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Introduction 
Proteins are one of the most fundamental elements in living 
organisms and make important contributions in nearly all fun-
damental biological processes in the cell. However, proteins per-
form their functions by interacting with other proteins. Increasing 
studies have indicated that protein-protein interactions (PPIs) 
play a critical role in many important biological processes, 
including transcription regulation, signal transduction, foreign 
molecules recognition, translation, and so on. As indicated by 
increasing evidences, knowledge of PPIs can provide a deeper 
understanding of the molecular functions of biological processes, 
suggest novel methods for their practical use in medicine, and 
yield insight into disease mechanisms. Although many high-
throughput methods, including the yeast 2-hybrid system,1-4 
protein chips,5-7 and immunoprecipitation,8-10 are typically used 
to identify PPIs, experimental methods for identifying associa-
tions between proteins are expensive and time-consuming and 

suffer from high rates of false positives and false negatives.11-15 
Thus, increasing numbers of studies have focused on computa-
tional approaches to identify PPIs.16-18 As a result, a large num-
ber of computational approaches using multiple data types, 
including protein domain, and genomic protein structure infor-
mation have been developed to predict PPIs. However, most of 
these methods are limited due to difficulty in computing and 
dependence on a large number of homologous proteins.7,13,19-21 
Therefore, it is very important to identify the close relationship 
between proteins by exploiting efficient computational 
approaches based on protein sequence information.

To date, many computational approaches based on protein 
information have been developed for predicting PPIs.19,22-24 An 
et al25 proposed a novel feature extraction method based on pro-
tein sequence called Local Phase Quantization (LPQ), which 
was combined with RVM classifier to detect PPIs. Xia et al26 
developed a computational approach, which used rotation forest 
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as a classifier and autocorrelation to represent protein sequences 
for identifying PPIs. Guo et al27 exploited a new computational 
approach by combining autocovariance (AC) with SVM, where 
AC could take advantage of the interactions between residues a 
certain distance apart in the sequence. Yu et  al28 proposed a 
novel feature extraction method called local descriptors (LD), 
which accounts for the interactions between sequentially dis-
tant but spatially close amino acid residues and can fully capture 
multiple feature information in region in continuous and dis-
continuous regions within a protein sequence. Huang et  al29 
proposed a novel computational model based on protein 
sequence by using weighted sparse representation as a predic-
tion classifier (WSRC) and employed global encoding (GE) as 
feature extraction approach for predicting PPIs, which achieved 
better prediction results. However, there is still room to improve 
the prediction accuracy of the existing methods.

In this study, we proposed a sequence-based feature extraction 
method called LCPSSMMF, which combined local coding posi-
tion-specific scoring matrix (PSSM) with multifeatures fusion. 
First, we used a novel local coding method based on PSSM to 
build a new PSSM (CPSSM); the advantage of this method is 
that it incorporated global and local feature extraction, which can 
account for the interactions between residues in both continuous 
and discontinuous regions of amino acid sequences. Second, we 
adopted 2 different feature extraction methods (Local Average 
Group [LAG] and Bigram Probability [BP]) to capture multiple 
key feature information by employing the evolutionary informa-
tion embedded in the CPSSM matrix. Finally, feature vectors 
were acquired by using multifeatures fusion method.

Result

To evaluate the performance of the proposed feature extraction 
approach, we employed support vector machine (SVM) as a pre-
diction classifier and applied this method to yeast and human PPI 
datasets. The prediction accuracies of LCPSSMMF were 93.43% 
and 90.41% on the yeast and human datasets, respectively. 
Moreover, we also compared the proposed method with the pre-
vious sequence-based approaches on the yeast datasets by using 
the same SVM classifier. The experimental results indicated that 
the performance of LCPSSMMF significantly exceeded that of 
several other state-of-the-art methods. It is proven that the 
LCPSSMMF approach can capture more local and global dis-
criminatory information than almost all previous methods and 
can function remarkably well in identifying PPIs. To facilitate 
extensive research in future proteomics studies, we developed an 
LCPSSMMFSVM server, which is freely available for academic 
use at http://219.219.62.123:8888/LCPSSMMFSVM.

