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a b s t r a c t

Bacterial and viral pathogens affect their eukaryotic host partly by interacting with proteins of the host
cell. Hence, to investigate infection from a systems’ perspective we need to construct complete and accu-
rate host–pathogen protein–protein interaction networks. Because of the paucity of available data and
the cost associated with experimental approaches, any construction and analysis of such a network in
the near future has to rely on computational predictions. Specifically, this challenge consists of a number
of sub-problems: First, prediction of possible pathogen interactors (e.g. effector proteins) is necessary for
bacteria and protozoa. Second, the prospective host binding partners have to be determined and finally,
the impact on the host cell analyzed. This review gives an overview of current bioinformatics approaches
to obtain and understand host–pathogen interactions. As an application example of the methods covered,
we predict host–pathogen interactions of Salmonella and discuss the value of these predictions as a pro-
spective for further research.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Despite tremendous advances in biomedical science, infectious
diseases are still a major health problem due to the rise of novel
variants of pathogens that are resistant to available drugs just as
the multi-resistant Staphyloccocus aureus [1] or pathogenic Esche-
richia coli strains [2]. The approval of the oxazolidinone antibiotic
Linezolid in 2000 was preceded by four decades without discover-
ing any new structural class of antibacterial drugs [3], illustrating
that there is an urgent need for new antiviral, antibacterial and
antiprotozoal compounds. An understanding of host–pathogen
interactions on the molecular level is crucial for the development
of such therapeutics. While some experimental data for host–path-
ogen interactions exist (reviewed below), their relative paucity
emphasizes the need for computational predictions. Modern tech-
nologies such as genome sequencing and high throughput methods
for protein–protein interaction (PPI) detection provide a source of
information that can be exploited by computational methods to
provide short-cuts to laborious wet lab research [4]. These meth-
ods can support many different stages of knowledge generation,
covering the generation of target lists for the investigation of
ll rights reserved.
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unknown virulence factors, prediction of the points of attack in
the host cell and enlightenment of the modes of molecular interac-
tions during the infection process.

On a molecular level, infection can be viewed as the interfer-
ence of pathogenic proteins (most of the microbial toxins are pro-
teins) with the hosts’ interaction network. Viral proteins use the
host protein synthesis machinery, whereas bacterial ones and pro-
teins from parasitic protozoa are secreted or injected into host
cells. Many pathogenic proteins follow general protein architec-
tural rules and contain distinct functional and structural features,
e.g., signal peptides that lead to targeted transport and pathogenic
effector domains, which interact with the host system. A common
pathogen strategy is to mimic eukaryotic PPI domains or binding
motifs in order to remodel the host PPI network [5]. These struc-
tural mimicries are often the result of horizontal gene transfer
(HGT) [6] in combination with rapidly evolving pathogen genomes
as part of host–pathogen coevolution [7]. Some well-known host–
pathogen PPI interactions are mediated by host SH2, SH3 and PDZ
domains. For example, the Influenza A non-structural protein 1
(NS1) contains regions that bind the SH2 and SH3 domains of the
regulatory subunits of PI3K [8,9] and the class 1 PDZ-binding mo-
tifs of NS1 binds Scribble [10]. Moreover, these PPI motifs and do-
mains can determine the virulence of the pathogen. For example,
NS1 of avian and Spanish Influenza A has a SH3 domain-binding
motif that preferably interacts with Crk-like protein, and this inter-
action increased Akt phosphorylation downstream [11]. Bacterial
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molecular mimicries include the effector espF of the enteropatho-
genic E. coli which interacts with human sorting nexin 9 in order to
achieve membrane re-modeling [12]. The effector IpgB2 in Shigella
as well as some of its homologs in other bacteria are functional
mimicries of Rho family GTPases and interfere with host signaling
pathways [13], whereas the chlamydial IncA protein contains
SNARE like motifs used to interfere with intra-cellular trafficking
in order to establish the inclusion membrane of Chlamydia (an obli-
gate intracellular parasite) [14]. An important feature of patho-
genic proteins is their propensity to target proteins from
pathways that aid infection and counteract the hosts defense sys-
tems (‘‘anti-immunology’’), e.g. by apoptosis evasion [15], cell cycle
activation [16], proteasomal and ubiquitination alteration [17], ac-
tin and cytoskeleton reorganization [18] and innate immunity
inhibition [19]. To conclude, interactions of pathogen proteins with
host proteins are often mediated by domains and motifs and these
interactions are not random but target specific proteins of the host.
We can exploit this fact in computational approaches to detect
host–pathogen interactions. The methods for doing so will be dis-
cussed in this review.

This review is structured as follows: First, we will summarize
resources of host–pathogen interactions (HP-PPI) currently avail-
able and we will discuss text-mining methods that are capable of
extracting large-scale interaction data from the literature. Second,
we will review bioinformatics methods to predict bacterial effector
proteins (i.e., proteins that are secreted by bacterial pathogens in
order to interact with the host system). Third, we will discuss
the prediction of HP-PPIs. We will focus on methods utilizing do-
main–domain interactions (DDIs) and short linear motifs (SLMs)
since comprehensive databases of these types of interactions are
available [20–23] and can be exploited for the prediction of HP-
PPIs. Currently available HP-PPI networks are reviewed in the
fourth part. The fifth part of the article provides an example anal-
ysis that shows how the discussed methods can contribute to the
relatively under-explored field of host–pathogen interactions.
Methods to increase the reliability and the pathogen class specific-
ity of HP-PPI prediction methods are discussed last.
2. Databases and text-mining

Currently, there are several databases available that cover vari-
ous aspects of HP-PPIs: broadly, these can be divided into dat-
abases of virulence related genes and of known HP-PPIs as
detected by small or large scale screens. Some databases go beyond
the scope of listing data and allow query-driven analyses by the
user. We will also discuss HP-PPI specific text-mining approaches,
as these approaches are valuable for mining HP-PPIs literature that
is not contained in databases and can complement database
searches.
2.1. Bacterial virulence related genes

For bacterial pathogens, the VFDB [24] and the MvirDB [25] dat-
abases comprise a collection of known bacterial virulence related
genes such as toxins, resistance genes, and effector proteins which
are delivered into the host cell by active transport. VFDB contains
hand-curated data of experimentally validated virulence factors
and covers currently data from 8 major bacterial pathogens.
MvirDB is a meta-database that collects data from different sources
including VFDB as well as databases dedicated to toxins, pathoge-
nicity islands and antibiotic resistance and covers in addition to
bacteria, eukaryotic and viral sequences. PATRIC (short for Patho-
systems Resource Integration Center) is a meta-database that col-
lects genomic data from bacterial and viral sequences and
processes the data by a unified, automated annotation pipeline.
The resource is comprehensive in terms of the covered species
(>5000 partially or completely sequenced bacteria, >2600 viral
species with several thousand strains) and offers a variety of com-
parative analysis tools [26].

