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A multi-scale approach reveals that NF-jB cRel
enforces a B-cell decision to divide
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Abstract

Understanding the functions of multi-cellular organs in terms of
the molecular networks within each cell is an important step in
the quest to predict phenotype from genotype. B-lymphocyte
population dynamics, which are predictive of immune response
and vaccine effectiveness, are determined by individual cells
undergoing division or death seemingly stochastically. Based on
tracking single-cell time-lapse trajectories of hundreds of B cells,
single-cell transcriptome, and immunofluorescence analyses, we
constructed an agent-based multi-modular computational model
to simulate lymphocyte population dynamics in terms of the
molecular networks that control NF-jB signaling, the cell cycle,
and apoptosis. Combining modeling and experimentation, we
found that NF-jB cRel enforces the execution of a cellular decision
between mutually exclusive fates by promoting survival in growing
cells. But as cRel deficiency causes growing B cells to die at similar
rates to non-growing cells, our analysis reveals that the phenome-
nological decision model of wild-type cells is rooted in a biased
race of cell fates. We show that a multi-scale modeling approach
allows for the prediction of dynamic organ-level physiology in
terms of intra-cellular molecular networks.
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Introduction

B-lymphocytes are central to immune responses as producers of

antibodies and mediators of immunological memory. Upon recogni-

tion of specific antigens or pathogen-derived ‘danger’ signals, B cells

may enter a proliferative program (Murphy et al, 2007). This physi-

ological process can be recapitulated ex vivo using agonists of the

B-cell receptor or Toll-like receptors (TLRs), which recognize

specific pathogen-derived substances. Such agonists elicit a dynamic

population response in which individual cells may undergo several

rounds of cell division, exit the cell cycle and/or die by programmed

cell death (Rawlings et al, 2012). Indeed, while the population

response is generally robustly reproducible and predictable, the

behavior of individual cells is seemingly stochastic. In each genera-

tion, only a fraction of cells divide, while others die, and the timing

of division and death is highly variable, typically well-modeled by

long-tailed log-normal distributions and resulting in a spectrum

of many generations at any given time point after stimulation

(Hawkins et al, 2007b, 2009).

Given the physiological and pathological importance of the B-cell

response, the underlying biochemical processes involved in trans-

ducing receptor signals, cell growth, cell cycling, and programmed

cell death by apoptosis have been well studied (recently reviewed in

Browne, 2012; Gerondakis & Siebenlist, 2010; Link & Hurlin, 2014;

Renault & Chipuk, 2013). Their involvement in B-cell expansion has

been characterized by measuring population cell numbers or apop-

totic cells, bulk replicative activity (by measuring DNA synthesis),

or distributions of generational cell counts at given time points (by

dye dilution studies coupled to FACS). For example, deficiency in

the NF-jB transcription factor cRel was reported to result in a

substantially reduced B-population response, due to deficiencies in

cell-cycle entry and cell survival (Gerondakis et al, 1998; Grumont

et al, 1998). Further, potential cRel-dependent mediators of these

processes have been identified, such as the genes coding for CyclinD

(Wang et al, 1996; Guttridge et al, 1999; Huang et al, 2001), Myc

(Duyao et al, 1990), and BclXL (Chen et al, 1999). Yet, how these
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functions coordinately produce the dynamics of the population

response, the generation-specific distributions, or fate control at the

individual cell level remains poorly understood.

Previous studies have shown that the time to the first division is

substantially longer than that of subsequent divisions, and the

timing of cell death is also generation dependent (Hawkins et al,

2009). Yet there are competing theories for how fate (i.e., whether

the cell divides or dies) is determined. Some studies invoke a molec-

ular race hypothesis, which posits that processes leading to cell

division and apoptosis are proceeding concurrently within cells,

with the faster of the two determining the outcomes (Hawkins et al,

2007b; Duffy et al, 2012); however, other observations support the

notion that cells decide their fate prior to it being manifest (Hawkins

et al, 2009; Shokhirev & Hoffmann, 2013). In particular, the cyton

(Hawkins et al, 2007b) and fcyton (Shokhirev & Hoffmann, 2013)

age- and generation-structured models describe lymphocyte popula-

tion dynamics assuming a molecular race or decision between

division and death, respectively. Further, it is unclear what the

determinants are for the variability in timing which in the former

but not the latter model underlies the variability of cell fate determi-

nation. Previous studies offer evidence that the inherent variability

in timing of receptor-induced apoptosis of transformed liver cells

is caused primarily by cell-to-cell variability in the steady state

(Gaudet et al, 2012).

Recent advances in single-cell analysis and modeling render

answers to these questions within reach. Flow cytometry and

immunofluorescence microscopy, which provide snapshots of a few

attributes of the cells within a population, may be complemented

with single-cell mRNA sequencing, which provides transcriptome-

wide measurements, and live cell microscopy, which provides

longitudinal information at single-cell resolution; however, chal-

lenges in data analysis and integration persist. Interestingly, kinetic

models that capture the dynamic control of molecular networks can

function as platforms for data integration and provide a predictive

understanding; for example, iterative experimental and modeling

studies have delineated numerous negative and positive feedback

loops that control the dynamics of NF-jB (Basak et al, 2012),

or identified determinants of cell-cycle progression (Conradie

et al, 2010) and cell death/survival fate decisions (Loriaux et al,

2013).

Results

Here, we aimed to construct a multi-modular mathematical model

that accounts for B-cell population dynamics in terms of intra-

cellular molecular network dynamics. Starting at the B-cell popula-

tion scale, we employed carboxyfluorescein succinimidyl ester

(CFSE) flow cytometry and live time-lapse microscopy tracking of

cell lineages to characterize the model topology and parameters at

the cell biological scale. Starting at the molecular network scale, we

used single-cell RNAseq and quantitative immunofluorescence to

characterize the connections between several regulatory molecular

network modules (Fig 1).

Figure 1. Developing a multi-scale understanding of the B-cell immune response.
We employed a multi-scale approach to studying the B-cell response. Time-lapse microscopy observations of B-cell populations revealed cellular growth trajectories,
distribution of division and death time, as well as the fraction of cells responding in each generation. Single-cell molecular assays provided insights into the upregulation of
key molecular players upon activation within individual cells. The number of cells in each generation was measured by the division tracking dye CFSE and deconvoluted
into maximum-likelihood cellular parameters using the FlowMax computational tool. We used our observations to parameterize a multi-scale agent-based mathematical
model consisting of established modules for signaling, apoptosis, and the cell cycle which allowed us to mechanistically study molecular perturbations on population
dynamics.
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Time-lapse microscopy reveals generation-specific
single-cell behavior