Materials
Dataset

In this study, yeast and human datasets that can be obtained from 
the publicly available Database of Interacting Proteins (DIP) 

were used to evaluate the proposed method.30 To better carry 
out our method, some protein sequence pairs were removed, if 
they were fragments with less than 50 residues in length. For 
eliminating bias of homologous protein sequence pairs, sequence 
pairs with ⩾40% sequence identity were considered to be 
homologous. Thus, these protein sequence pairs were also 
removed. As a result, we constructed the yeast dataset, which 
contained 5594 positive protein pairs and 5594 negative protein 
pairs. In the same way, the human dataset was constructed, 
which contained 3899 positive protein pairs and 4262 negative 
protein pairs. Consequently, the yeast dataset contains 11 188 
protein pairs and the human dataset contains 8161 protein pairs.

Feature Extraction Method
From a computational perspective, the key to identify PPIs is to 
develop an effective computational approach based on protein 
sequences, which is usually divided into the following 2 steps:

Step 1. Analyzing and designing a feature extraction 
method that not only captures protein-protein interaction 
information but also extracts more key feature information 
contained in the protein sequence.

Step 2. Designing and selecting an appropriate prediction 
classifier.

The above-mentioned 2 steps are closely related and com-
plement each other. A drawback of the design process of 
either step is that bias will be introduced that may influence 
the performance of the prediction model. The pattern of fea-
ture extraction is generally divided into 2 classes: (1) the 
original protein sequence is directly represented as a feature 
vector by mathematical description and (2) a given protein 
sequence is first transformed a matrix; and second, the fea-
ture vector is created by mathematical description based on 
the sequence matrix.

Increasing studies have demonstrated that prediction accu-
racy of the second class is better than that of the first class. As 
a result, we presented a new feature extraction method based in 
this article on the second class.

Position-specif ic scoring matrix

Position-specific scoring matrix (PSSM which was originally 
used to detect distantly related proteins) is a very helpful tool 
for representing protein sequences as a matrix. Thus, we also 
transformed each protein sequence into a PSSM by employing 
position-specific iterated BLAST (PSI-BLAST)31:
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where L is a given protein sequence length, 20 represent the 20 
amino acids, and Pi j,  is the probability that the ith  amino acid 
mutates into the jth  amino acid in the process of biological 
evolution. Thus, a high score in the PSSM represents a good 
conservative position, and a low score represents a weak con-
servative position. The PSSM contains not only protein 
sequence positional information but also evolutionary infor-
mation, which can reflect the conservation function of protein 
sequences. Therefore, this approach is widely applicable trans-
forming a given protein sequence into a PSSM to represent 
protein sequence characteristics.

In this article, to obtain highly and widely homologous pro-
tein sequences, the PSI_BLAST e-value parameter was set to 
0.001, and 3 iterations were selected. Consequently, each pro-
tein sequence can be represented as 20-dimensional PSSM, 
which contain L × 20 elements, where L is the length of a 
given protein sequence and the columns are 20 amino acids.

Local coding based on PSSM matrix

As is well known, the key characteristics of PPIs are that “PPI 
usually occur in discontinuous segments in the protein 
sequence, where distant amino acid residues are brought into 
spatial proximity by protein folding.” As a result, we developed 
a novel local coding method based on PSSM; the advantage of 
the method is that it incorporates both global and local feature 

extraction, which can account for the interactions between resi-
dues in both continuous and discontinuous regions in amino 
acid sequences.

The steps for creating the CPSSM matrix are as follows: 
first, using PSI-BLAST, we constructed each protein sequence 
PSSM matrix; second, each PSSM was divided into 4 parts: A, 
B, C, and D. We intercepted the first 75%, the last 75%, and the 
middle 75% of the PSSM and named these as parts A, B, and 
C. The whole PSSM matrix is represented in part D. Finally, a 
new PSSM (CPSSM) is created by merging the A, B, C, and D 
sub-PSSM in parallel, where the length of the CPSSM is 
longer than the length of the PSSM. The advantage of the 
CPSSM matrix is that it can fully account for global and local 
feature information and the interactions between sequentially 
distant but spatially close amino acid residues. As a result, the 
CPSSM matrix can adequately capture multiple overlapping 
continuous and discontinuous binding patterns within a pro-
tein sequence and improve prediction accuracy. Figure 1 shows 
the procedure of local coding based on PSSM.