Several databases are dedicated to effector proteins secreted by
the Type III secretion system and provide curated and predicted
sets of bacterial effectors and cognate proteins as the Effective
database [27], the T3SE database [28], and the T3DB database [29].

2.2. HP-PPI databases

PHI-base [30] is a database covering around 1800 verified bac-
terial, fungal, and oomycete host–pathogen interactions. HPIDB
[31] is a meta-database that collects host–pathogen interactions
from different interaction resources such as the DIP [32] or MINT
[33] PPI collections, and from specialized resources as the PIG
(pathogen interaction gateway) database [34]. The latter one col-
lects host–pathogen PPI information between human and several
viral and bacterial pathogens as well as additional data from GO
annotations and Interpro assignments. It is integrated into the PAT-
RIC resource [26]. iRefWeb is a very comprehensive meta-database
that, despite not being especially designed for HP-PPIs, allows to
search for interaction pairs measured between different species
[35]. A number of databases are especially dedicated to protein–
protein interactions between viral proteins and host proteins such
as the Virusmint database [36]. This database consists of more than
5000 interactions as well as literature annotations. Virhostnet is a
similar database, but contains, aside from host–pathogen interac-
tions, the interactomes of the host (human) and of the respective
viruses. CAPIH [37] is a database for analyzing HIV related interac-
tions. In addition, it provides genetic variation data and predictions
of phosphorylation and methylation sites. Another database, GPS-
prot, is a meta-database that allows graphical browsing of HIV–hu-
man interaction networks [38]. Where some of the aforementioned
databases just collect the interaction data-sets, others curate data
by hand like PHI-base or PIG. A summary of these databases can
be found in Table 1.

2.3. Integrated database and analysis systems

Several databases do not only list interaction data but also allow
further exploration of the data. Most of the databases allow graph-
ical exploration of the interaction networks (all mentioned dat-
abases except HPIDB). HPIDB allows BLASTing against the
interaction sets implementing to detect homologs as well as con-
served interacting pairs (Interologs, described below). CAPIH visu-
alizes differences between orthologs of human, macaque, chimp,
and mouse in terms of genetic variation and protein modifications.
This information can potentially allow interpreting possible differ-
ences of HIV–human interactions in their model organism equiva-
lents which can be very useful for translating animal based drug
discovery to humans.

2.4. Text-mining

A promising approach to supplement the knowledge on host–
pathogen interactions is automated mining of the literature (e.g.
PubMed abstracts); such procedures can uncover functional rela-
tionships and interactions not deposited in the primary interaction
databases and can aid the identification of relevant literature to
improve the curation process of host–pathogen related databases.
Many approaches exist to accomplish this for intra-species interac-
tions, however, only quite recently the value of text-mining has
been assessed for host–pathogen interactions: Yin and co-workers
evaluated the usage of a certain group of classification algorithms,
namely support vector machines (SVM) to retrieve documents



Table 1
Overview of HP-PPI databases.

Database Species Curated or meta-
database

Special features Size Last
update

PHI-base 97 pathogens, 76 host species Yes Search by phenotype possible 1335
interactions

2009

HPIDB 389 pathogens 58 host species Meta-database BLAST 22223
interactions

2012

PIG 21 bacteria in the host–
pathogen section

Meta-database BLAST & domain information, graphical representation of HP-PPI
network

7180
interactions

2012

Virusmint 10 viral species, host: human Yes Graphical representation of HP-PPI network 5140
interactions

?

Virhostnet 180 viral species, host: human Yes – 2671
interactions

?

CAPIH HIV/human Meta-database Resource for comparative analysis of HIV–host interactions with
model organisms

1447
interactions

?

GPS-prot HIV/human Meta-database Allows the integration of genetic interactions (RNAi screens) ? 2011

Host–Pathogen PPI databases. ‘‘Database’’: the database name, ‘‘Species’’: the amount and phyla of the species covered in the database, ‘‘Special features’’: special technical
aspects, ‘‘Size’’: the amount of interactions, ‘‘Last update:’’ last update according to the prospective web-site.
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related to host–pathogen interactions. They used cross-validation
experiments to show that this can be accomplished with a rate
of 50% relevant articles in the top 10% of the ranked documents,
where a random guess would yield 10% [39]. In a different study,
Thieu et al. [40] employed two approaches: An SVM based ap-
proach similar as the one used by Yin et al. and an approach based
on semantic analysis, which allows the computational description
of dependencies between words reflecting the logical structure of a
sentence. In addition to Yin et al., who only discriminate abstracts
which are relevant to host–pathogen interaction from abstracts of
arbitrary articles, Thieu et al. formulate two additional problems:
find relevant sentences that describe the mode of interaction,
and find the actual interacting entities. It could be shown that
the semantic approach has a higher performance on the latter
two tasks compared to the SVM but still only received a precision
(fraction of correct predictions) of 0.16 and a recall (fraction of
found known positive instances) of 0.11 in the identification of ac-
tual HP-PPIs on the given test-set, compared to 0.03 and 0.05 in
case of the SVM. Both studies have been performed on an initial,
hand-curated set of articles and show the general feasibility of data
mining in the domain of host–pathogen interactions. In theory,
such algorithms could be applied to the complete set of available
literature to generate a comprehensive knowledge-base for host–
pathogen interactions.
3. Identification of secreted virulence factors