In order to obtain cell lineage information that accounts for the

population response, we tracked 1,295 live primary B cells using a

time-lapse microscopy pipeline (Fig 2A). We developed a semi-

automated image analysis method, combining the advantages of

computational automation and human input to minimize errors (see

Materials and Methods). Analysis of wild-type B cells responding to

high CpG stimulation confirmed the expected population expansion

followed by a contraction period (Fig 2B). After cells that died from

mechanical death in the initial phase (Hawkins et al, 2007a) were

filtered out (Supplementary Fig S1A and B), we found that approxi-

mately 38% of the starting, ‘generation 0’, cells divided; then, 85%

of generation 1 cells divided with subsequent generations, showing

a steady decrease in this fraction such that only 9% of cells divided

in generation 6 (Fig 2C). To quantify the cellular response, we clas-

sified cell size trajectories into two categories: (i) cells that grew by

at least 350 lm3 (representing at least two standard deviations on

average, Supplementary Fig S1C) or reached a final size of at least

800 lm3 (based on the bimodal size distribution (Supplementary

Fig S1D) and to ensure that large generation 1+ cells are included),

dubbed ‘growers’ and (ii) cells that did not meet these criteria,

dubbed ‘non-growers’ (Fig 2D). To test the sensitivity of the growth

threshold, we repeated the quantification with a 25% lower and

higher growth threshold, revealing that few cells exhibited ambigu-

ous growth (Supplementary Fig S1E). Averaging the growth trajecto-

ries of ‘growers’ (Fig 2E) and ‘non-growers’ (Fig 2F) in each

generation normalized by percent cell lifespan revealed that progen-

itors (generation 0) that grew exhibited a growth delay followed by

rapid growth to approximately fivefold their starting size, while

generation 1+ growers did not exhibit the delay phase, and started

growing immediately after mitosis. Furthermore, ‘grower’ cells

generally grew to the same size on average in all generations except

prior to their final division. While ‘non-growers’ by definition did

not exhibit significant growth (as defined above), they nevertheless

typically exhibited some growth.

Distinguishing between race and decision models in cell
fate determination

To further characterize the underlying cellular mechanisms, we next

tested whether cell cycle and apoptosis were parallel racing

processes (Fig 3A), as previously suggested (Duffy et al, 2012), or

A

B
C D

FE

Figure 2. Time-lapse microscopy reveals two distinct generation-dependent growth patterns for B cells.

A Overview of the time-lapse microscopy experimental and analysis pipeline. B cells were purified from mouse spleen, stimulated with TLR9 agonist CpG, imaged on
an environmentally controlled microscope for 6 days, and tracked using a semi-automated tracking tool to quantify generation-dependent cell statistics.

B Generational cell counts relative to initial count.
C The observed fraction of cells dividing or dying in each generation. Error bars = 1/n, where n = 85, 55, 93, 103, 125, 90, 45 for generations 0–6, respectively.
D Growth trajectories of generation 0 cells that grew by more than 350 lm3 or ended with a volume of at least 800 lm3 (blue) and trajectories of generation 0 cells

that did not end with a large volume (black).
E, F Cell size trajectories as a function of % lifetime for growers (E) and non-growers (F) in each generation (colors as in B). Error bars are SD, with n = 34, 44, 60, 54,

40, 15, 2 growing cells, 51, 11, 33, 49, 85, 75, 43 non-growing cells in generations 0–6, respectively.
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whether the growth phase was indicative of a prior decision to

assume the division fate instead of the death fate (Fig 3B). For each

generation, we counted the fraction of ‘growers’ that divided and

died within a 24-h period: 12–36 h in generation 0 or 0–24 h in

generations 1+ (Fig 3C), as well as the fraction of ‘non-growers’ that

divided and died within the same periods for each generation

(Fig 3D). Our results indicate that virtually all ‘growers’ in the first

four generations divided, supporting the notion of an early decision

that predisposes B cells to a particular fate (Fig 3B). Interestingly,

following the first generation, there was a significant fraction of cells

that divided that had been classified as ‘non-growers’; however,

such poor growth almost always occurred in the last division

(Supplementary Fig S2). To further test this important distinction,

we noted the time point at which growth starts (Tgro), the time to

division (Tdiv), and time to death (Tdie) of progenitor cells and

calculated the expected lower-bound probability that a dying cell

would have grown, provided a ‘molecular race’ or ‘decision’ model

(Fig 3E and F). Our analysis revealed that even under relatively

relaxed assumptions, the data are inconsistent with both processes

occurring simultaneously in cells (i.e., race). A decision model,

which commits cells to either fate, is more consistent with the

observed behavior. In other words, because time to death is typically

earlier than time to division (Fig 3E), and because time to start grow-

ing, Tgro, is typically much earlier than Tdiv or Tdie, our analysis

predicts most cells would grow prior to death if the two processes

were indeed running in parallel as implied by the ‘race’ model.

Next, we tested this hypothesis with an alternate method, using

computational deconvolution of flow cytometric measurements of

the generational populations at specific time points (Supplementary

Fig S3A). CFSE-stained B cells were stimulated with CpG, and fluo-

rescence histograms indicative of each generation were analyzed by

the software tool FlowMax (Shokhirev & Hoffmann, 2013) to iden-

tify maximum-likelihood cellular parameters. Employing either the

cyton model (which assumes that responding cells may die, Supple-

mentary Fig S3B) or the fcyton model (which assumes that they do

not, Supplementary Fig S3C), we asked which derived cellular

parameters best agreed with those observed by time-lapse micro-

scopy (Supplementary Fig S3D). While both models accurately fit the

CFSE time course (Supplementary Fig S3E), the race (cyton) model

requires a much longer distribution for Tdie0 than the decision (fcy-

ton) model (Supplementary Fig S3F); shorter Tdie0 parameters are

more consistent with the experimental microscopy dataset.

A B

C D

E F

Figure 3. B cells decide to divide or die and are protected from the alternate fate.

A Flowchart depicting the scenario in which the cell fate of growing cells is determined by a race between division (green) and death (red); hypothetical division and
death time distributions before and after mutual censorship are shown on the right.

B Flowchart depicting the scenario in which entering the growth phase or not represents an early commitment to one fate; the independent division (green) and
death (red) time distributions are shown on the right.

C–F Analysis of response (growth), division, and death statistics for WT B cells. Error bars = 1/n. Measured generational probabilities that a growing (C) or non-growing
(D) cell divided (green) or died (red) within a 24-h period (12–36 h for gen 0). Measured cumulative distributions (E) for the time to start growing (blue), time to
divide (green), and time to die (red) of generation 0 cells. Distributions were used to calculate the lower bound expected probability that a dying cell had started to
grow (F) assuming a molecular race between fates or an early commitment to one fate, as compared to the measured probability. For further details, please see
Supplementary Methods.
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While our results suggest that cell fate is determined early, it is

unclear what contributes to the cell-to-cell variability. Recent studies

have shown that extrinsic variability in cell states rather than intrin-

sic signaling noise can account for variability in cell fate decision in

mammalian cells (Spencer et al, 2009, 2013; Lee et al, 2010). As

recently divided sibling cells have more similar cell states, we deter-

mined whether fate and timing are more correlated between related

cells (Supplementary Fig S4). Indeed, sister cells were observed to

undergo the same fate approximately 90% of the time, while

cousin cells were more likely to experience different fates in all

generations (Supplementary Fig S4A). Further, the timing of the

decision process, interdivision time, and to a smaller extent

lifespan were significantly correlated between sister cells: Pr

(DTgro ≤ 4 h) = 0.90, R2 = 0.74, and R2 = 0.39, respectively

(Supplementary Fig S4B–D). Furthermore, the correlations

decreased with a subsequent division (i.e., between cousins): Pr

(DTgro ≤ 4 h) = 0.77, R2 = 0.44, and R2 = 0.38, respectively,

consistent with mixing times on the order of hours to days, more

consistent with variability in molecular network states rather than

genetic or epigenetic sources of cell-to-cell variability (Spencer

et al, 2009).

Molecular determinants of cell fate decision processes

To characterize the molecular connections that underlie fate deci-

sion processes, we turned to single-cell molecular assays (Fig 4A).