Multi-features fusion

In previous studies, many sequence-based feature extraction 
methods used a single feature approach, whose drawbacks are 
that they cannot integrate multiple key feature information–
contained protein sequence, and they cannot comprehensively 

Figure 1.  The flow diagram of local coding based on PSSM matrix. PSSM indicates position-specific scoring matrix.



4	 Evolutionary Bioinformatics ﻿

consider the correlation of the various elements of a protein 
sequence. Therefore, there is considerable interest in develop-
ing a novel feature extraction approach by using multifeatures 
fusion, which is capable of increasing the quantity of feature 
vectors information and improving the prediction accuracy. 
Thus, LAG and BP were used to carry out multifeatures fusion.

Local Average Group.  The LAG method divided each CPSSM 
into 20 groups. Each group contained 5% of the length of a 
CPSSM. Thus, each CPSSM was divided into 20 groups 
regardless of the length of the protein sequence, where each 
group consists of 20 features derived from the 20 columns of 
the CPSSM. The mathematical description is as follows:
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where N  represents the length of a CPSSM matrix and 
20 / N  represents 5% of the length of a CPSSM, or specifi-
cally, the length of the jth  group. Mt( , )p j+ − ×( ) /i N1 20  
represents a 1 × 20 vector, which can be captured from a 
CPSSM at the ith  position in the jth  group. As a result, we 
divided each CPSSM into 20 groups and expressed each 
CPSSM as a 400-dimensional vector. The main advantage of 
the LAG method is that the residue conservation tendencies in 
the same domain family are similar and the locations of 
domains in the same family are closely related to the length of 
the sequence. Thus, the LAG method transformed each 
CPSSM into a 400-dimensional feature vector.

Bigram Probabilities.  N-gram models are usually employed to 
estimate the probability of a random sequence,32,33 such as the 
random sequence in the following:
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where P S S S Sj j n j n j( )| − + − + −…1 2 1  represents Conditional 
Probability, which reflects the correlation of n continuous random 
variables. N-gram models are statistical models, which have been 
widely used in natural language processing. Common languages 
such as words and syllables are treated as random variables. The 
element value of the PSSM indicates the probability of an amino 
acid mutating into another amino acid in the evolutionary pro-
cess, and the probability values of the 20 amino acids are corre-
lated. Therefore, we adopted binary bigram mode to extract the 
key evolutionary feature information contained in the PSSM. 
The relevant mathematical description is as follows:
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where L represents the number of the CPSSM row. A CPSSM 
element Pi m,  represents the relative probability that the ith  
amino acid mutates into the jth  amino acid. The matrix BPmn  
contain 400 elements,
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where θ = =mn 400  is the dimensionality of the feature vector 
BF. The ϕu  can be represented as follows:
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Finally, each CPSSM of a given protein sequence was con-
verted into a 400-dimensional vector using the BP feature 
extraction method.

As a result, based on the above analysis, we proposed a new 
sequence-based feature extraction method by combining local 
coding based on PSSM and multifeatures fusion in this study. 
The proposed method fully considers the following key points:

1.	 Capturing protein interaction information by using local 
coding based on PSSM;

2.	 Increasing the amount of feature information through 
employing LAG and BP to carry out multifeatures 
fusion.

In this article, we proposed local coding method based on 
PSSM; the highlight of the method incorporates global and 
local feature extraction, which could account for the interac-
tions between residues in both continuous and discontinu-
ous regions of amino acid sequences. Using multifeatures 
fusion integrates multiple key pieces of feature information 
contained in protein sequences and comprehensively con-
siders the relevant information of each feature element. The 
flow diagram of our feature extraction algorithm is shown in 
Figure 2

Performance evaluation

For evaluating the effectiveness of LCPSSMMF, 4 parameters, 
including sensitivity, accuracy, Matthews correlation coefficient 
(MCC), and precision, were calculated. The mathematical 
descriptions are as follows:
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where FP represents false positives, TP represents true posi-
tives, FN represents false negatives, and TN represents true 
negatives. True positives represent the number of true inter-
acting pairs that were correctly predicted. True negatives rep-
resent the count of true noninteracting pairs that were 
predicted correctly. False positives represented the number of 
noninteracting pairs that were falsely predicted, and false 
negatives represented true interacting pairs that were falsely 
predicted to be noninteracting pairs. Moreover, we drew a 
receiver operating characteristic (ROC) curve to further eval-
uate the effectiveness of our method.