Before predicting interaction partners, the proteins that are
actually employed by the pathogen for this purpose (the effectors)
have to be identified. In case of viruses, all proteins are candidates
since they are all expressed in the host system. In case of bacteria
and protozoa, the detection of suitable candidates must be per-
formed prior to further analysis. This prediction may be specific
for the employed transport system. Three of the seven known bac-
terial transport-systems (Types III, IV and VI) penetrate the host
cell membranes and inject proteins into the cytosol. Other bacterial
transport systems can be used if effector entry into the hosts’
cytosol is not required or mediated by alternative pathways: for
example, the Type II secretion system has been shown to be rele-
vant for bacterial virulence [41,42] but does not provide a direct
way for translocation into the host’s cytosol. Several of the bacte-
rial transport systems can be employed by the same species. An
example is Pseudomonas syringae, which delivers effectors by the
Type III as well as by the Twin-Arginine system [43]. In the case
of protozoa, the knowledge of the exact transport routes into the
host are largely unknown [44] but effector specific motifs have
been identified in some species which can be exploited for predic-
tion. There is a need for general prediction methods that do not
refer to a certain transporter since not all routes to deliver effectors
are known. In this paragraph, we describe methods to detect
effectors based on sequence homology or on the presence of a
signal peptide, a sequence that leads to active transport into the
host. Moreover, we discuss detection methods by genomic and
functional properties as domain signatures that hint to a role as
effector protein.

3.1. Homology-based methods

With a list of known effectors at hand, homology searches can
be applied to detect effector candidates. On the one hand, this ap-
proach has the drawback of being restricted to known families of
effector proteins. This issue becomes especially evident when
effectors are evolutionary ‘‘invented’’ by genome re-arrangements,
as it has been shown for Type III secreted effector proteins in
gram(�) bacteria [45]. On the other hand, effectors from closely re-
lated species or effectors that are transmitted by horizontal gene
transfer (HGT) are detectable by homology searches. A good exam-
ple for this method has been the Shigella toxin, which renders EHEC
strains of E. coli especially harmful [46]. In this manuscript, 300
known and predicted effectors were used to detect homologous
candidates in the proteome of an E. coli EHEC strain. This strategy
identified 65 candidates of which 60% could be shown to be se-
creted. The sensitivity of homology searches in identifying effec-
tors can be roughly estimated by the number of orthologous
effectors known to date. The T3DB database [29] provides an up-
to-date set of effectors with their respective orthologous relation-
ships between different species. Where 90 effectors do not have
well defined orthologs, 138 could potentially be detected by their
evolutionary relationships to other effectors (resulting in a sensi-
tivity of 60%). Since in this analysis genes from different strains
are unified into one entry, the amount of successfully identified
effectors between different strains might be higher.

3.2. Signal based detection

A more straightforward way to detect secreted proteins is the
prediction of the secretion signal. This is a peptide sequence that
is recognized by the respective secretion apparatus. This prediction
is possible if basic information on the secretion signal is available.
These data can be used to train a Hidden Markov Model or a binary
classification algorithm. Substrates of two of the bacterial trans-
port systems (namely, the Type II and V secretion system, com-
monly known as the sec-dependent pathways) can be detected
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by both their cleavage signal and a hydrophobic N-terminal signal
sequence. The latter is crucial for the transport into the periplas-
matic space [47]. Even if these systems do not deliver directly into
the host cell, substrates of these secretion systems have been
shown to play a role in infection, as can be shown for Legionella
[48]. Computationally, this signal can be encoded in an Hidden
Markov Model (HMM) which can detect transported proteins with
high accuracy (sensitivity and selectivity >88%), as implemented in
the SignalP detection software [49]. This software is also capable of
predicting proteins that are secreted by the exocytosis pathway in
Eukaryotes. In gram(�) bacteria, the transport of effectors is often
mediated by the Type III secretion apparatus (TTSS), a molecular
syringe spanning through the bacterial and eukaryotic host cells
[50]. The recognition of substrates by the TTSS is mediated by
the N-terminal end of the effector proteins [51–53] and is in some
cases supported by TTSS specific chaperones [54,55]. Different
studies applied binary classification algorithms (neural networks,
Naive Bayes classifier, and SVMs) [56] for TTSS specific effector
prediction resulting in predictions that are far better than random.
This was determined in cross-validation experiments with a sensi-
tivity up to 90% and a specificity of 88–97% [53,56,57]. Since the
exact signal that leads to transport is unknown, these approaches
use representations of amino-acid frequencies or frequencies of
short amino-acid stretches from the proteins’ N-termini as input
features. The first 25 to the first 100 amino-acids are sufficient to
initiate Type III secretion [52]. Samudrala et al. complemented this
approach by implementing additional effector specific features
such as their low sequence conservation and unusual phylogenetic
distribution [53]. These additional features are discriminative be-
tween effectors and non-effectors and substantially contribute to
the prediction performance by increasing the ROC-AUC (used to
measure the general classification performance, which is 0.5 for a
random prediction and 1.0 for a perfect classification) from 0.80
to 0.95. An interesting case is the agent of malaria, the eukaryote
Plasmodium falciparum that infects erythrocytes and stays intracel-
lular in a vacuole. The effectors of Plasmodium have one of two sim-
ilar short motifs in common, called PEXEL and vacuolar transport
signal (VTS) that lead to transport out of the pathogen, across the
vacuole and into the host cell [58,59]. This motif can be utilized
to detect novel virulence factors using a HMM or a sequence pat-
tern. Using these motifs alone to detect secreted proteins would
produce a large amount of false positives due to the shortness of
the motifs, covering up to 28% of the Plasmodiums’ proteome
[60]. Hiss et al. reported that these motifs are flanked by patterns
of amino acids with similar physico-chemical properties. These
patterns can be used to classify the predicted effectors further,
hereby reducing the amount of candidates to �7% of the proteome
[60]. Microarray data can be used to identify which effectors are
active in certain stages of the life cycle, since malaria depends on
the infection of erythrocytes and has a tissue specific life-cycle
[59]. Another motif (the RxLR motif and flanking regions, similar
to the PEXEL motif) has been described in several plant pathogens
such as Phytophthora infestans, an oomycete. Remarkably, this sig-
nal is interchangeable with the PEXEL signal [61]. This finding
might indicate a common mechanism used to deliver eukaryotic
effectors. There is evidence that this mechanism works in the ab-
sence of the pathogen and therefore comprises a utilized host
mechanism, but the topic is highly disputed [44,62].