Following CpG stimulation of B cells for 24 h, we sequenced the

transcriptomes of five large and five small cells using a single-cell

autoprep system, which allowed us to image and measure the size

of individual B cells trapped in a microfluidic chip (Fig 4B). After

normalizing transcript counts to RNA spike-in controls, we identi-

fied 369 upregulated and 121 downregulated genes in large versus

small cells (Fig 4C). Using pathway enrichment tools, we identified

pathways that were significantly upregulated in large cells, includ-

ing metabolism, the control of apoptosis and the G1-to-S transition,

and NF-jB, a known key regulator of B-cell expansion (Fig 4D).

Further, we performed a transcription factor enrichment analysis on

the upregulated and downregulated gene sets and found that bind-

ing motifs of nine transcription factors that are known NF-jB target

genes, as well as NF-jB itself, were enriched among the genes

upregulated in big cells (Fig 4E), while p53 was the only known

NF-jB target gene transcription factor enriched in the set of genes

downregulated in big cells.

Next, for immunofluorescence, we stained stimulated B cells for

cRel, and measured average fluorescence as a function of cell area

(Fig 4F). We found that compared to a 0 h control, B cells were

larger (63% of cells) and had higher cRel abundance (63% of cells)

after 24 h of stimulation. Furthermore, 68% of large cells had

upregulated cRel at 24 h. To confirm the specificity of our analysis,

we showed that cRel-deficient B cells had no detectable cRel fluo-

rescence at 24 h (Fig 4G). Similarly to NF-jB cRel, approximately

50% of cells showed significantly increased levels of NF-jB RelA

after 24 h, with approximately 56% of large cells showing

increased NF-jB RelA abundance after 24 h of stimulation (Supple-

mentary Fig S5A). Staining for Myc, a master transcriptional regula-

tor of cell growth and known NF-jB target gene, we revealed that

57% of cells had upregulated Myc levels at 24 h compared to 0 h,

and 62% of large cells had elevated Myc levels (Fig 4H). Upon

NF-jB cRel deletion, only 35% of cells had elevated Myc levels

(Fig 4I). Similarly, BcLXL, a known NF-jB cRel target gene and

anti-apoptotic regulator, was found to be elevated primarily in large

cells (Fig 4J). Whereas BcLXL was upregulated in 85% of large

cells, only 8% of all large cells upregulated BcLXL in the absence of

cRel (Fig 4K). Quantitative RT–PCR confirmed that BcLXL was

upregulated at the mRNA level and that NF-jB cRel contributes

about two-third of the BcLXL expression at 20 h (Supplementary

Fig S5B).

Repeating the immunofluorescence analysis in the presence of

1 ng/ml rapamycin, a known mTORc1 inhibitor (Supplementary Fig

S5C), we found the same fraction of cells had upregulated cRel

abundance after 24 h of stimulation, though the fraction of large

cells was reduced, suggesting that cRel upregulation is independent

of mTORc1. Conversely, we tested the role of NF-jB cRel in regulat-

ing mTORc1 and found that the abundance of p-S6, an indicator of

mTORc1 activity, by immunoblot was reduced by approximately a

factor of 2 in NF-jB cRel-deficient B cells (Fig 4K), though cell

growth itself was not substantially diminished presumably due to

compensatory mechanisms including NF-jB family members RelA

and RelB. Our analysis supports a model in which NF-jB is a regula-

tor of both cell survival and cell growth.

Constructing a multi-scale model to predict B-cell
population dynamics

The described analyses of CFSE time courses, time-lapse micros-

copy, and molecular studies led us to test whether B-cell population

dynamics may be accounted for with a mathematical model of intra-

cellular molecular networks that exist in cell-specific steady states

due to biochemical variability. We implemented established

ordinary differential equation (ODE) kinetic models of the NF-jB
signaling system (Alves et al, 2014), apoptotic control network

(Loriaux et al, 2013), and the cell cycle (Conradie et al, 2010)

(Supplementary Fig S6A). Introducing sources of extrinsic variabil-

ity, we found that variability in protein levels alone was sufficient to

produce cell-to-cell variability in nuclear NF-jB concentration, cell-

cycle duration, and lifetime typically observed (Supplementary Fig

S6B). Importantly, the cell-cycle model with added sources of extrin-

sic noise produced relatively short cell-cycle durations of ~10–20 h,

similar to generation 1+ cells, but did not readily account for the

generation 0 delay (Fig 2). Further, we found that introducing

extrinsic protein variability resulted in substantial cell growth

variability.

Based on our molecular analysis, we constructed an integrated

ODE model (Fig 5A and Supplementary Methods) with NF-jB-
controlled synthesis of BcLXL, a key regulator in the apoptosis

module, as well as NF-jB-controlled synthesis of CycD, a key regu-

lator in the cell-cycle module. Furthermore, in the cell-cycle module,

growth is controlled by general machinery (GM), which represents

the ribosomes and other cellular components that promote the accu-

mulation of cell mass. Mass in turn promotes the growth of general

machinery, creating a positive feedback loop that results in expo-

nential growth and cellular progression through the cell cycle.

However, since we observed B cells to delay growth prior to the first

division (Fig 2), we needed to model the control of general machin-

ery (GM) in more detail. Hence, we incorporated NF-jB-controlled
synthesis of Myc, a transcription factor that promotes cell growth,
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which is typically low in quiescent cells but a known NF-jB target

gene. To obtain population dynamics, the integrated ODE model

was incorporated into cellular agents (Fig 5B), which kept track of

their generation, age, and independent set of starting synthesis/

degradation or total protein concentrations, which were drawn from

normal or log-normal distributions, respectively. The models were

solved until the agent died [defined as (cPARP) > 25,000 mole-

cules/cell] or completed mitosis [(cdh1) > 0.2], at which point it

A

B C D E

F H J L

G I K

Figure 4. Molecular assays suggest that NF-jB enforces an upstream fate decision.

A–L Naïve purified B cells were stimulated with 250 nM CpG for 24 h and analyzed using single-cell RNA sequencing (A top). Five small and five large B cells were
captured in a microfluidics chip (B), and their transcriptomes were sequenced to reveal sets of genes typically upregulated in big cells (C, red) or small cells (C,
green). Pathway analysis on genes upregulated in large B cells (D, top) and small cells (D, bottom) was performed. (E) Transcription factor motif enrichment analysis
on the genes upregulated in large cells (E, top) and small cells (E, bottom) was performed and filtered to show only significantly upregulated (P < 0.05) and known
NF-jB target genes or NF-jB itself. NF-jB cRel abundances of purified naïve B cells stimulated with 250 nM CpG for 24 h were obtained by quantifying average
fluorescence in fixed B cells stained with anti-cRel antibody conjugated to fluorophore, or anti-BclXL antibody bound to a fluorescent secondary antibody (A
bottom). The 0-h average fluorescence was used to determine significant upregulation of NF-jB cRel (F), growth regulator Myc (H), and anti-apoptotic regulator
BclXL (J) at 24 h (P < 0.05). Immunoblot for p-S6 (arrow), a downstream target of mTORc1, with anti-tubulin control after 24 h CpG stimulation in WT and cRel-
deficient B cells and gel quantification is shown (L). NF-jB cRel-deficient cells were used to approximate the technical noise (G) or dependence of Myc (I), BclXL (K),
and mTORc1 (L) on NF-jB cRel. Quadrants in (F–K) indicate fraction of cells at 24 h compared to 0 h. Growth was manually defined as a cell area > 100 pixels to
avoid cell selection bias in images.
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was removed or replaced by two new daughter agents, respectively.

