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Abstract
Protein-protein interactions (PPIs) underlie most, if not all, cellular functions.
The comprehensive mapping of these complex networks of stable and transient
associations thus remains a key goal, both for systems biology-based initiatives
(where it can be combined with other ‘omics’ data to gain a better
understanding of functional pathways and networks) and for focused biological
studies. Despite the significant challenges of such an undertaking, major
strides have been made over the past few years. They include improvements in
the computation prediction of PPIs and the literature curation of low-throughput
studies of specific protein complexes, but also an increase in the deposition of
high-quality data from non-biased high-throughput experimental PPI mapping
strategies into publicly available databases.
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A range of complementary approaches are currently being used to 
identify protein-protein interactions (PPIs) in a large-scale, high-
throughput manner (Figure 1). These include affinity purification-
mass spectrometry (AP-MS), cross-linking MS (XL-MS) analysis, 
MS-based protein correlation profiling (PCP), and yeast two-hybrid 
(Y2H) screens. Proximity labeling techniques, based on the identi-
fication (by AP-MS) of near neighbor proteins by spatially restricted 
enzymes, can also be used to map protein networks and probe com-
plex structures, although they have yet to be applied at a whole pro-
teome level. In this review, we discuss recent applications of these 
diverse methods to large-scale protein interactome mapping and the 
public availability of the resulting datasets for both high-throughput 
bioinformatic analysis of protein interaction networks and single-
protein information for more focused studies.

Affinity purification-mass spectrometry-based large-
scale protein-protein interaction mapping initiatives
Currently, the most popular strategy for both high- and low-
throughput interactome mapping is AP-MS, in which an endog-
enous or tagged bait protein is depleted from cell lysates by using 
an affinity resin and associated proteins identified by liquid chro-
matography-tandem mass spectrometry (LC-MS/MS) (Figure 1a). 
Two recent large-scale studies of human PPIs used AP-MS 
approaches to identify more than 20,000 interactions, respectively 
(Table 1). To assemble what they call the BioPlex (biophysi-
cal interactions of ORFeome-derived complexes), Huttlin and 
colleagues C-terminally FLAG-HA tagged about 600 human open 
reading frames (ORFs) and transiently overexpressed them in 
HEK293T cells, identifying co-precipitating proteins by AP-MS1. 

Figure 1. Examples of experimental approaches used to map protein-protein interactions. a. Affinity purification-mass spectrometry 
approach for identifying proteins that associate with a particular bait protein. b. Two spatially-restricted “near neighbor labeling” approaches 
that utilize enzymatic reactions to tag proteins (for capture and identification) that associate with a bait protein. c. Strategy behind 
cross-linking mass spectrometry analysis of multiprotein complexes. d. Protein correlation profiling approach for identifying multiprotein 
complex members that co-elute following various separation techniques. e. Strategy behind the classic yeast two-hybrid method used to 
screen for direct protein-protein interactions.

a. c.

d.b.

e.
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Table 1. Recent large-scale interactome screens using a variety of protein-protein interaction mapping techniques. AP-MS, 
affinity purification-mass spectrometry; BAC, bacterial artificial chromosome; CORUM, Comprehensive Resource of Mammalian protein 
complexes; GFP, green fluorescent protein; LC-MS/MS, liquid chromatography-tandem mass spectrometry; MS, mass spectrometry; 
ORF, open reading frame; XL-MS; cross-linking mass spectrometry; Y2H, yeast two-hybrid.

Approach System Coverage Dataset Availability Reference

AP-MS experiments 
identifying proteins that  
co-precipitate with 
GFP-tagged bait proteins

N- and C-terminally 
tagged mouse 
and human BAC 
transgenes stably 
integrated in HeLa 
cells

28,500 
interactions 
involving 
5,400 proteins

Deposited into IntAct: 
http://www.ebi.ac.uk/intact 
and the IMEx consortium: 
http://www.imexconsortium.org 2

AP-MS experiments 
identifying proteins that 
co-precipitate with FLAG-
HA-tagged bait proteins

C-terminally FLAG-
HA-tagged ORFs in 
ORFEOME collection 
v8.1 transiently 
overexpressed in 
HEK293T cells

23,744 
interactions 
involving 
7,668 proteins

Deposited into BioGRID: http://thebiogrid.org 
Updates can be browsed or downloaded at: 
http://gygi.med.harvard.edu/projects/bioplex 1

XL-MS study utilizing 
MS-cleavable cross-linkers 
combined with sequential 
CID-ETD-MS/MS acquisition 
and XlinkX search engine

HeLa cell lysates 2,179 unique 
cross-links 
detected 
(1,665 
intraprotein 
and 514 
intraprotein)

Reported in Supplementary Data and raw files 
available as project #890 here: 
https://chorusproject.org 
 