3.3. ‘‘Genomic’’ and ‘‘function based’’ approaches

To detect effectors delivered by transport systems for which the
signal of substrate recognition is completely unknown, more gen-
eral features of effectors must be employed. For some bacterial
species, effectors tend to be organized in pathogenicity islands
on the chromosome and their genes exhibit a deviating CG content
[63]. Furthermore, their orthologs have an unusual phylogenetic
distribution since they have been acquired by horizontal gene
transfer [63]. They may therefore be more similar to eukaryotic do-
mains as to other bacterial sequences [64]. A promising approach is
based on machine learning that integrates several of such features.
Such a method has been successfully applied for substrates of the
Type IV secretion system in Legionella pneumophila [54], achieving
a cross-validation performance of ROC-AUC 0.95 and a >90% suc-
cess rate in wet-lab tests while testing for translocation. An inter-
esting way to detect effectors is to identify domains suspected to
interact with the host system as indicated by their binding mode
or phylogenetic pattern. The latter case refers to so called ‘‘eukary-
otic-like’’ domains unusual in bacteria but frequent in the eukary-
otic host cell as ankyrin repeats [65–67]. In addition to serve as a
basis for detection, these domains also indicate a function of the
effector in the host and might mediate the interaction with the
host system. Effector candidates can be detected by screening for
these domains using HMM representations of such domains as
they can be found in Pfam or SMART [68]. A convenient way to de-
tect domain signatures is the use of Interpro-scan [69] which pro-
vides a comprehensive ‘umbrella-system’ for several domain
signature databases. Many of the eukaryotic-like domains in effec-
tors have been identified by expert knowledge in a case-to-case
manner. Thousands of different domain signatures exist and com-
prehensively scanning these can provide additional domains of
interest. The Effective database [27] provides a systematic screen
for eukaryotic-like domains based on an evaluation of their taxo-
nomic distribution between eukaryotes and pathogenic bacterial
species. This database lists a frequency based Z-score for each do-
main in a pathogen which describes how more frequent the do-
main appears in the pathogenic species as in non-pathogenic
ones. However, the reliability of this classification of eukaryotic do-
mains has not been systematically assessed yet.
4. Prediction of HP-PPIs

The prediction of protein–protein interactions is a well-investi-
gated problem for the intra-species case, and it is the next logical
step to adapt these approaches for host–pathogen interactions.
However, not all methods suitable for intra-species interaction
prediction can be applied here. In this section, the most important
methods for the predictions of HP-PPIs are discussed. These meth-
ods are based on mapping of known interactions, methods based
on machine learning on sequence information, and methods based
on domain–domain interactions. A special and very promising var-
iant of the latter is the detection of short linear motifs (SLMs) that
are the binding motifs for a number of eukaryotic interaction
domains.
4.1. Interologs

The most evident approach is the mapping of known interac-
tions onto homologous or orthologous pairs of sequences, based
on the rationale of conserved interactions between the same or
similar genes in different species. If an interaction of two genes
is known in A, this interaction is likely to occur in B as well to
maintain this common function. The transferred PPI is then called
‘Interolog’. The interolog method becomes weaker with larger evo-
lutionary distances since genes may neo-functionalize during evo-
lution and orthologous assignments will become more error-prone
due to the lack of sequence similarity. In addition, many HP-PPIs
will be unique inventions from the host–pathogen arms race that
are not existent between orthologs of other species. Nevertheless,
host–pathogen interactions may reveal known interactions, for in-
stance if a gene acquired by HGT from the host could be re-utilized
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to attack the host system. Since reliable mappings can only be
achieved between sequences with very high sequence similarity
(>30%) or very significant E-Values as shown in the studies by Aloy
et al. [70] and Yu et al. [71], the original approach may miss many
fast evolving effectors. In the case of HP-PPIs, several authors
therefore combined a sensitive version of the interolog approach
with pruning steps to remove false positives that are unlikely to
interact due to spatial or temporal constraints. Using interologs,
Wuchty [72] and Lee et al. [73] predicted HP-PPIs between P. falci-
parum and human, uncovering interactions that are meaningful for
the maintenance of the parasites intracellular life-style. Using an
additional machine learning step, Wuchty reports a 79% true posi-
tive rate while picking up only 4.7% false positives on a structurally
inferred test-set from a previous study [74]. Lee et al. show that
their predictions are significantly enriched with relevant Gene
Ontology terms dealing with Calcium related processes which are
relevant to the Plasmodiums life cycle. Krishnadev et al. predicted
interactions between human and three bacterial pathogens using a
combined approach of stringent interologs and domain-based
information (discussed below) hereby identifying several known
as well as unknown relationships [75]. Tyagi et al. utilized the
same approach to detect a small set of human–Helicobacter inter-
actions [76]. Franzosa et al. implemented a structure based ap-
proach to detect human–virus interactions by first extracting
human interacting pairs from the PDB and then mapping virus pro-
teins to these structures by sequence similarity [77].

4.2. Genomic context based methods

Where text-mining as well as Interolog based approaches rely
on known interactions, approaches to predict physically or at least
functionally interacting proteins might uncover completely novel
relationships. While genomic-context methods have been very
successful to predict physical and functional interactions for spe-
cies specific interactomes [78–80], direct application of genomic
context methods on HP-PPIs lacks their underlying rationale (as
genes should be neighbors on the chromosome to detect operons
and conserved neighborhoods, or are under the same evolutionary
constraints detectable by similar phylogenetic profiles, named the
co-occurrence method). Nonetheless, interactions predicted using
genomic context methods can be reliably mapped by orthology
to other species, even if the genomes of said species did not con-
tribute to the detection of the functional or physical interaction
[79]. An application to a host–pathogen system would be an anal-
ogous procedure to the Interolog approach and is as such subjected
to the same restrictions. In addition, the fraction of only function-
ally or indirectly interacting proteins in the predicted sets might be
relatively big: in an early study of Huynen et al. [81], the fraction of
predicted direct interactions has been reported to be between
maximal �50% (for tracking of gene fusion events) and minimal
34% for the co-occurrence method. In general, the usefulness of a
genomic context based approach for HP-PPI prediction has not
been determined but might provide an interesting source of infor-
mation complementary to known physical interactions.