We subjected daughter agents to extrinsic re-mixing noise to

account for loss of correlation with successive generations. When

training the model on our results from the wild-type condition, we

retained the value of all published NF-jB, cell-cycle, and apoptosis

parameters, leaving a set of free parameters specifying BclXL, CycD,

and Myc transcript synthesis and degradation, as well as parameters

controlling the growth and survival of cells (Supplementary Meth-

ods and Supplementary Table S9). Remarkably, we were able to

recapitulate the observed population dynamics (Fig 5C), the fraction

of cells dividing or dying in each generation (Fig 5D), as well as the

growth trajectories of growing and non-growing cells in each gener-

ation (Fig 5E and F) by fitting just these free parameters from within

biologically plausible ranges to a set of features (Supplementary

Tables S9 and S10, and Supplementary Methods).

Model-enabled perturbation studies: NF-jB cRel enforces the
execution of the cell fate decision by biasing a fate race of
growing cells against death

We next asked whether the model could be used for studies of

genetic or pharmacological perturbations. In particular, we exam-

ined the population behavior in B cells exposed to reduced stimulus

concentrations in the absence of NF-jB cRel, or when treated with

the cell growth inhibitor rapamycin (Fig 6A). Model predictions

were compared to time-lapse microscopy experiments in which the

A C

D

E

F

B

Figure 5. Multi-scale agent-based modeling of the B-cell response.

A Established ordinary differential equation models for NF-jB signaling (Alves et al, 2014), apoptosis (Loriaux & Hoffmann, 2012), and the cell cycle (Conradie et al,
2010) were implemented and combined into one integrated model. Blue, green, and red colors represent NF-jB, apoptosis, and cell-cycle modules, respectively,
while bolded species represent active IKK (input), cleaved PARP (death readout), and cdh1 abundance (mitosis readout).

B Instances of the integrated model were incorporated into cellular agents, extrinsic noise was introduced to mimic cell-to-cell variability, and the agent-based
model was solved one generation at a time, with division resulting in the creation of two new agents, and death resulting in the removal of the agent from the
population.

C–F A comparison of agent-based modeling solutions to the time-lapse microscopy dataset is shown. Cell counts normalized to start count (C), fraction of cells dividing
or dying in each generation (D), average size of growers in each generation as a function of % lifetime (E), and average size of non-growers in each generation as a
function of % lifetime (F) are compared. Error bars represent SEM or 1/n.
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same conditions were applied. First, we simulated the low dose

stimulation condition by allowing for a faster decay of the active

IKK species (see Supplementary Table S9 and Supplementary Meth-

ods). The model predicted a dramatic decrease in the total B-cell

population (Fig 6B), resulting from a decrease in the fraction of cells

that divide in generations 3+ (Fig 6C); however, cell size trajectories

(Supplementary Fig S7B and C) and fate timing (Supplementary Fig

S7D–F) were unaffected. An equivalent analysis of subsequent time-

lapse experiments confirmed these predictions (Fig 6B–D, Supple-

mentary Fig S7), although the model predicted a later peak in total

cell counts (Fig 6B, Supplementary Table S11). Next, we simulated

cRel deficiency by setting the translation rate of the cRel protein to

zero. The multi-scale model recapitulated a decreased population

response (Fig 6E) previously observed, but now showed that this is

caused primarily by a reduction in the number of divisions (Fig 6F).

Model simulations suggest that cell growth is not cRel dependent

since cRel-deficient cells had highly correlated growth trajectories

(Supplementary Fig S7B and C). Furthermore, the model predicted

that NF-jB cRel deficiency would not affect timing of the decision,

division, or death processes (Supplementary Fig S7D–F), but that

a higher percentage of growing cells would die (Fig 6G). A side-

by-side comparison with the results from experimental cell tracking

of cRel-deficient cells confirmed these predictions (Supplementary

Table S11). Finally, treatment with rapamycin, the inhibitor of

mTOR, which results in defective cell growth and ribosome biosyn-

thesis, as well as a decrease in cells that divide more than once

(Fig 6I), was recapitulated well by simply decreasing the global

protein translation rate by 30% (Fig 6A, H–J). Importantly, this also

resulted in longer delays prior to division (P < 0.0014, Mann–

Whitney U-test) and death (P < 0.0009, Mann–Whitney U-test) in

time-lapse microscopy datasets (Supplementary Fig S7E and F

purple lines); although the delay in division timing and in the start

of growth (Tgro) was not as dramatic as predicted (Supplementary

Fig S7D purple lines), it was still statistically significant (P < 1e-6,

Mann–Whitney U-test). Interestingly, while the model accurately

predicted that cell growth trajectories would not be affected, it

overestimated the delay in cell-cycle duration and survival timing

and incorrectly predicted a delayed time to grow (Supplementary

Table S11).

The model predictions regarding cRel’s role in protecting grow-

ing cells from apoptosis (Fig 6G), prompted us to examine our

experimental data further. We tabulated the observed probability

that a dying cell had grown for the wild-type, cRel-deficient, low

stimulus, and rapamycin-treated conditions (Fig 7). The probability

of observing dying ‘growers’ approximately tripled when cells

lacked cRel (Fig 7D compare to B), suggesting that growth and

A

C D H I J

E F G

B

Figure 6. The multi-scale model predicts the effects of low stimulus, cRel knockout, and rapamycin treatment.

A After parameterizing the multi-scale model using results from wild-type B cells stimulated with 250 nM CpG (red), we predicted the effects of decreasing IKK
duration (green), lack of NF-jB cRel (blue), and decreased protein synthesis (purple) in silico and compared the results to those from analogous time-lapse
microscopy experiments where we stimulated with only 10 nM CpG, used cRel deficient cells, or pretreated with 1 ng/ml rapamycin.

B–J Side-by-side comparison of modeling and experimental results: total cell counts (B, E, H), average number of divisions (C, F, I), and fraction of growing progenitors
that died (D, G, J).
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death were no longer mutually exclusive. The increased probability

was still lower than the minimum probability expected for a

complete loss of decision enforcement, calculated using observed

distributions for the time to start growing, divide, and die (Fig 7C).

A lack of decision enforcement was not seen when a lower dose of

the stimulus (Fig 7E and F) or rapamycin drug treatment (Fig 7G

and H) was used, confirming NF-jB cRel’s specific role. These stud-

ies suggest that the phenomenological cell fate decision is mediated

at the molecular level by cRel, which biases a cell fate race in

growing cells against cell death, rendering them pre-determined for

division.

Extrinsic molecular network noise determines the magnitude of
the population response

Utilizing the multi-scale model, we explored how the average and

the variability of protein abundances within the molecular network

may affect the population response. In this analysis, we distin-

guished between negative regulators of NF-jB signaling (the IjBs),
the positive regulators (IKK and the NF-jB monomers RelA, p50,

and cRel), or both, as well as apoptosis and cell-cycle regulators, or

all proteins (Fig 8A). Increased average abundance (Fig 8B) was

achieved by increasing the translation rate or the total protein abun-

dance (if constant) by 10 or 50%, respectively, while increased

protein variability (Fig 8C) was achieved by doubling the coefficient

of variation (CV) of the translation rate or total protein abundance (if

constant). As expected, moderately increasing the average protein

abundance resulted in dramatic changes to the population dynamics

(Fig 8D), as long as the positive regulators were among those

affected (blue, purple, and gray conditions). Our analysis indicates

that this is primarily caused by an increase in the number of division

rounds that progenitors underwent (Fig 8E), as well as due to typi-

cally shorter interdivision times (Fig 8F). Meanwhile, increasing the

expression of negative regulators of NF-jB (IjBs) decreased the

population response (Fig 8D), decreased propensity to divide

(Fig 8E), and resulted in typically longer cell-cycle duration (Fig 8F).