XlinkX publically available: 
http://sourceforgenet/project/xlinkx/ 

38

Yeast 2-hybrid screens >15,000 human 
ORFs from 
hORFeome v5.1

~14,000 
high-quality 
human binary 
protein-protein 
interactions

Data (published and updated) can be browsed at: 
http://interactome.dfci.harvard.edu 

45

Native size-exclusion 
chromatography combined 
with LC-MS/MS

U2OS cell lysates >8,000 
proteins 
identified and 
1,061 of 1,970 
CORUM 
complexes 
mapped

Data available at: 
www.peptracker.com/encyclopediaInformation/ 

41

Biochemical fractionation 
combined with quantitative 
MS profiling

HeLa S3 and 
HEK293 cell lysates

5,584 proteins 
identified and 
622 putative 
protein 
complexes 
described

Data deposited into BioGRID: 
http://thebiogrid.org 
and publicly accessible here: 
http://human.med.utoronto.ca 42

Size-exclusion 
chromatography and 
MS-based protein 
correlation profiling

HeLa cell lysates 7,209 binary 
interactions 
clustered into 
291 protein 
complexes

All IDs reported in Supplementary Data and 
scripts used for analysis available here: 
http://www.chibi.ubc.ca/faculty/foster/software/ 43

Clone validation, quality control, inclusion of positive and negative 
controls, and development of a quantitation algorithm (CompPASS-
Plus) based on abundance, detection frequency, and reproducibil-
ity were employed to increase confidence in the resulting dataset, 
which was deposited into the BioGRID PPI database last year. The 
authors consider this to be phase 1 of their long-term effort to map 
interactomes for the entire human ORFeome collection and are con-
tinuing to post updates that can be freely browsed or downloaded 
from their website.

The approach used by Hein and colleagues2 involved screen-
ing a library of 1,125 HeLa cell lines with stably incorporated 
N- and C-terminally tagged mouse and human bacterial artificial  
chromosome (BAC) transgenes under near endogenous control3 by 
AP-MS, as demonstrated previously in focused studies analyzing 
chromosome segregation4 and the function of motor proteins5. In 
addition to identifying more than 28,000 interactions in their large-
scale screen, the authors estimated interaction stoichiometries (based 
on absolute quantitation of protein abundances in complexes and 
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compared for both N- and C-terminally tagged and mouse and 
human bait proteins) and measured the relative cellular abundances 
of interaction partners. An interesting finding was the predomi-
nance of weak (i.e., sub-stoichiometric) interactions in the global 
interactome, which may suggest that stable complexes rely on weak 
links to connect to each other and to transient/dynamic regulators. 
The interaction datasets were submitted to both the IntAct database 
and the IMEx consortium.

Importantly, both studies demonstrated significant overlap with 
the CORUM (Comprehensive Resource of Mammalian protein 
complexes) database, a manually curated repository of more 
than 2,800 mammalian protein complexes6. CORUM is currently 
considered the “gold standard” PPI database because it is based 
solely on high-confidence, experimentally verified interactions 
and does not accept deposition of large-scale datasets (Table 2). 
Proteome coverage was also high for both studies, as assessed by 
comparison with datasets generated and shared in recent large-
scale whole proteome mapping initiatives (Table 3) such as the 

MaxQuant Database7–9 (MaxQB), the Human Proteome Map10, and 
ProteomicsDB11.

Although the standard caveats of AP-MS strategies still apply, 
namely the potential for overexpression or tag-induced artefacts 
and the predominance of false positives such as non-specific 
background proteins12–14 and the recently described cryptic protein 
binding to cloning regions or “scars” where affinity tags are linked 
to the gene of interest15, these large-scale studies benefit tremen-
dously from the comparison of multiple experiments. Negative 
controls are largely bait-independent, and thus common contami-
nants are highlighted by their appearance in numerous unrelated 
datasets. Moving forward, the limitations of AP-MS can be further 
minimized by a variety of strategies, including direct affinity 
tagging of endogenous proteins using the powerful CRISPR/Cas9 
(clustered regularly interspaced short palindromic repeats/Cas9) 
gene editing tool16,17, more rigorous assessment of the quality and 
specificity of antibodies used to capture endogenous proteins for 
AP-MS18, and improvements in significance analysis software19,20.

Table 3. Recent large-scale whole proteome mapping initiatives.

Database Description Link

Human Proteome 
Map

Proteome data from 30 human tissue samples (17 adult 
and 7 fetal); 6 purified haematopoietic cells); Proteins 
encoded by 17,294 genes identified (~84% of total 
annotated)

http://www.humanproteomemap.org 

ProteomicsDB Combined data available from repositories and 
contributed by colleagues, representing 60 human 
tissues, 147 cell lines, 13 body fluids; Coverage for 
18,097 of 19,629 human genes

https://www.proteomicsdb.org 

MaxQB Proteome data from 11 different human cell lines 
(19,865 total proteins; average 10,361 ± 120 proteins 
per cell line) and other model organisms

http://maxqb.biochem.mpg.de/mxdb/ 

Table 2. Examples of online protein-protein interaction databases.