4.3. Sequence based methods

A promising way is the utilization of prediction methods that
work on general properties of the amino-acid sequence. For exam-
ple, machine learning techniques on representations of short
stretches of amino-acids and their chemical–physical properties
can be employed for a very general PPI prediction. Dyer and co-
workers integrated such an approach for the prediction of hu-
man–HIV interactions [82,83]. In this work, the authors extended
the sequence derived feature set with information on domains
and information on the local network properties of the human
interaction partner. In contrast to the studies done on bacterial
and eukaryotic pathogens, the high amount of experimental data
for HIV allows the creation of a rigid test-set of reliable interac-
tions. Dyer et al. evaluated several combinations of their features
used for prediction and a combination of all (sequence, domain,
and network information) achieved the best performance. Depend-
ing on the chosen cut-off, high precision and recall can be achieved,
e.g. 80% precision at 50% recall.

4.4. Domain based prediction

Dyer et al. reported that a strong contributor to the successful
prediction is the domain information [83]. This observation moti-
vates the use of domain based methods to infer HP-PPI interac-
tions. For the intra-species case, several methods to predict
domain–domain interactions have been described. These methods
are based on the rationale that domains are the mediators of inter-
actions and, more importantly, are universally used by different
proteins. The Protein Structural Interactome map (PSIMAP) and
its cognate database, Psibase, is a resource that predicts interac-
tions between folds as classified in the SCOP database by analyzing
PDB structures [84]. A general resource for domain–domain inter-
actions based on domain definitions given by Pfam models is the
Domain Interaction Map (DIMA) [22]. It integrates several methods
for predicting domain–domain interactions which rely on different
principles of detection: in the Domain Pair Exclusion Method
(DPEA, [85]) the frequency of known interactions of co-occurring
domain pairs are analyzed. The DIPD [86] approach uses machine
learning techniques to determine domain interaction pairs that
are predictive for protein-interactions. Other integrated methods
are based on correlated mutations and search for domain pairs that
contain co-evolving residues [87]. The Domain Profile method
(DPROF) is based on the same idea as the co-occurrence method
to predict interactions between complete proteins: based on the
assumption that interacting domains are under evolutionary pres-
sure to be maintained concerted, the phylogenetic distributions of
a pair of domains are compared and an interaction is reported if
these are sufficiently high and informative [88]. IPfam [89] and
3DiD [90] analyze PDB structures and extract domain pairs that
are in close contact in these structures. Where all these methods
have been reported to result in meaningful predictions, their over-
all performance is difficult to assess due to the incompleteness of
the domain and structural databases. However, they have been
used in several host–pathogen screens since they allow to predict
interactions over wider evolutionary distances as simple homol-
ogy. Dyer et al. developed an own scoring system between do-
mains in interactions using Bayesian statistics and predicted
interactions between H. sapiens and P. falciparum. He reported over
500 PPIs which tend to significantly attack human proteins that are
in close proximity to each other in the human interactome, that
significantly share GO annotations, and that are co-expressed in
the pathogen [91]. Tyagi et al. used, besides interologs, iPfam based
predictions to increase the amount of detected Heliobacter pylori–
human interactions. Kim et al. [92] developed XooNET, a pre-calcu-
lated resource for Xanthomonas oryzae, an important rice pathogen,
comprising beside the intra-cellular interactome, predictions for
3400 host–pathogen interactions based on stringent cut-offs on
PSIMAP, iPfam and interologs. One of the objectives for the utiliza-
tion of domain-interactions to predict HP-PPIs is that an effector
protein might have been acquired evolutionary by re-using a com-
mon interaction domain. The principle mechanism to achieve such
a fusion is a mechanism of flexible re-shuffling of genes allowing to
fuse a functional domain with a signal peptide for transport into
the host. Such evolutionary re-shuffling events have been de-
scribed for 18–32% of bacterial effectors, depending on the species
of interest [45]. Some domains might not be part of the pathogens
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genetic repertoire and have been reinvented as analogous molecu-
lar mimicry. Interesting candidates for such a process are short lin-
ear motifs, which might be easily gained by few mutations.
4.5. Short linear motifs

A wide range of protein domains recognize their substrates by
short linear motifs (such as kinase domains and peptide recogni-
tion modules (PRMs), which include SH3 (Src homology 3), SH2
(Src homology 2), and PDZ (PSD-95/Discs-large/ZO-1) domains).
Many play an important role in eukaryotic specific signal-trans-
duction and regulation processes, making them an interesting tar-
get for pathogens. A general resource for these short linear motifs
is the ELM database [93]. A recent survey of Davey et al. [94] iden-
tified at least 50 different short linear motifs that exist in viral pro-
teins and that are used to manipulate their host system by acting
as molecular mimicry. Examples from bacterial effector proteins
have been described as well [79,94–96]. Dampier et al. reported
that the outcome of HIV infection treatments depend on the exis-
tence of linear motifs in the respective HIV strain indicating that
these are functional and interact with the host [97]. Methods for
predicting short linear moftis are based on experimentally derived
data on binding specificity from synthetic peptide arrays (SPOT),
oriented peptide array libraries (OPAL), protein domain micro-
arrays, and phage display based techniques [98–103]. The results
of these experiments provide data on binding specificities which
are captured in position weight matrices (PWMs), alternatively
called position specific specificity profiles (PSSMs). These matrices
describe the short linear motifs based on the frequencies of each
measured amino-acid for each position [99]. Computational meth-
ods such as Scansite use PWMs to predict peptide binding motifs
for a range of domain families such as kinase, SH3, SH2, PDZ, and
14–3–3 domains [104]. The scoring system of the PWMs can be
exploited according to this rationale since higher binding specific-
ities are reflected in higher scores assigned by the detection algo-
rithm. In order to detect candidate molecular mimicry, scanning
for short linear motifs in e.g. viral proteins and comparing them
to the highest scoring human instances is needed, as done for
PDZ domain recognition sites by Tonikian et al. [21]. They were
able to detect known viral targets (such as SCRIB, whose functional
disruption causes hyperproliferation) and the occurrence of bind-
ing motifs to the PDZ domain of this protein correlated with the
oncogenic potential of HPV strains. Protein structure information
such as protein disorder and solvent accessibility can be used in
conjunction with PWMs to increase the accuracy of the prediction.
MOTIPS is such a computational method that incorporates protein
structure and domain specificity information in a Bayesian frame-
work to predict binding partners for SH3 and S/T kinase domains
[105].
5. Example: bacterial effector PPI prediction based on domain–
domain interactions

In this section, we discuss an example analysis to deliver candi-
date HP-PPIs based on domain–domain interactions as a possible
novel way to predict and rank bacteria–human interactions. We
used publicly available data to predict human interaction partners
of known effectors from Salmonella sp. Since the resulting lists of
putative targets of a certain domain might be very large, we ranked
the interactor candidates by the degree of the target proteins in the
human PPI network. Due to the effectors tendency to interact with
hubs [106], the actual interactors should appear enriched in the
top of these lists.

