each
of the LC-MS experiments in this work. To cluster these data
points by iteratively estimating and evaluating the number of
clusters is a great challenge for any of the existing clustering
algorithms, including the DBSCAN method. This is because the
estimation of cluster numbers is not accurate enough on the large
number of data points. Furthermore, the convergence cannot be
achieved in a limited time. To make the clustering methods
practically feasible, we designed a preprocessing method to
automatically split the data points in an LC-MS data set into
multiple subgroups according to the m/z differences among all
m/z values sorted in ascending order.
The constant a in eq 2 determines the number of initial

subgroupsNinit into which the user wants to split the entire set of
LC-MS data points. A large a value enables a fast DBSCAN
performance. However, an extreme large value of a can cause

each of the initial subgroups containing only partial data points
for an XIC. In case of analyzing the LC-MS data of sample S25

1 , all
m/z values in the LC-MS data were first sorted in ascending
order. By setting a = 5, all LC-MS data points were separated into
five segments. The first segment containing 20% of the data
points with small m/z values was selected initially for XIC
construction. Within the selected m/z values, the maximum m/z
difference between two adjacent m/z values was between data
points 106.1145 and 107.0482. Therefore, the selected m/z
values were split into two parts by these two adjacentm/z values.
The first part was considered as the first subgroup m/z ∈
[100.0212, 106.1145], while the second part was put back to the
m/z pool for the selection of the next subgroup. This process was
repeated to construct the remaining subgroups until all m/z
values were used up, generating a total of 39 subgroups.
The Eps values for these 39 subgroups range from 5.1412 ×

10−4 to 0.0154. The minimum Eps was calculated from subgroup
m/z ∈ [132.0431, 143.1264] and the maximum Eps from
subgroup m/z ∈ [1360.7580, 1606.0836], corresponding to
about 3.89 and 11.3 ppm, respectively. Equation 1 indicates that
the threshold Eps is data distribution dependent with a trend that
Eps value increases with the increase of m/z values. Such data
distribution dependent nature of the Eps value significantly
increases the accuracy of constructing the m/z clusters. During
DBSCAN clustering, them/z value with the highest abundance is
first selected as the reference data point to search all other
candidate data points with condition m/z ∈ [pr − Eps, pr + Eps],
where pr is the m/z value of the reference data point. Each of the
selected data points are further used as the reference data points
again to find the data points that are not yet clustered and have
Euclidean distance of m/z less than Eps, respectively. This
process is repeated until all data points in the current subgroup
are evaluated. After this process, a complete cluster of the most
abundant data point in the subgroup is constructed. Then, the
most abundant data point in the remaining data points of the
current subgroup is selected as the reference data point to search
for all other cluster members from the remaining data points to
construct the second cluster. This process is repeated until all
data points in the current subgroup are selected into a cluster.
The clusters constructed in this manner are in favor of ions with
abundant signals, where the XICs are constructed in descending
order of the signal abundance.
It should be noted that DBSCAN automatically determines

the threshold Eps and the number of clusters (i.e., the number of
XICs) based on the data distribution. Such a process eliminates
the use of a user defined m/z value variation window (bin size).
Currently, the m/z variation window is either determined by a
trial-and-error approach or by analysis of a set of calibration
chemicals. An improperly determined variation window could
significantly affect the XIC construction, as depicted in Figure 3
and Figures S1−S4, Supporting Information. The DBSCAN
approach constructs better XICs than the m/z variation window
based method.
Figure 1A shows that more than 97% of the XICs constructed

by DBSCAN have a m/z span of less than 15 ppm, with a
maximumm/z span of 37 ppm. The Silhouette score ranges from
0.48 to 1.0 with a majority of the XICs having large scores as
depicted in Figure 2. A small value of the Silhouette score
indicates the clustering resulting in a large m/z variation within
the corresponding XIC. During DBSCAN clustering, we
assumed that every signal in a LC-MS data set should be
assigned to a cluster. For this reason, a large number of XICs were
constructed by the DBSCAN (Table 1). The XICs with largem/
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z variations and small Silhouette scores most likely contain a set
of noise, and therefore, the number of chromatographic peaks
detected in each of these XICs decreases with the increase ofm/z
span (Figure 1B). Figure 4 depicts the XIC with the largest m/z

variation,Δm/z = 37 ppm. This XIC is composed of a set of noise
without any chromatographic peak and, therefore, is eliminated
during the step of chromatographic peak fitting. In general, an
abundant chromatographic peak has a small value of m/z
difference among the signals collected for that chromatographic
peak.
PeakModel Selection.Chromatographic peak shape can be

affected by many experimental conditions during LC separation.
Based on literature study,7 a total of six peak models including
PMM, EGHM, GMM, GaMM, LNMM, and EMGM were
selected in this work, assuming that at least one of the six models
can describe the true chromatographic peak shape at a given
retention time. Each of PMM, EGHM, GMM, GaMM, LNMM,
and EMGMmodels has, respectively, (S·2 + 1), (S·3 + 1), (S·2 +
1), (S·2 + 1), (S·2 + 1), and (S·3 + 1) parameters to estimate,
where S is the number of mixture components (i.e., the number
of overlapping chromatographic peaks). In this study, the peak
boundary is fixed by the starting and ending scan number of a
given peak region. Chromatographic peak fitting is performed
only when the number of data points for a given peak region is
greater than or equal to the required number of parameters for a
selected probability model.
Figure 5 shows the results of using five peak models analyzing