Results and Discussion
Performance of the proposed method

For evaluating the efficiency of our feature extraction approach, 
we compared it with other feature extraction approaches, as 
shown in Table 1.

In Table 1, PSSM, LC, and MF represent PSSM, local cod-
ing based on PSSM, and multifeatures fusion, respectively. 

LAG and BP represent LAG and BP feature extraction 
method, respectively.

The SVM classifier has been widely used to predict PPIs. 
As a result, for ensuring fairness, different feature extraction 
methods used the same SVM classifier on human and yeast 
datasets in the experiment. In addition, to avoid over fitting, 
we divided the datasets into training sets and independent test 
sets. Specifically, 4out of 5 of the datasets were selected as 
training sets and the remaining datasets were selected as inde-
pendent test sets. Simultaneously, 5-fold cross validation was 
employed to benchmark the effectiveness of our feature extrac-
tion method. The LIBSVM tool34 was used to carry out clas-
sification in the experiment. The radial basis function (RBF) 
kernel parameters of the SVM were optimized by using the 
grid search method, where c is 0.001 and g is 0.3, and other 
parameters were set to the default value.

It can be seen from Table 2 that the LCPSSMMF 
obtained an average prediction accuracy, sensitivity, preci-
sion, and MCC of 93.14%, 92.50%, 93.90%, and 87.41%, 
respectively, using the yeast dataset. As shown in Tables 3 to 
5, the PSSMMF, LCPSSMLAG, and LCPSSMBP achieved 
an average prediction accuracy, sensitivity, precision, and 
MCC of 90.48%, 90.26%, 90.58%, and 82.84%; 87.09%, 
86.57%, 87.13%, and 77.33%; and 88.83%, 86.22%, 87.67%, 
and 81.34% using the yeast dataset, respectively. Similarly, 
Table 6 shows that the LCPSSMMF obtained an average 
accuracy, sensitivity, precision, and MCC of 90.41%, 93.54%, 
88.02%, and 82.62% using the human dataset. It can be seen 
from Tables 7 to 9 that the PSSMMF, LCPSSMAB, and 
LCPSSMBG obtained an average accuracy of 87.58%, 
85.86%, and 86.42%; average sensitivity of 87.69%, 84.89%, 
and 86.03%; average precision of 87.24%, 86.58%, and 
87.10%; and average MCC of 77.84%, 75.72%, and 76.85%, 
respectively, on the human dataset. Similarly, as shown in 
Figures 3 and 4, the ROC curves of LCPSSMMF are also 

Figure 2.  The flow diagram of our feature extraction algorithm. BP indicates Bigram Probability; LAG, Local Average Group.

Table 1.  The abbreviations of different feature extraction methods.

Feature extraction method Abbreviation

Multifeatures fusion based on local coding PSSM matrix LCPSSMMF

Multifeatures fusion based on original protein sequence PSSM matrix PSSMMF

Local Average Group based on local coding PSSM matrix LCPSSMLAG

Bigram Probabilities based on local coding PSSM matrix LCPSSMBP

Abbreviations: LCPSSMMF, local coding position-specific scoring matrix with multifeatures fusion; PSSM, position-specific scoring matrix; LAG, Local Average Group; BP, 
Bigram Probabilities.
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Table 3.  The experimental results of the PSSMMF method on the yeast dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 90.75 90.81 90.57 83.20

2 89.85 88.82 90.22 81.74

3 89.58 90.37 89.19 81.33

4 91.46 91.08 91.82 84.38

5 90.76 90.23 91.12 83.55

Average 90.48 ± 0.76 90.26 ± 0.87 90.58 ± 0.98 82.84 ± 1.27

Abbreviation: MCC, Matthews correlation coefficient; PSSMMF, position-specific scoring matrix with multifeatures fusion.