For this approach, domain–domain interaction data have been
downloaded from the DIMA 3.0 database [22]. A scan of all Pfam
domains in proteins from human and the respective pathogens
was downloaded from SIMAP (a database that provides pre-calcu-
lated data on all Pfam models [107]). Data on the human interac-
tome were downloaded from iRefWeb [35]. For each human
protein, we computed the degree as the number of reported phys-
ical interactions from high-throughput data (filtering experiments
with <100 interactions). The resulting data contain the interacting
Pfam domains and the human and bacterial proteins that contain
one of the corresponding domains, with the degree of the proteins
in decreasing order. The data were searched for effectors that have
been experimentally verified or are homologous to a verified effec-
tor in another bacteria. This list has been obtained from the litera-
ture [108,109]. In principle, this list could be extended by predicted
effectors to get a more extended host–pathogen interaction net-
work. Table 2 contains a summary of the possible interactions be-
tween Salmonella effectors and host proteins. It lists the human
protein with the highest degree together with their function. The
overall work-flow is pictured in Fig. 1.

SopE and SopE2 of Salmonella typhimurium and the SopE Salmo-
nella enterica ortholog are predicted and known to interact with
Cdc42. In the case of the S. enterica, it was the only interaction pre-
dicted. A 3D structure is available for this well documented inter-
action and the physiological effects are also known: SopE activates
Cdc42 resulting in actin cytoskeletal rearrangements that promote
bacterial uptake in non-phagocytotic cells [110]. The SipA effector
from S. typhimurium is known to inhibit F-actin destabilizing pro-
teins [111,112], such as vinculin, an F-actin binding protein. The
SlrP and SspH2 effectors have a leucine rich repeat (PF00560)
and are also known Cdc42 targeting proteins and inhibitor of inter-
leukin expression. Correspondingly, they are predicted to bind the
TNFa receptor and Cdc42. Moreover, SlrP and SspH2 are involved
in the ubiquitin pathway [109,113] and are here predicted interac-
tion partners of E3 ubiquitin–protein ligase SIAH1 and S-phase ki-
nase-associated protein 1, which regulates the ubiquitination of
NFjB inhibitor alpha. SptP is a phosphatase and an inhibitor of
Cdc42, helping the host cell to recover after bacterial invasion
[114]. Its predicted targets are adapter proteins (most notably from
the Ras pathway), the ubiquitin and proteasome pathway and with
multiple cytoskeletal components. Of these cytoskeletal compo-
nents, SptP is predicted to interact with WASP, a well-known actin
filament stabilizing protein and target for bacterial effectors [5],
with a WASP binding protein (Pre-mRNA-processing factor 40
homolog A), and with tubulin and with a protein involved in vesic-
ular transport (Vesicle-fusing ATPase). SpvB is an enzyme that
ribosylates actin and is predicted to interact with actin and
Cdc42. SifA, SifB and SseJ all share a domain that mediates the
interaction with Phosphoinositide phospholipase C-gamma-1, an
interaction that is structurally resolved [115]. SifA and SifB are in-
volved in the formation of Salmonella induced filaments (Sifs). SseJ
has an additional lipase/acylhydrolase domain and is a negative
regulator of Sif formation. Its activity is a virulence determinant
[116]. Our prediction indicates a strong role in ubiquitin pathway
alteration.

To conclude, the Salmonella data are consistent with previous
work on effector protein interactions by predicting interactions
with all known pathways that are targeted upon infection.
6. Increasing the precision of HP-PPI predictions

Many of the discussed approaches tend to over-predict the
amount of interaction partners. For example, domain–domain
interaction based methods will return many wrong positive pre-
dictions for frequent domain signatures. In general, the optimal
trade-off between sensitivity and selectivity could be found with
benchmark sets of HP-PPIs. These sets only exist for a couple of



Table 2
Effector–host PPI predictions for Salmonella typhimurium. A short description of the effector function is depicted beside their name. For each effector, the Pfam names of the
interacting domains are depicted. The bacterial domain is named first. For the human domain, the protein with the highest degree, together with their function are given.

SipA interferes with host cell actin cytoskeleton
PF09052–PF01044 VINC_HUMAN Actin filament binding protein

sopE–sopE2 activator of CDC42 and RAC1
PF07487–PF00071 CDC42_HUMAN Cytoskeleton organiser

sptP tyrosine phosphatase and GTPase activating protein (GAP) activities
PF00102–PF00017 GRB2_HUMAN Adapter protein linking growth factor receptors and the Ras signaling pathway
PF00102–PF07714 EGFR_HUMAN EGF receptor
PF00102–PF00244 1433G_HUMAN Adapter protein that regulates signaling pathways
PF00102–PF02262 CBL_HUMAN Adapter protein that negatively regulatesr signaling pathways
PF00102–PF00102 PTN12_HUMAN Dephosphorylates cellular tyrosine kinases
PF00102–PF00647 EF1G_HUMAN Molecular anchor
PF00102–PF01846 PR40A_HUMAN Binds to WASP (actin cytoskeleton organiser)
PF00102–PF00493 MCM2_HUMAN Component replicative helicase complex
PF00102–PF00041 INSR_HUMAN Receptor tyrosine kinase which mediates the actions of insulin
PF00102–PF01049 CADH2_HUMAN Calcium-dependent cell adhesion protein
PF00102–PF03810 IMB1_HUMAN Nuclear protein import
PF00102–PF02933 NSF_HUMAN Required for vesicle mediated transport
PF00102–PF00568 WASP_HUMAN WASP (actin cytoskeleton organiser)
PF00102–PF00091 TBA3C_HUMAN Tubulin forms microtubules
PF03545–PF00071 CDC42_HUMAN Cytoskeleton organiser