Furthermore, increasing the positive regulators alone and to a lesser

extent the cell-cycle/ apoptosis proteins resulted in an accumulation

of non-dividing and surviving cells (Fig 8G; blue, orange), while

increasing negative regulators (IjBs) tended to decrease survival

(Fig 8G; red versus green, purple versus blue, gray versus orange).

However, when manipulating the variability of expression only,

we found that increased variability in negative regulators of NF-jB
and non-NF-jB proteins resulted in increased cell counts over time,

due to accumulation of non-dividing surviving cells (Fig 8K; red,

orange, gray). Increasing the CV of both the positive and negative

regulators resulted in modest increases in the number of times a

progenitor divided (Fig 8I); however, doubling the CV of negative

regulators also resulted in increased survival (Fig 8K). Increased

variability for apoptosis and cell-cycle proteins also resulted in

higher survival (Fig 8K; orange, gray); however, on average cells

experienced fewer division rounds (Fig 8I), resulting in broad popu-

lation dynamics, indicating that cell-cycle regulation is sensitive to

relatively large increases in protein variability (Fig 8H). Thus, the

multi-scale model enabled us to test the role that extrinsic variability

plays in a module-specific manner, revealing that extrinsic noise in

the expression of negative regulators of NF-jB can lead to hyper-

proliferative phenotypes due in part to long-term cell survival, while

positive regulators of NF-jB determine the number of divisions.

Discussion

The complexity and inherent heterogeneity of the B-cell popula-

tion response poses serious challenges to predicting modes of

disease action and the potential efficacy of drugs. In this study, a

A

B D

C E

F

G

H

Figure 7. B-cell decision enforcement is NF-jB cRel dependent.

A–H Time-lapse microscopy images of wild-type B cells stimulated with 250 nM CpG (A, B), NF-jB cRel-deficient B cells stimulated with 250 nM CpG (C, D), wild-type
cells stimulated with 10 nM CpG (E, F), and wild-type B cells stimulated with 250 nM CpG and pretreated with 1 ng/ml rapamycin for 1 h (G, H) were tracked. The
observed cumulative distributions (A, C, E, G) for time to start growing (Tgro), time to divide (Tdiv), and time to die (Tdie) were used to estimate the minimum
probability of observing grown cells that die in generation 0 assuming that division and death were occurring simultaneously (molecular race), and compared to
the actual sampled probabilities for each condition (B, D, F, H).
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combination of single-cell molecular assays, single-cell time-lapse

microscopy, and population flow cytometry allowed us to

construct a multi-scale model, in which the intra-cellular network

of NF-jB signaling, cell-cycle, and apoptosis control accounts for

the cell population dynamics in response to mitogen, which

provides a framework for genetic and pharmacological perturba-

tion studies that begin to link molecular scale perturbations to

organ-level phenotypes and function.

Agent-based multi-scale modeling of the B-cell immune response

Agent-based models (ABMs) explicitly describe autonomous entities

within a system and provide a natural computational framework for

modeling immune processes (recently reviewed in An et al, 2009;

Narang et al, 2012). As such, ABMs have been successfully utilized

to provide insights into the dynamics of the NF-jB signaling system

(Pogson et al, 2006), wound healing (Walker et al, 2004), the multi-

scale effects of acute inflammation (An, 2008), the implications of

transgenerational epigenetic inheritance (Jiao et al, 2012), and the

evolution of aging (Shokhirev & Johnson, 2014).

In the absence of an established framework for multi-scale B-cell

modeling, we took a parsimonious approach toward model

construction. Since the number of parameters typically scales

nonlinearly with the size of the model, our strategy was to use

previously established models and manually parameterize the

connections between them based on experimental studies following

genetic or pharmacological perturbations. While numerous regula-

tors of B-cell signaling and proliferation have been identified, we

A B C

D

H

E

I J K

F G

Figure 8. In silico increases in the coefficient of variability or average protein abundances differentially affect population dynamics.

A–K The cell-to-cell distribution of total IKK (green), NF-jB cRel/NF-jB p50 (blue), both NF-jB C,50 and total IKK (purple), non-NF-jB proteins (orange), or all proteins
(gray) was varied (A). Specifically, the protein production (B, D–G) was increased (Total IKK mean ×1.5, cRel/p50 induction ×1.5, or protein production ×1.5), or the
coefficient of variation (C, H–K) was doubled, and the population dynamics and maximum relative cell count (D, H), mean number of times a progenitor is expected
to divide given the observed fraction of dividers in each generation (E, I), average generation 1,2,. . . division times (F, J), and the number of in silico cell surviving at
the end of the simulation (G, K) were compared. Error bars = SD. No error bars are shown for D, E, G, H, I, and K as they represent one global feature for each
simulation.

Molecular Systems Biology 11: 783 | 2015 ª 2015 The Authors

Molecular Systems Biology Multi-scale modeling of B-lymphocyte dynamics Maxim N Shokhirev et al

10



focused here (for the purposes of this first version of a B-cell ABM)

on the stimulus-responsive NF-jB signaling system as a key deter-

minant of B-cell population dynamics (Pohl et al, 2002). Several

important regulators are known NF-jB target genes (Duyao et al,

1990; Wang et al, 1996; Chen et al, 1999; Guttridge et al, 1999;

Huang et al, 2001); however, how they function together to produce

the observed population dynamics remained poorly understood. We

took both an unbiased approach by sequencing the transcriptomes

of small cells and growing cells, and a targeted approach via single-

cell measurements of key proteins by immunofluorescence. While

there was significant cell-to-cell transcriptome variability (Supple-

mentary Table S2), there was a clear NF-jB signaling signature in

large but not small cells (Fig 4), indicating that the fate variability

may originate upstream of the NF-jB system. Indeed, NF-jB cRel

and RelA are upregulated after 24 h of stimulation in large but not

small cells (Fig 4F and Supplementary Fig S5A), causing the upregu-

lation of the growth regulator Myc (Fig 4H and I) and the anti-

apoptotic regulator BclXL (Fig 4J and K) and the activity of the

metabolic regulator mTORc1 (Fig 4L). These studies quantified the

connectivity of NF-jB with downstream effector functions, enabling

us to parameterize the relative contributions of NF-jB cRel, RelA,

and non-NF-jB transcriptional regulators toward the activation of

these downstream effectors. This placed NF-jB in a position of

biasing the fate of growing cells toward division over death.

In addition, we were also able to confirm that fate decisions and

division and death times are correlated between sibling cells

(Supplementary Fig S4), which is consistent with apparent cell-

to-cell variability being due to differences in protein turnover

processes (Gaudet et al, 2012; Flusberg et al, 2013) resulting in

distributions of single-cell proteomes within a population. Such vari-

ability constitutes noise that is extrinsic to the molecular processes

explicitly represented in the model, thus justifying an ordinary

differential equation formulation with distributed initial states to

model a population of B cells, akin to previous studies (Spencer &

Sorger, 2011; Loriaux & Hoffmann, 2012).