Table 2.  The experimental results of the LCPSSMMF method on the yeast dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 94.05 94.14 93.89 88.82

2 93.07 91.93 93.74 87.09

3 93.02 93.02 94.19 87.95

4 92.40 91.26 93.42 85.95

5 93.17 92.19 94.26 87.27

Average 93.14 ± 0.60 92.50 ± 1.1 93.90 ± 0.34 87.41 ± 1.06

Abbreviations: LCPSSMMF, local coding position-specific scoring matrix with multifeatures fusion; MCC, Matthews correlation coefficient.

Table 4.  The experimental results of the LCPSSMAB method on the yeast dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 86.14 86.50 86.35 76.11

2 86.59 85.88 87.57 76.77

3 88.29 87.05 88.98 79.31

4 86.46 86.94 86.09 76.58

5 87.98 86.52 86.67 77.88

Average 87.09 ± 0.97 86.57 ± 0.46 87.13 ± 1.17 77.33 ± 1.28

Abbreviation: MCC, Matthews correlation coefficient.

Table 5.  The experimental results of the LCPSSMBG method on the yeast dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 88.41 85.32 92.75 80.98

2 87.78 84.78 91.58 79.98

3 89.16 85.78 92.65 80.95

4 88.76 87.15 92.00 81.60

5 90.06 88.07 93.40 83.21

Average 88.83 ± 0.85 86.22 ± 1.36 92.47 ± 0.71 81.34 ± 1.19

Abbreviation: MCC, Matthews correlation coefficient.
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Table 6.  The experimental results of the LCPSSMMF method on the human dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 89.42 90.96 88.11 81.07

2 90.89 92.74 89.82 83.41

3 90.25 93.94 88.06 82.29

4 89.87 94.16 86.15 81.75

5 91.61 95.94 88.00 84.60

Average 90.40 ± 0.86 93.54 ± 1.84 88.03 ± 1.30 82.62 ± 1.40

Abbreviation: LCPSSMMF, local coding position-specific scoring matrix with multifeatures fusion; MCC, Matthews correlation coefficient.

Table 7.  The experimental results of the PSSMMF method on the human dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 86.72 84.62 88.35 76.95

2 87.11 88.99 85.04 77.53

3 88.49 87.40 87.29 78.11

4 87.36 88.15 87.61 77.88

5 88.26 89.30 87.91 78.74

Average 87.58 ± 0.75 87.69 ± 1.90 87.24 ± 1.56 77.84 ± 0.67

Abbreviations: PSSMMF, position-specific scoring matrix with multifeatures fusion; MCC, Matthews correlation coefficient.

Table 8.  The experimental results of the LCPSSMAB method on the human dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 85.63 84.52 86.30 75.38

2 85.18 83.01 86.69 74.73

3 85.31 85.37 85.48 74.94

4 86.91 85.53 87.37 77.22

5 86.30 86.02 87.10 76.34

Average 85.86 ± 0.72 84.89 ± 1.18 86.59 ± 0.75 75.72 ± 1.04

Abbreviation: MCC, Matthews correlation coefficient.

Table 9.  The experimental results of the LCPSSMBG method on the human dataset.

Testing times Accuracy (%) Sensitivity (%) Precision (%) MCC (%)

1 85.21 84.92 87.05 76.21

2 84.67 83.46 86.75 74.01

3 86.47 87.58 85.24 76.59

4 86.98 85.46 88.06 77.34

5 88.80 88.76 88.41 80.10

Average 86.42 ± 1.62 86.03 ± 2.21 87.10 ± 1.24 76.85 ± 2.20

Abbreviation: MCC, Matthews correlation coefficient.
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significantly better than those of PSSMMF, LCPSSMLAG, 
and LCPSSMBP. As a result, these experimental results 
demonstrated that the predictive capability of LCPSSMMF 
is superior to other methods. This result clearly demon-
strated that LCPSSMMF is an effective feature extraction 
method for predicting PPIs. The success of LCPSSMMF 
can be attributed to the following several factories: (1) we 
exploited local coding based on PSSM matrix, which 

incorporates global and local feature extraction, thus 
accounting for the interactions between residues in both 
continuous and discontinuous regions of amino acid 
sequences; (2) serial multifeatures fusion can integrate mul-
tiple key feature information contained in the sequence and 
comprehensively consider the relevant information of each 
element in the sequence; and (3) the LAG method based on 
the residue conservation tendencies in the same domain 

Figure 3.  Comparison of ROC curves based on different feature extraction methods and SVM classifier on the yeast dataset. ROC indicates receiver 

operating characteristic; SVM, support vector machine.