sspH2–slrP E3 ubiquitin ligase that interferes with host’s ubiquitination pathway
PF00560–PF02344 MYC_HUMAN Activates the transcription of growth-related genes
PF00560–PF08919 ABL1_HUMAN Non-receptor tyrosine-protein kinase involved in cell growth and survival, cytoskeleton remodeling etc.
PF00560–PF00076 EWS_HUMAN May act as arepressor in the tumorigenic process
PF00560–PF00071 CDC42_HUMAN Cytoskeleton organiser
PF00560–PF00020 TNR1A_HUMAN Receptor for TNFSF2/TNF-alpha (apoptosis)
PF00560–PF06068 RUVB2_HUMAN Helicase activity
PF00560–PF00012 HSP7C_HUMAN Repressor of transcriptional activation
PF00560–PF00149 PP2AA_HUMAN Modulatesactivity MAP-2 kinase, dephosphorylation of p53
PF00560–PF00769 EZRI_HUMAN Probably involved in connections of major cytoskeletal structures to the plasma membrane
PF00560–PF07679 RB_HUMAN Regulator of cell division that acts as a tumor suppressor
PF00560–PF00028 CADH2_HUMAN Calcium-dependent cell adhesion protein
PF00560–PF03931 SKP1_HUMAN Essential component of the SCF ubiquitin ligase complex
PF00560–PF00134 CCNK_HUMAN Cyclin-K: possible role in transcriptional regulation
PF00560–PF01749 IMA2_HUMAN Functions in nuclear protein import
PF00560–PF03145 SIAH1_HUMAN E3 ubiquitin-protein ligase

sifA–sifB promotes bacterial survival, formation of Salmonella-induced filaments
PF06767–PF00169 PLCG1_HUMAN Regulation of intracellular signaling cascades involving IP3

sseJ promotes bacterial survival, formation of Salmonella-induced filaments
PF06767–PF00169 PLCG1_HUMAN Regulation of intracellular signaling cascades involving IP3
PF00657–PF00400 2ABB_HUMAN Promotes proapoptotic activity within the PP2A complex
PF00657–PF00240 UBQL4_HUMAN Plays a role in the regulation of proteosomal protein degradation
PF00657–PF00097 TRAF6_HUMAN E3 ubiquitin ligase
PF00657–PF02037 XRCC6_HUMAN ATP-dependent helicase

SpvB actin cytoskeleton reorganiser
PF03496–PF00071 CDC42_HUMAN Cytoskeleton organiser
PF03496–PF00022 ACTG_HUMAN Actin filaments
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host–pathogen pairs (as HIV–human). Therefore, the challenge is
to prune over-predicted interactions in a biological meaningful
way to get a realistic picture of the interactome and to prioritize
interesting targets for follow-up experiments (such as structural
modeling). So, the precision of the HP-PPI predictions must be in-
creased by removing biologically unlikely results. On the host side,
this can be achieved by integrating data on tissue specific expres-
sion (if the pathogen is known to attack a certain tissue), and on
the pathogen side by removing genes which are not expressed in
the infection cycle. In addition, gene expression analysis of cells
during infection may hint to genes activated due to the hosts de-
fense mechanisms. Dyer et al. showed that genes of P. falciparum
whose proteins are predicted to interact with human proteins tend
to be co-expressed in the different life-cycle states of the parasite
[91]. Wuchty used gene expression information on the Plasmo-
dium’s life cycle, prediction of exported proteins, and human tissue
specificity to prune candidate lists for the prediction of a P. falcipa-
rum–human PPI network, breaking down an initial network of
>100000 candidates to a set of 2244 interacting pairs [72]. Davis
et al. refined predictions for 10 different bacterial pathogens by
the use of host and pathogen expression data reducing the amount
of predictions from several thousands to a few hundred high con-
fidence candidates [74].
7. Different biology of viruses and bacteria – possible
implications for HP-PPI predictions

Several discussed rationales behind the HP-PPI prediction may
be limited to certain pathogen classes. Molecular mimicries are
found in viruses and bacteria, but they can originate by different
ways and be subjected to different selection pressures.

Bacteria exchange genetic material with the host [117] and
HGTs leading to bacterial virulence related genes have some well
documented cases, e.g. some effectors in Legionella (RalF effector
in particular [118,64]; for a review see Stebbins et al. [119]). How-
ever, not all mimicry originate by HGT, and several reported cases
of functional or structural bacterial mimicry are probably de novo



Figure 1. Work-flow of the example analysis. (1) Detection of host-pathogen interaction candidates by a domain-domain based approach, (2) ranking of the candidates
according to the degree in the host interaction network.
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evolutionary inventions, like the Shigella IpgB2 [13] or the E. coli
(EPEC) EspF effector [12]. Detecting these effectors by Interolog
or genomic context approaches is difficult. A possible solution for
these cases would be the individual modeling of the three-dimen-
sional structure of putative effector–target complexes, which is, for
now, intractable for a large set of sequences. On the other hand,
while focusing on domains, short eukaryotic interaction scaffold
and signaling domains have been reported for several known or
suspected effector proteins [65,120,121]. Evidently, these eukary-
otic-like domains can also be detected in effectors with clearly
eukaryotic origin (acquired by HGT), such as the Legionella LeS2
effector and others [121,122]. These examples were detected by
the use of domain-signatures or sensitive sequence similarity
searches. Bacteria exchange their genetic material frequently by
conjugation and the exchange of plasmids, often exchanging viru-
lence factors [117,123,124]. Some obligate intra-cellular bacteria
as Chlamydia are excluded from this source of rapid genetic ex-
change as long as they do not share their habitat with other bacte-
ria, as reported for bacterial symbionts in amoebae [125]. The
exchange of genetic material results in a phylogenetic signal that
can be used to predict effectors.

Viruses mutate very rapidly but have strong constraints on their
genomic size. Such constraints may lead to a preference for mim-
icking short linear motifs. These SLMs can be easily achieved by
mutations in viral effector proteins (e.g. the generation of a PxxP
binding motif to interact with SH3 domains). The mutational po-
tential and evolutionary pressure to limit the genome size of
viruses makes the search for clear examples of HGT difficult. It is
thus not clear to what extent the large overlap of host–pathogen
and host–host interaction interfaces [77] is caused by HGT (instead
of being new evolutionary inventions). In a recent work, Rappoport
et al. systematically investigated HGT events from eukaryotes to
viruses and could identify several instances of dsDNA viruses that
clearly acquired genetic material from the host. In addition, they
report that these are often streamlined into single domain proteins
without linker regions, a finding in congruence with the viruses’
genomic size constraints [126].