Database Description Link

CORUM Manually curated repository of 
experimentally characterized protein 
complexes high-throughput experiments 
excluded)

http://mips.helmholtz-muenchen.de/genre/
proj/corum/ 

MIntAct Open-source, open data molecular 
interaction database (merger of IntAct and 
MINT databases) curated from literature 
and from direct date depositions

http://www.ebi.ac.uk/intact 

The BioGRID 
Interaction 
Database

~750,000 non-redundant interactions 
drawn from >55,000 publications for 30 
model organisms

http://thebiogrid.org 

IMEx Consortium Common curation platform for 11 molecular 
interaction databases

http://www.imexconsortium.org/ 

Complex Portal Open-source, manually curated resource to 
collate protein complexes from >10 major 
model organisms

http://www.ebi.ac.uk/intact/complex 
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Proximity-based labeling strategies
Although AP-MS remains the most commonly used technique for 
mapping PPIs, its Achilles heel has always been the necessity to 
break cells open to extract complexes for analysis, which can be 
disruptive to the underlying PPIs and hinder identification of weak 
or transient associations or both. The development of complemen-
tary proximity labeling approaches that use spatially restricted 
enzymes to biotinylate neighboring proteins has helped to address 
this key issue. Complex members are labeled covalently in vivo, 
thus eliminating the need for low-stringency purification strate-
gies to preserve their integrity. Furthermore, the high affinity of 
streptavidin for biotin facilitates efficient recovery of biotinylated 
proteins from lysates for MS analysis.

Two particular proximity labeling techniques, BioID and APEX, 
have been employed recently for the analysis of multiprotein com-
plexes and for identification of the protein components of specific 
cellular compartments (Figure 1b). BioID involves expression of 
a protein of interest fused to a prokaryotic biotin ligase and the 
subsequent biotinylation of amine groups on neighboring proteins 
when excess biotin is added to the cells. Whereas the wild-type 
BirA biotin ligase from Escherichia coli is capable of transferring 
biotin only to a substrate bearing a specific recognition sequence, 
the generation of a promiscuous BirA (Arg118Gly mutant) per-
mits the biotinylation of any protein found within a 10-nm labeling 
radius21,22. As with AP-MS, identification of a protein-protein asso-
ciation using BioID does not imply a direct physical interaction.

BioID has enabled the identification of proteins involved in 
important functional complexes that were previously difficult to 
characterize because of the limitations of AP-MS. For example, the 
identification of ubiquitin ligase substrates by AP-MS is challeng-
ing and this is due in part to the weak and transient interactions 
observed between the ligase and its substrates. A BioID approach, 
however, facilitated identification of novel substrates23. This type of 
approach has also been used to identify novel c-MYC24 and HIV-1 
Gag25 interacting partners, highlight force-dependent molecular 
interactions at cell-cell adhesions26, identify proteins localized to 
cell junction complexes27,28 and the centrosome-cilium interface29, 
and probe the structure of the centrosome30,31 and the nuclear pore 
complex22.

APEX is a monomeric peroxidase reporter derived from pea32 or 
soybean33 ascorbate peroxidase that catalyzes the oxidation of 
biotin-phenol to biotin-phenoxyl in the presence of H

2
O

2
, resulting 

in the biotinylation of proteins in the neighboring region. Whereas 
BirA-catalyzed biotinylation is limited to Lys residues, biotin- 
phenoxyl radicals can covalently react with electron-rich amino 
acids such as Tyr, Trp, His, and Cys. They are also short-lived 
(<5 ms) and membrane-impermeable and have a small labeling 
radius (<20 nm). APEX can also catalyze diaminobenzidine pre-
cipitation to generate contrast after OsO

4
 fixation, which allows 

confirmation of localization at nanometer resolution by electron 
microscopy32. A second-generation APEX2 (Ala134Pro mutant) 
with improved efficiency was shown to function even better as both 
a promiscuous labeling enzyme and an EM tag34. Similar to BioID, 

once proximity labeling has been achieved, biotinylated proteins  
can be identified via stringent streptavidin purification and MS anal-
ysis. An advantage of APEX over BioID is higher temporal resolu-
tion, as labeling is achieved on a minute rather than an hour scale.

The APEX reporter has been used to map the proteome of the human 
mitochondrial intermembrane space and membrane-enclosed mito-
chondrial matrix33,35, the Drosophila muscle mitochondrial matrix 
proteome36, and the proteome of the cilium37. Although the applica-
bility of APEX to interactome mapping out with membrane-bound 
organelles has not yet been demonstrated, further optimization of 
the enzyme and substrate could extend its utility.