The resulting simulations recapitulated major features of the

cellular and population responses with an accuracy that was

surprising given that the three models were connected with a mini-

mum number of reactions (Supplementary Methods, Supplementary

Table S9). In particular, the maximum relative cell count (Fig 5C),

the characteristic total population expansion and contraction curve

(Fig 5C), the number of divisions observed (Fig 5C and D), the frac-

tion of cells responding in each generation (Fig 5D), and the average

growth trajectories of growing (Fig 5E) and non-growing (Fig 5F)

cells were captured by the model, among others (see Supplementary

Tables S9 and S10). The model was then used to predict population

dynamics following a number genetic and pharmacological pertur-

bations that yielded a first set of biological insights.

NF-jB cRel enforces a cell fate decision by protecting growing
cells against death

Previous studies have described the B-cell response as a molecular

race between division and death processes (Hawkins et al, 2007b;

Duffy et al, 2012), while others have argued for an early decision

process (Hyrien et al, 2010; Shokhirev & Hoffmann, 2013;

Chakravorty et al, 2014). A decision model is consistent with the

observation that a subset of generation 0 cells prepare for several

rounds of rapid divisions by simultaneously deactivating quiescence

(Yusuf & Fruman, 2003; Hawkins et al, 2009) and activating growth

pathways such as Myc and mTOR (Grumont et al, 2002; Wang et al,

2011). In contrast, cell death is a default pathway as unstimulated B

cells will undergo apoptosis in vitro (Supplementary Fig S8), though

cell lifetime may be extended by expressing anti-apoptotic regulators

as a consequence of signaling (recently reviewed in Renault &

Chipuk, 2013).

To probe whether the division or death fate was a result of a fate

race or a decision, we tracked B cells in long time course micros-

copy studies to characterize several key properties of the response.

There is a pronounced but variable delay in growth initiation prior

to the first division, while generation 1+ cells start growing immedi-

ately (Fig 2D). Tracking cell size trajectories and their eventual fate

allowed us to show that B cells that had entered the growth phase

were protected from death (Fig 3). Further, a mathematical model

which assumed a race between division and death (Hawkins et al,

2007b), applied to flow cytometry data, could not account for the

death time distribution observed in microscopy experiments

(Supplementary Fig S3), even when early death (within the first

12 h), potentially caused by mechanical manipulation of cells, is

filtered out (Supplementary Fig S1).

Using the multi-scale model, we explored NF-jB’s role in deter-

mining B-cell population dynamics. As expected, in silico knockout

of NF-jB cRel substantially reduced the population response

(Fig 6E), allowing for fewer divisions (Fig 6F). This was due to a

greater fraction of growing cells dying (Fig 6G), but fate timing

and growth trajectories were predicted to and remained largely

unchanged (Supplementary Fig S7). Importantly, time-lapse micro-

scopy experiments confirmed these model predictions (Fig 6E–G,

Supplementary Fig S7). Further, model simulations predicted and

experimental studies confirmed that in the absence of cRel, cells that

have entered the growth phase may not be committed to divide, but

instead are prone to death (Fig 7D). Thus, cRel’s function may be

described as enforcing a decision to divide, with the population

response of cRel-deficient cells resembling that of a molecular race

more closely than that of wild-type cells. Indeed, our work with

cRel-deficient models and cells suggests that the fate decision at the

cell biological scale may be described as a fate race that is highly

biased against death by NF-jB cRel. Other NF-jB members such as

RelA and RelB may contribute as well, and their combined function

is likely critical for promoting entry into the growth phase also.

The population response is sensitive to extrinsic noise in the
signaling module

The present model version could be used to explore how molecu-

lar-level perturbations affect cell population dynamics (Fig 8). It

may not be surprising that increasing the abundance of negative

regulators of NF-jB diminished the population response; however,

the sensitivity to small increases in the positive regulators was

striking (Fig 8D), affirming the strategy for searching for cancer-

causing mutations that alter NF-jB control (Staudt, 2010). We

also found an increased population response (Fig 8H) due to

enhanced survival (Fig 8K) if instead the variability but not the

average of protein abundances was increased in the model. Our

data suggest that deregulation (i.e., increased variability) of nega-

tive regulators was particularly important (Fig 8H–K). Increased
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cell-to-cell variability of cell-cycle and apoptosis proteins resulted

in accumulation of long-lived cells, decreasing the fraction of

dividing cells in each generation (Fig 8I) and increasing the length

of the cell cycle (Fig 8J). Our analysis points to the importance of

quantitative data at the single-cell level (e.g., the distributions of

protein abundances, even when average measurements remain

unaltered) in the diagnosis and prognosis of disease using single-

cell technologies (Chattopadhyay et al, 2014; Macaulay & Voet,

2014).

In sum, the multi-scale model we present here is a first attempt

at connecting molecular networks to B-cell population dynamics

and demonstrates that much of the population behavior, including

the observed biasing of cell fate, emerges when NF-jB is allowed to

affect mammalian models for cell cycling and apoptosis. This model

enables in silico molecular perturbation studies, allows the testing

of many molecular factors and mechanisms simultaneously, and

can serve as a framework for refinement within the iterative

Systems Biology approach.

Materials and Methods

B-cell purification and incubation

Primary splenocytes were isolated from 6- to 8-week-old mice, and

naı̈ve B cells purified using magnetic bead separation (Miltenyi

Biotec) and stimulated with 250 nM, or 10 nM CpG ODN 1668

(Invivogen). mTORc1 inhibition was achieved by 1 h pretreatment

of 1 ng/ml rapamycin (Sigma) prior to addition of stimulus. B cells

were grown in fresh media with 1% penicillin streptomycin solution

(Mediatech Inc.), 5 mM L-glutamine (Mediatech Inc.), 25 mM

HEPES buffer (Mediatech Inc.), 10% FCS, and 55 µM 2-ME (Fisher

Scientific) at a concentration of 5 × 104 cells/ml in 48 well plates,

or 1,536 flat-bottom tissue-culture plates at 37°C for a period of

1–6 days.

Time-lapse microscopy

Purified naı̈ve B cells were grown in 1,536 flat-bottom tissue-

culture-treated microwells (Greiner Bio-One). Images were acquired

on an Axio Observer Z1 inverted microscope (Carl Zeiss Microscopy

GmbH, Germany) with a 10×, 0.3 NA air immersion objective to a

Coolsnap HQ2 CCDcamera (Photometrics, Canada) using ZEN imag-

ing software (Carl Zeiss Microscopy GmbH). Environmental condi-

tions were maintained at 37°C, 10% CO2 with a heated enclosure,

and CO2 controller (Pecon, Germany). Phase-contrast images were

taken every minute for 6 days.

Cell tracking

A semi-automated computational approach was used to track B cells

in phase-contrast images. First, image intensities were normalized

to maximize contrast. Next, edges were identified using a Sobel

transformation and global thresholding. Cells were identified using

a customized Hough transformation assuming cells were approxi-

mately circular. Next, approximate linear paths were manually

drawn for each cell until the cell was observed to divide, die, or

leave the field of view (also manually annotated to ensure

accuracy). Cells entering the field of view after 24 h of stimulation

(i.e., potentially after the first division) and debris were tracked but

removed from the subsequent analysis. After all paths were drawn,

all cell boundaries were optimized simultaneously from frame to

frame. During automatic optimization, cells were modeled as

deformable two-dimensional polygons with forces acting upon each

vertex that ensured the polygons did not grow/shrink too quickly,

did not overlap other polygons, were attracted to edges in the

image, and were attracted to their respective manually curated path.