the same data. EGHMmodel failed to fit the experimental data in
this case. The fitting scores of the other five peak models in
ascending order are LNMM (R2 = 0.9977) < GMM (R2 =
0.9978) < PMM (R2 = 0.9990) = GaMM (R2 = 0.9990) <
EMGM (R2 = 0.9992). Even though the EMGM model
performed the best, the difference among the fitting scores of
these five models is quite small. However, different peak models
generate completely different peak areas for the deconvoluted
peaks. Such dramatic differences in the peak area of the
deconvoluted peaks can significantly affect the results of
compound quantification. Therefore, it is critical to find the
right chromatographic peak model for spectral deconvolution,
especially in analysis of complex samples.
In order to choose a proper peak model, we developed a

training-based method to automatically select the best peak
model from a set of predefined peak models. The training data

are a set of chromatographic peaks with high quality, selected
from multiple XICs. We first selected 50 XICs that are evenly
distributed in the retention time domain. Each of the selected
XICs has the most abundant chromatographic peak compared
with its neighbor XICs in the segment of its retention time. In
each selected XIC, the top 50% of abundant chromatographic
peaks that do not overlap with other peaks are then collected and
fitted with each of the six peak models, respectively. The best
fitting model for each peak is then determined based on fitting
scores, that is, the maximum R2 value. The retention times of all
fitted chromatographic peaks of the selected XICs are then
sorted in ascending order, and each retention time is associated
with the best peak model fitted for its corresponding chromato-
graphic peak. The retention time dependent optimal peak
models are then determined using a voting mechanism, within a
retention time window covered by five fitted chromatographic
peaks. In the case that two adjacent chromatographic peaks have
different optimal peak models, the middle point of these two
peaks is selected as the break point for the application of the two
optimal peak models. In this study, the EMGM model was
selected as the optimal peak model across the entire retention
time range. Figures S5−S7, Supporting Information, depict the
effectiveness of the EMGM model for abundant peaks, less
abundant peaks, and low abundance peaks, respectively.
Determining the number of overlapped peaks is critical for

accurately deconvoluting overlapped peaks in an XIC. In case the
second derivative test is used to detect small peaks overlapping
with other peaks, the number of overlapped peaks is usually
achieved by predefining aminimumnumber of data points on the
two sides of a data point xrc, where the second-derivative crosses
the zero position.6 A large number of predefined data points will
generate a small number of overlapped peaks for peak fitting. A
wrong selection of the number of overlapped peaks will
introduce a significant variation in both the retention time and
peak area of the fitted peaks. In order to find the optimal number
of overlapped peaks, a trial-and-error approach was used in this
study by testing the data number on each side of data point xrc as
3, 5, 7, 9, and 11. The optimal number of overlapped peaks is then
determined by the data number that generates the maximum R2

score. Even though such a trial-and-error approach significantly
increases the computation time, we believe the accuracy of
spectral deconvolution is much more important.

Overall Performance. The performance of the proposed
DDPM method was evaluated by analyzing a set of spiked-in
data. Table 1 summarizes the results of spectrum deconvolution
using DBSCAN and m/z variation window approaches,
respectively. The DBSCAN approach obtained about 5557
XICs per LC-MS data set, from which 1885 chromatographic
peaks were detected. However, the m/z variation window
approach only detected 1827 chromatographic peaks from 5141
XICs. On average, the DBSCAN approach detected 58 more
chromatographic peaks in each of the spiked-in samples. Table 2
lists the numbers of aligned peaks detected using DBSCAN and
the variation window approaches. Compared with the variation
window approach, the DBSCAN method detected three more
peaks that are present in all samples and 18 more peaks in more
than 90% of samples. Among these 21 peaks, the peak area ranges
from 7624 to 203 146, indicating that the variation window
approach missed detecting not only small peaks but also the
abundant peaks. The chromatographic peak fitting score R2 of
the 21 missed peaks ranges from 0.9187 to 0.9978, showing that
the missed peaks also have very good chromatographic peak
shape.

Figure 4. A sample XIC constructed by DBSCAN approach with m/z
variation of 37 ppm.
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The main reason for the variation window approach not
detecting these peaks is that it failed to correctly construct the
XICs for these peaks. Figure 6A,B depicts two XICs of a peak
with m/z value of 812.6157 constructed from sample S40

3 by
DBSCAN and m/z variation window approaches, respectively.
The best chromatographic peak model for fitting the XIC

constructed by DBSCAN is EMGM with a fitting score R2 of
0.9937 (Figure 6C), while the XIC constructed by the variation
window approach does not have a complete peak shape and
therefore can only detecte three peaks and misses the far left
hidden peak at retention time of 441 s (the fitted peak 3 in Figure
6C). Figure S8A, Supporting Information, depicts another