To conclude, Interolog and domain signature based methods
may be more applicable to non-viral pathogens, whereas detection
of short linear motifs might be more successful for viral genomes
for which many of these have been reported [127,128]. Genomic
context and Interolog methods are most successful in clear cases
of HGT. The structural modeling can be applied to all, if 3D struc-
tures of related host species are available. Domain–domain based
interaction methods are applicable to detect interactions based
on HGT from host to pathogen and might be fruitful for viruses
considering the described streamlining effect.
8. What do the HP-PPI networks tell us?

The first studies of host pathogen PPI networks were based on
high-throughput screens such as yeast-two-hybrid and more re-
cently, genome-wide RNAi scans to screen for functional or genetic
interactions. Their inherent potential makes them indispensable to
understand the host–pathogen interaction on a genome-wide and
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systems biology scale. Y2H based networks, sometimes backed up
by literature mining (for HIV type 1 virus text mining see
[129,130]), are the primal source of recent day physical HP-PPI net-
works of viruses, bacteria and parasitic protozoa. These networks
are available for HIV type 1 virus [131–133], Hepatitis C virus
[134,135], Influenza [136], SARS-coronavirus [137], Herpes simplex
virus [138,139], Dengue virus [140], Epstein–Barr virus [141], Yer-
sinia pestis, Bacillus anthracis and Francisella tularensis [142]. These
studies have major implications for our understanding of infection,
as the extent of the HP-PPI network and the effectiveness of patho-
gen interference can only be appreciated by genome-wide assays.
Systems biology studies show that host pathways are targeted (i)
specifically, (ii) by multiple effectors and (iii) preferably at hubs
(highly connected proteins in the interaction networks). This in
accordance with the observation, that effector proteins are rich in
binding motifs and interacting domains, a fact that is seen in effec-
tors of pathogens of animals as well as plants [106].

For example, acetylated HIV integrase has thirteen known bind-
ing partners and effects key proteins in several processes, ranging
from chromatin remodeling to cytoskeleton rearrangement [133].
HCV and influenza HP-PPI networks also confirm the aforemen-
tioned view, whereby pathways are altered by direct PPI interac-
tions from receptor scaffolds down to the level of transcription
factors [136]. Navratil et al. showed that 22% of the interferon
pathway, a major antiviral player, is directly interacting with viral
proteins [143]. As mentioned in the introduction, the targeted
pathways are related to cell cycle regulation, nuclear transport,
ubiquitin, proteasomal degradation and immune response regula-
tion [79,82,142,144,145]. These pathways are targeted in order to
effectively manipulate the host system and circumvent the im-
mune system. It could be shown that two evolutionary distinct
pathogens of Arabidopsis, the bacterium P. syringae and the
eukaryote Hyaloperonospora arabidopsidis target the same path-
ways as a result of convergent evolution [106]. The other recurring
theme in HP-PPI network analysis, the targeting of hubs and bot-
tlenecks by pathogen proteins, is usually explained as an evolu-
tionary method of the pathogen to try to maximize their
influence on the host to redirect the network priorities to increase
pathogen fitness. Franzosa and Xia [77] reported that the viral pro-
teins structurally mimic the interface of host regulatory protein
domains that are involved in transient contacts. This way, patho-
gen proteins can out-compete host proteins for interactions [146].

For now, the most feasible structural approaches are investigat-
ing domain–domain interactions where other approaches such as
3-dimensional modeling of host–pathogen networks are still too
computational demanding to be easily automated for a large scale
prediction. Known domain–domain interactions were the starting
point for the PPI mapping of P. falciparum [147]. Likewise, the DIP
and iPfam databases were used for the construction of the H. py-
lori–human interaction network [76]. We used a similar approach
in this article to point out the merit of combining a domain based
interaction prediction method and general network characteristics
to get probable interaction partners of known bacterial effector pro-
teins. The present-day challenge is the combination of structural
biology and network biology to increase the reliability and com-
pleteness of HP-PPI networks. Another difficult task is the imple-
mentation of non-domain related interactions such as short linear
motifs; this will complete our view on host–pathogen interactions
as the motifs are known to be enriched in viral proteins [148].
9. Biological implications of HP interactomics and future
perspectives

In this review, we focused on the prediction of HP-PPI and the
analysis of their impact on the host. One important prospective
of this research is the development of novel treatment strategies.
Structure-based predictions of domain–domain interactions and
motif binding allow the development of specific compounds that
interfere with HP-PPIs as it has been done with small molecules
that interfere with the p53 [149], TNFa [150] and Wnt [151] path-
ways as possible cancer treatments. Interestingly, these pathways
may also be targets of viruses and bacteria: the p53, TNFa and
Wnt pathways are altered by pathogens to avoid immune induced
apoptosis. This indicates that the pool of possible targets is large
and to a degree overlapping with diseases other than infection.

The search for new antibiotics and infection-related drugs will
be greatly supported by structural modeling of inhibitor–protein
complexes to block elementary steps in the pathogens interaction
with the host. An example of this approach is the inhibition of
neuraminidase inhibitors for treatment of influenza. Since resis-
tance of influenza to neuraminidase inhibitors such as Tamiflu�

is already widespread [152], additional drugs are urgently needed.
Every confirmed interaction in HP-PPI can be potentially used for
the development of novel antiviral drugs.

Until recently, treatments focused on targeting a few key play-
ers in the etiology of the disease. Systems biology provides another
treatment paradigm: can we use the information that HP-PPI net-
works provide us to design strategies to combat infection at the
network level? The HP-PPI or host PPI networks can both be tar-
geted for this purpose [153]. Systems biology approaches may help
to identify the impact of virulence factors on the host system based
on computational models of signal transduction and pathway anal-
ysis. Key in this approach is the application of small molecules
against several nodes that are altered upon infection [154]. Both
treatment viewpoints are yet to be explored and both are critically
dependent on the ongoing optimization of the techniques pre-
sented in this review.
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