The relative magnitudes of the forces were manually calibrated to

ensure appropriate behavior. Cell size trajectories were fitted using

a piecewise function consisting of a linear no-growth period,

followed by exponential growth:

VðtÞ ¼ Vo t� tgro
Voe

kðt�tgroÞ t[ tgro

�

The quality of individual cell tracks were assessed by calculating

RMSD from V(t), and the tgro value was assumed to be the fitted

inflection point in this function (i.e., when cells were predicted to

start exponential growth). Growing cells were defined as having an

average ending volume at least 350 lm3 above the average starting

volume, or if the final volume was at least 800 lm3. Cells that grew but

then decreased in size or that did not meet any of these conditions were

labeled as non-growing. The Java platform-independent executable

for tracking cells is included as Supplementary File S1. Tracked

videos of WT 250 nM CpG, WT 10 nM CpG, NF-jB cRel deficient

250 nM CpG, and WT 250 nM CpG + Rapamycin treatment B cells

are provided as Supplementary Files S2, S3, S4, and S5, respectively.

Calculating the expected probability that a dying cell would have
started growing

For a detailed methodology and notes, please see Supplementary

Methods. In short, if division and death are parallel biological

processes running within a cell, it is possible to calculate the lower

bound on the expected fraction of progenitor cells that would start

growing and then die if the time to die is typically earlier than the

time to division. We predict this lower bound from the observed

distributions for the time to decide to grow (Tgro0), time to die

(Tdie0), time to divide (Tdiv0), and the observed fraction of dividing

cells in generation 0, and then compare the predicted lower bound

to the actual observed fraction of growing cells that die.

Single-cell RNAseq

Stimulated wild-type B cells were collected at 24 h post-stimulation

and concentrated to 5 × 105 cells per ml. Cells were loaded onto a

10–17 µM primed C1 single-cell auto prep array IFC (Fluidigm), and

phase-contrast images were taken of all viable cells as determined

by the Live/Dead Viability/Cytotoxicity Kit (Invitrogen). ERCC RNA

spikein controls (Life Technologies) were added to the lysis mix at a

1:200 dilution. Tube controls (bulk cell positive control and no cell

negative control) were also prepared according to the Fluidigm

protocol. Lysis, reverse transcription, and PCR were performed

using the SMARTer Ultra Low RNA Kit (CloneTech) and Advantage

2 PCR Kit (CloneTech) on individual cells using the C1 Single-Cell

Auto Prep System (Fluidigm). Cell size was manually determined
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from images using ImageJ software. Sample libraries for the five

smallest and five largest cells along with the controls were prepared

using the Nextera XT DNA Sample Preparation (Illumina), and

library quality was assayed using the Quant-iT PicoGreen dye (Life

Technologies) quantification on a Qubit 2.0 Fluorometer (Life Tech-

nologies) and by gel electrophoresis. Libraries were sequenced by

the UCLA Broad Stem Cell Research Center High Throughput

Sequencing Core on Illumina HiSeq 2000 sequencers according to

manufacturer recommendations. Reads were aligned to the ENSEM-

BL NCBI m37 genome (Church et al, 2009) using rna-STAR (Dobin

et al, 2013). To compute spike-in concentrations for normalization

purposes, the 23 most abundant RNA spike-in concentrations (at

least one read in all samples) were compared to the expected

concentrations in log-log space, and the y-intercept in log-space was

used to compute normalized spike-in concentrations for each

sample, [Spikein�
j ]. The normalized expression of gene i, in sample

j, was then computed as:

Genei;j ¼ Genei;j
½Spikein�

j �
þ 100;

A constant count of 100 was added because spike-ins with counts

< 100 were variable across samples. To assess the overall quality of

each cell, we correlated their genome wide transcript rpkm values to

the average across all cells as well as to the positive tube control. We

found that one large cell had significantly lower correlation, so we

omitted it from further analysis. To determine whether a particular

gene was upregulated in big cells, we computed an expression score:

Escoret ¼

P
big

Iðgenei [ 300Þ

cellsbig
�

P
small

Iðgenei [ 300Þ
#cellssmall

;

where I(genei > 300) is 1 if gene i has above 300 read count in a

particular sample. A gene with an expression score ≥ 0.5 was

considered upregulated in big cells, while a gene with an expression

score ≤ �0.5 was considered downregulated in big cells. These sets

of upregulated and downregulated genes were analyzed for pathway

enrichment and transcription factor motif enrichment using Web-

Gestalt (Wang et al, 2013). Significant transcription factors were

further filtered to remove non-NF-jB downstream targets as defined

in Supplementary Table S1. The single-cell RNA seq feature counts

and analysis are included as a Microsoft Excel file (Supplementary

File S6).

Immunofluorescence

1 × 106 cells were collected after 24 h incubation at 37°C and 5%

CO2, washed with cold 1 × PBS, resuspended in Annexin binding

buffer containing 10 µl Annexin-V conjugated to AlexaFluor350

(Life Technologies), stained for 1 h at 25°C, fixed with 4% para-

formaldehyde (Electron Microscopy Sciences) for 15 min, washed

with 1 × PBS, and incubated in cold blocking buffer (1 × PBS, 5%

normal goat serum, 0.4% TritonTMX-100, 0.02% SDS), washed with

IF buffer, counted, and then incubated at 4°C overnight in IF buffer

containing 1:100 primary antibody such that cell densities and anti-

body concentrations were normalized across all conditions. After

incubation with primary antibody, cells were washed 3 × 5 min

with IF buffer and incubated in IF buffer containing 1:1,000 second-

ary antibody for 1 h, washed with IF buffer (3 × 5 min), plated

into l-slide 8-well plates (ibidi), and visualized using on an Axio

Observer Z1 inverted microscope (Carl Zeiss Microscopy GmbH)

with a 20×, 0.3 NA air immersion objective, acquired to a Coolsnap

HQ2 CCD camera (Photometrics) using ZEN imaging software (Carl

Zeiss Microscopy GmbH). Cells in images were manually identified

in phase contrast (circular shape), and average fluorescence values

were recorded after local background subtraction. Fluorescence

from debris was manually excluded from calculations. Cell viability

prior to fixation was confirmed with Annexin-V staining in the blue

channel. Antibodies used for NF-jB RelA (Rabbit anti-p65, sc-372),

cRel (anti-mouse cRel conjugated to PE, #12-6111-80), Myc (Rabbit

anti-cMyc, ab32072), and BclXL (Rabbit anti-BclXL, ab2568) were

obtained from SantaCruz Biotechnology, eBioScience, AbCam, and

AbCam, respectively. Goat anti-rabbit-conjugated secondary anti-

bodies were obtained from Life Technologies (A-11001). To quantify

changes in expression, we found significance thresholds for cell size

and average cell fluorescence for the indicated protein after 24 h as

compared to the 0 h control. Percentages (Fig 4H–K, and Supple-

mentary Fig S5A and C) show the fraction of cells from the 24 h

time point occupying each quadrant. Significant cell size was

defined to be > 100 pixels manually, while significant abundance

was defined as a value that is greater than or equal to the 95th

percentile abundance from the 0 h datasets. All immunofluores-

cence images and the custom Java software used to analyze the

images are provided as a zipped file (Supplementary File S7).