Figure 4.  Comparison of ROC curves based on different feature extraction method and SVM classifier on the human dataset. LCPSSMMF indicates local 

coding position-specific scoring matrix (PSSM) with multifeatures fusion; ROC, receiver operating characteristic; SVM, support vector machine.
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family is similar, and the locations of the domains in the 
same family are closely related to the length of the sequence. 
The BP approach represented each protein sequence by its 
PSSM and calculated the Bigram feature using the proba-
bility information contained in PSSM. This approach can 
significantly reduce the sparsity level and helps to improve 
recognition performance. Thus, information can be effec-
tively captured from the new PSSMs by using the LAG and 
BP feature extraction methods. Therefore, the efficiency of 
the LCPSSMMF approach is clearly superior to other 
feature extraction methods.

Comparison of SVM based on other feature 
extraction methods

Meanwhile, to further evaluate the effectiveness of 
LCPSSMMF, we compared the prediction capability of 
LCPSSMMF with that of existing methods by using the 
same SVM classifier on the yeast dataset. It is shown in  
Table 10 that 4 different approaches obtained average pre-
diction accuracy between 87.36% and 91.73%, which is lower 
than that of the proposed LCPSSMMF method. Similarly, 
the sensitivity and precision of LCPSSMMF are also supe-
rior to other approaches. It is obvious from these experimen-
tal results that the proposed LCPSSMMF feature extraction 
method yielded significantly better prediction results than 
other existing approaches. All these results indicated that the 
LCPSSMMF can improve the prediction accuracy relative 
to current state-of-the-art methods.

Conclusions
In this study, we proposed a sequence-based feature extraction 
method called LCPSSMMF, which combined local coding 
based on PSSM with multifeatures fusion. First, we used a 
novel local coding method based on PSSM to build a new 
PSSM (CPSSM), which incorporates global and local feature 
extraction to account for the interactions between residues in 
both continuous and discontinuous regions of amino acid 
sequences. Second, we adopted 2 different feature extraction 
methods (LAG and BP) to capture multiple key feature infor-
mation by using the evolutionary information embedded in 

CPSSM. Finally, feature vectors were acquired by using the 
multifeatures fusion method.

The experimental results proved that the predictive capa-
bility of the LCPSSMMF is superior to that of other meth-
ods. The success of LCPSSMMF can be attributed to the 
following reasons: (1) we developed local coding based on 
PSSM, which can fully account for global and local feature 
information and the interactions between sequentially distant 
but spatially close amino acid residues. As a result, this 
method can adequately capture multiple overlapping contin-
uous and discontinuous binding patterns within a protein 
sequence and improve prediction accuracy. (2) Serial multi-
features fusion can integrate multiple key feature information 
contained in the sequence and comprehensively consider the 
relevant information of each element in the sequence. (3) The 
LAG method based on the residue conservation tendencies in 
the same domain family is similar and the locations of 
domains in the same family are closely related to the length of 
the sequence. The BP approach represented each protein 
sequence by its PSSM and calculated the Bigram feature 
using the probability information contained in PSSM, which 
can significantly reduce the sparsity level and improve the 
recognition performance. Thus, information can be effec-
tively captured from the new PSSMs by using the LAG and 
BP feature extraction methods. Therefore, the efficiency of 
LCPSSMMF approach is obviously superior to other feature 
extraction methods. This study clearly demonstrated that the 
LCPSSMMF is an effective feature extraction method for 
predicting PPIs.
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Table 10.  The prediction results of different feature extraction methods on the yeast dataset.

Methods Accuracy (%) Sensitivity (%) Precision (%)

LCPSSMMF 93.14 92.50 93.90

AC27 87.36 87.30 87.82

ACC27 89.33 89.93 88.87

GE29 91.73 85.05 97.05

LD28 88.56 87.37 89.50

Abbreviations: AC, auto covariance; LCPSSMMF, local coding position-specific scoring matrix with multifeatures fusion; LD, local descriptors; ACC, auto cross covariance; 
GE, global encoding.
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