Figure 5. Effect of five chromatographic peak models in fitting a region of an XIC containing overlapped chromatographic peaks: (A) PMMmodel; (B)
GMM model; (C) GaMM model; (D) LNMM model; (E) EMGM model.
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sample XIC, from which two peaks were detected by the
DBSCAN approach with a fitting score of R2 = 0.9978 (Figure
S8B). Figure S8C shows the XIC of the same ion constructed by
the m/z variation window approach. Due to the poor quality of
the XIC, the fitting error is very big, resulting in no peak detected
for this ion.
In terms of the accuracy of retention time and peak area, both

the mean of retention time variation and the mean of relative
standard deviation of peak area of the aligned peaks are smaller
than the corresponding values obtained by the variation window
approach in all three sample groups (Table 1). Overall, the

proposed spectrum deconvolution method improves the
retention time and peak area of fully aligned peaks up to 3%
and 6%, respectively. These results demonstrate that the
DBSCAN-based XIC construction approach outperforms the
m/z variation window approach for accurate deconvolution of
the LC-MS data, in terms of detecting more chromatographic
peaks and generating high accuracy of retention time and peak
area for the deconvoluted chromatographic peaks.
The effectiveness of modern “omics” studies is greatly

hampered by the limited peak capacity of analytical platforms.
For this reason, a multidimensional separation system was
developed to increase molecular coverage in both proteomics
and metabolomics.16−18 However, it may be even more
important that we need to maximize our capability of accurately
uncovering all molecular information from the experimental
data. A key step in this effort is to ensure that the mass spectra
acquired in a LC-MS can be accurately deconvoluted. Compared
with the conventional m/z variation window approach, the
proposed DDPM method significantly outperforms the current
spectrum deconvolution method by detecting more molecular
peaks and providingmodest gain in accuracy of determining peak
area and retention time. Such improvement will not only result in
identifying an increased number of low signal species or

Table 2. The Number of Aligned Chromatographic Peaks
Detected in All 18 Spiked-in Samples Using the XICs
Constructed by m/z Variation Window Approach and
DBSCAN Approach

frequencya (%) number of samples Δm/z ≤ 7 ppm DBSCAN

100 18 295 298
80−99 15, 16, 17 255 270
60−79 11, 12, 13, 14 206 223

aFrequency refers to the ratio of the number of samples from which a
chromatographic peak was aligned divided by the total number of
samples.

Figure 6. Comparison of XIC construction using DBSCAN and m/z variation window approaches: (A) XIC of a peak with m/z value of 812.6157
constructed from sample S40

3 by DBSCAN; (B) XIC of the same peak constructed using a m/z variation window of 7 ppm; (C) four fitted peaks by
EMGM model using the XIC data presented in part A.
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overlapping species but also improve the accuracy of molecular
quantification, such as identifying disease biomarkers.
Even though the optimal peak models selected by the

proposed DDPM method are data- and retention-time-depend-
ent, the DDPM approach has some potential limitations. One is
that it can only select the optimal peak model from a list of user
predefined peak models. We expect that the use of multiple
chromatographic peak models could, at least, increase the chance
that the true peak model is selected. It is critical to make sure the
true peak model is actually present in the list of predefined peak
models. The other limitation is that extensive computation is
involved due to the large number of peak models and the trial-
and-error approach in determining the number of peaks in an
overlapping region. Therefore, parallel computation is required
and implemented in this study.

■ CONCLUSIONS
A data dependent peak model based spectrum deconvolution
method entitled DDPM was developed for analysis of high
resolution LC-MS data. For spectrum deconvolution, peak
picking is achieved at selected ion chromatogram (XIC) level. To
construct the XICs, a density-based clustering method, the
density based spatial clustering of applications with noise
(DBSCAN), is applied in all m/z values of an LC-MS data set
to cluster the m/z values into each XIC. Using DBSCAN
clustering to construct XICs eliminates the need for a user
defined m/z variation window. After the XIC construction, the
peaks of molecular ions in each XIC are detected using both the
first and the second derivative tests. To accurately determine the
number of overlapping peaks, a trial-and-error approach is used
by testing the different numbers of data on each side of the data
point where the second-derivative crosses the zero position. The
optimal number of overlapping peaks is determined by the data
number that generates the maximum fitting score.
A total of six chromatographic peak models are considered,

including Gaussian, log-normal, Poisson, gamma, exponentially
modified Gaussian, and hybrid of exponential and Gaussian
models. A set of abundant nonoverlapping peaks evenly
distributed across the retention time are chosen to find the
optimal peak models that are both data- and retention-time-
dependent. Analysis of a set of spiked-in data demonstrates that
the density-based clustering method for XIC construction has
quick convergence and outperforms the traditional m/z
threshold-based method. Moreover, the data dependent peak
model based peak fitting provides accurate deconvolution of the
LC-MS data in terms of retention time and peak area. Overall, the
proposed DDPM method improves the retention time and peak
area of the detected chromatographic peaks 3% and 6%,
respectively. It also can detect more chromatographic peaks
that are not detected by the conventional m/z variation window
approach. On average, about 58 more chromatographic peaks
were detected from each of the testing data sets by the DDPM
approach.
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