CFSE flow cytometry and FlowMax analysis

Cells were removed from media, stained with 10 ng/ml propidium

iodide, and measured using an Accuri C6 Flow Cytometer (Accuri

Inc.) over a 6-day time course. CFSE histograms were constructed

after software compensation for fluorescence spillover and manual

gating on viable (PI-negative) B cells using FlowMax software. All

measurements were performed in duplicate (B cells from the same

spleen were cultured in separate wells, two wells per time point to

ensure that each time course represented a single population of cells

subject to only experimental variability). The FlowMax computa-

tional tool (Shokhirev & Hoffmann, 2013) was used to construct 1D

log-transformed CFSE histograms of viable cells. After specifying the

fluorescence of the undivided peak manually for each time point,

maximum-likelihood fcyton model parameter ranges were deter-

mined by filtering, and clustering 1,000 best-fit solutions and their

corresponding sensitivity ranges. The top solution cluster was plot-

ted by randomly sampling parameters from within the maximum-

likelihood parameter ranges. To account for potential censorship of

the fraction of dividing cells or division and death time distributions

when both division and death processes were active simultaneously

(i.e., cyton model), Monte Carlo sampling of cell populations was

used to approximate population model parameters directly.

Western blot analysis

Whole-cell lysates were prepared using RIPA buffer lysis of B cells.

The resulting lysates were resolved on a 10% SDS–PAGE and

proteins detected using the Bio-Rad ChemiDoc XRS System and

SuperSignal west femto substrate (Thermo Scientific). Antibodies
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used to identify the protein of interest are as follows: S6 Ribosomal

Protein (Cell signaling #2217) and a-tubulin (Santa Cruz sc-5286).

Quantification was performed using ImageJ software using the 0 h

protein levels for normalization.

RT–PCR

RNA extraction was performed using RNAeasy Mini Kit (Qiagen).

cDNA synthesis of purified RNA was done with iScript cDNA

Synthesis kit (Bio-Rad). Quantitative RT–PCR was performed with

SYBR Green PCR Master Mix reagent (Stratagene) and Eppendorf

Mastercycler realplex system using the D(DCt) method with b-actin
as normalization control.

Multi-scale agent-based modeling

Ordinary differential equation models of the cell-cycle (Conradie

et al, 2010), apoptosis (Loriaux & Hoffmann, 2012), and NF-jB
signaling (Alves et al, 2014) were implemented in Matlab (Math-

works), using the ode15s solver for stiff problems. Please refer to

the Supplementary Methods for the list of model reactants,

reactions, constants, and free parameters, as well as the fitting

methodology and parameter sensitivities. The modules were

connected by imposing cooperative Hill activation of the CyclinD,

Myc, and BclXL promoters. For simplicity, we also assumed that the

growth of general cellular machinery, the model species represent-

ing catabolism and protein synthesis in the cell, was dependent on

the current mass, and the concentration of Myc. The integrated

model consisting of the three modules constituted one cellular agent

and was solved independently in a generation-by-generation fashion

until the simulation time limit was reached, the cell divided

([cdh20] > 0.2), or the cell died ([cPARP] ≥ 25,000 molecules/cell).

Upon division, two new copies of the model were generated with

half the mass and general machinery (we assumed that the concen-

tration of all other species was unchanged). We assumed a normally

distributed variability in the partitioning of the mass (the mass and

general machinery were multiplied by a constant ra or rb such that

ra ~ N(1.0, CVpartition), and rb = 1 – ra, where CVpartition is a the

coefficient of variability of daughters measured from wild-type

microscopy experiments. In addition, to mimic protein concentra-

tion remixing which leads to the loss of correlation with subsequent

divisions, we generated independent log-normally distributed (if not

modeling synthesis and degradation) or normally distributed protein

synthesis and degradation reaction rates as well as log-normally

distributed total IKK concentrations and set the daughter values to

the average of the newly generated value and the value inherited

from the mother. This ensured that the daughter cells had correlated

protein dynamics, but that the correlation decreased with each

generation (Hawkins et al, 2009). At the time of division, species in

the nucleus (i.e., NF-jBs/IjBs) were redistributed evenly among the

nucleus and cytoplasm to mimic nuclear envelope breakdown and

reformation. Models that ended in death were removed from the

pool of running models. Multi-scale models, which consisted of

many such cellular agents, were initialized at generation 0 to

contain n = 250 independent integrated models. To model cell-to-

cell protein abundance variability, we initialized each model with

initial protein concentrations sampled from lognormal distributions

if the total protein concentration was fixed, or with normally

distributed protein synthesis and degradation rates if the protein

had explicit synthesis and degradation reactions defined. In addi-

tion, the total amount of IKK, the upstream signal responsible for

NF-jB activation, was also assumed to be log-normally distributed.

Finally, the initial mass and general machinery of cells was

normally distributed as determined by microscopy. After an initial

equilibration phase (at least 24 h) with only basal IKK signaling to

NF-jB and no death signaling, a quiescent steady state was achieved

as defined by lack of cell-cycle progression and model species stabil-

ization. After equilibration, all models were solved independently

for each generation until the simulation time was elapsed (144 h).

The full set of model constants, reactions, fluxes, species, parame-

terizations, parameter sensitivity, fitting procedure, and model

construction methods are described in the supplementary tables,

and the model construction details and fitting routines are described

in Supplementary Methods. The full model code is provided as a

collection of zipped MATLAB files (Supplementary File S8).

Predicting the role of extrinsic abundance noise for specific sets
of proteins

We used the multi-scale model to predict the effect of increasing the

variability or mean protein levels in specific modules. To do this,

we grouped proteins in the model into functionally distinct sets: the

negative regulators of activation (IjBs), the positive regulators of

activation (IKK and the NF-jB monomers), and all other proteins

(cell-cycle and apoptosis). Then, we tested the effect of increasing

the average abundance of the proteins in these functional sets by

increasing the translation rate of the proteins (IjBs, NF-jBs, cell-
cycle/ apoptosis proteins) by 10%, or increasing the total concentra-

tion by 50% (for proteins which are assumed to be constant in the

model such as IKK and some cell-cycle proteins). We also tested the

effect of increasing the extrinsic noise of these protein sets by

increasing the CV associated with the cell-to-cell protein variability

in the synthesis/degradation rates (assumed to be drawn from a

normal distribution with mean centered on the initial parameter

value) or the total protein abundance (assumed to be log-normally

distributed with mean equal to the initial starting concentration).

We then quantified the mean relative population count throughout

the simulation, the expected number of divisions that progenitors

underwent, a summary statistic for the fractions of cells dividing in

each generation (fs), the average interdivision time for generation

1+ cells (a measure of cell-cycle speed), and the relative number of

cells remaining at the end of the simulation (accumulation of surviv-

ing non-dividing cells).

Data availability

Supplementary files, parameter tables, movies of tracked cells, code,

raw images from time-lapse microscopy, and CFSE flow cytometry

datasets (FCS3.0 files) are available for download at http://

www.signalingsystems.ucla.edu/max/. Model parameters are also

available as Supplementary Dataset S1. Single-cell RNA sequencing

datasets are available from GEO: GSE64156 (http://www.ncbi.nlm.

nih.gov/geo/query/ acc.cgi?acc=GSE64156).

Supplementary information for this article is available online:

http://msb.embopress.org
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