Large-scale protein-protein interaction mapping 
initiatives based on alternative approaches
High-quality large-scale interactome datasets have also been assem-
bled using strategies such as XL-MS, which provides additional 
information about the topographical structure of protein complexes 
(Figure 1c and Table 1). In the case of XL-MS, progress was initially 
slowed by the complexity of data acquisition and analysis, in par-
ticular the two overlapping series of fragment ions from each pep-
tide that appear in the MS/MS spectrum. Although major advances 
have been made38,39, including the development of MS-cleavable 
cross-linkers that fragment efficiently in the MS/MS mode to yield 
two major fragment ions corresponding to the component peptides 
(which can be subsequently identified by MS3), sensitivity can be 
further improved in the future by the addition of pre-fractionation 
steps, the use of affinity-tagged cross-linking agents or complemen-
tary chemistry (i.e., agents that cross-link amino acids other than 
lysine40), digestion with complementary proteases, and the devel-
opment of dedicated software for the analysis of complex XL-MS 
datasets.

Similarly, PCP-MS studies (Figure 1d) also continue to increase in 
coverage and specificity, comparing favorably to reference interac-
tome datasets41–43. This approach avoids affinity purification steps 
and instead separates and maps protein complexes using a variety 
of approaches that include density gradients and size-exclusion, 
ion-exclusion, and hydrophobicity interaction chromatography. 
Given the range of separation options available, PCP-MS also 
offers significant scope for advancement in the future.

Large-scale binary protein-protein interaction 
mapping
Although XL-MS does identify direct protein interactions, the 
other approaches discussed above (AP-MS, proximity labeling, 
and PCP-MS) can confirm only that proteins exist in the same mul-
tiprotein complex. A complementary technique that has been used 
for more than 20 years to detect direct PPI is the Y2H assay. In this 
approach, the bait and prey proteins are tagged to the DNA bind-
ing and transcriptional activation domains of a split transcription 
factor, and direct binding drives its reconstitution and subsequent 
activation of a reporter gene (Figure 1e). Although limited by tech-
nical and biological challenges that include the need to construct 
large libraries and the high false-negative and -positive rates that 
arise from the absence of certain post-translational modifications 
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in yeast that govern protein-protein associations in mammalian 
cells and forced interactions that do not occur in mammalian cells 
under physiological conditions, the Y2H screen remains a powerful 
approach for detecting or confirming (or both) binary interactions.

Using the extensive human ORF collection as bait/prey in an 
ongoing series of large-scale Y2H screens, researchers at the Dana-
Farber Cancer Institute in Boston are addressing the question of 
which PPIs in the human interactome are direct44,45. With the long-
term goal of mapping the full range of human binary PPIs, their 
most recent update added about 14,000 new binary interactions, 
bringing the current total to about 17,000. The full dataset, and 
future updates, can be browsed using their dedicated web interface 
(Table 1).

Conclusions
With a daunting grand plan for these PPI network maps to compre-
hensively characterize individual protein functions and global pro-
teome organization, it is not surprising that significant challenges 
remain. As noted above, the stringency and efficiency of protein 
extraction and depletion remain an issue with AP-MS studies, and 
traditional mapping strategies still favor the most abundant/robust 
interactors. It is hoped that, as complementary approaches such as 
proximity labeling, XL-MS, and PCP-MS increase in sensitivity 
and specificity, they will provide extended coverage of the inter-
actome. Importantly, as more high-quality large-scale datasets are 
collected and shared via online interaction databases like MIntAct46 
and BioGRID47 (Table 2), consistencies and patterns will emerge.

Additional technical challenges, posed by their hydrophobic nature, 
have particularly hampered the identification of PPIs among mem-
brane proteins (and between membrane proteins and soluble proteins 
such as cytosolic signaling factors). However, the success of recent 
large-scale initiatives such as the mapping of more than 12,000 
binary interactions between Arabidopsis membrane/signaling 
proteins using the mating-based split ubiquitin system (mbSUS) 

in yeast48 and the TAP (tandem affinity purification)-MS based 
screening of 1,590 putative budding yeast membrane proteins 
using three different mild, non-denaturing detergent purification 
strategies in parallel49 (1,726 PPIs and 501 putative heteromeric 
complexes identified) demonstrates that these challenges are also 
surmountable.

Other challenges include the necessity to define PPIs over a wider 
range of biological contexts, given that some are cell cycle- or 
developmental stage-specific, for example, or occur only under 
particular physiological conditions or in response to specific post-
translational modifications. An ambitious future goal is a compre-
hensive and quantitative high-throughput approach that combines 
gene-editing with live super-resolution imaging and interactome 
mapping to define the dynamic localization, composition, and 
topography of functional multiprotein complexes.
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