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Abstract

We consider and analyze the influence of spike-timing dependent plasticity (STDP) on homeostatic states in synaptically
coupled neuronal oscillators. In contrast to conventional models of STDP in which spike-timing affects weights of synaptic
connections, we consider a model of STDP in which the time lags between pre- and/or post-synaptic spikes change internal
state of pre- and/or post-synaptic neurons respectively. The analysis reveals that STDP processes of this type, modeled by a
single ordinary differential equation, may ensure efficient, yet coarse, phase-locking of spikes in the system to a given
reference phase. Precision of the phase locking, i.e. the amplitude of relative phase deviations from the reference, depends
on the values of natural frequencies of oscillators and, additionally, on parameters of the STDP law. These deviations can be
optimized by appropriate tuning of gains (i.e. sensitivity to spike-timing mismatches) of the STDP mechanism. However, as
we demonstrate, such deviations can not be made arbitrarily small neither by mere tuning of STDP gains nor by adjusting
synaptic weights. Thus if accurate phase-locking in the system is required then an additional tuning mechanism is generally
needed. We found that adding a very simple adaptation dynamics in the form of slow fluctuations of the base line in the
STDP mechanism enables accurate phase tuning in the system with arbitrary high precision. Adaptation operating at a slow
time scale may be associated with extracellular matter such as matrix and glia. Thus the findings may suggest a possible role
of the latter in regulating synaptic transmission in neuronal circuits.
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Introduction

Spike timing dependent plasticity (STDP) is one of the simplest

yet key mechanisms enabling functional adaptation in neuronal

systems (see e.g. [1] and references therein). Broadly speaking, if

we consider two synaptically connected cells, STDP stands for a

change in synaptic efficacy as a function of timing between pre-

and post- synaptic events. If the pos-synaptic event occurs within a

given interval of time from the onset of the pre-synaptic one then

efficacy of synaptic transmission enhances. If, however, the

opposite takes place, i.e. a post-synaptic event is followed by pre-

synaptic spike, then the efficacy decreases. Despite overall

apparent simplicity of the phenomenon, it allows to link higher

cognitive functions such as learning and memory with molecular

and cellular processes underlying signal transmission in neuronal

networks. Various interesting aspects of STDP in relation to

bidirectional plasticity and bistability have been discussed and

analyzed in the literature [2–4]. In addition, as it has been shown

in [5], STDP may be involved in the formation of metaplasticity

[6]. With respect to the function, STDP is a component of

plausible models of selective attention [7] and working memory

[8]. At the lower scale of functional organization, STDP may

trigger long-term potentiation (LTP) or depression (LTP) [9–12].

Finally, STDP is believed to play a role in phase coding – a way of

representing information about stimuli in terms of the relative time

moments of spike occurrences.

Many forms of STDP have been discovered to date [13], and a

common knowledge is that STDP is supported by multiple

molecular cascades inducing changes in both postsynaptic spines

and in presynaptic terminals. Calcium flux through NMDA

receptors located in spines [14] is an example of mechanisms

directly responsible for postsynaptic changes. In this mechanism,

excitatory postsynaptic potentials preceding back-propagating

action potentials elicit calcium influx through postsynaptic NMDA

receptors. Higher calcium concentration, in turn, facilitates

evoking of postsynaptic spikes in response to the presynaptic ones.

Changes in presynaptic terminals are observed, for example, in the

hippocampal mossy fiber synapses [15]. STDP-like phenomena

can also occur due to the modulation of synaptic transmission by

endocannabinoid-mediated retrograde cascades. These cascades,

once activated, trigger the activation of presynaptic receptors

[16,17].

Large diversity of the ways in which STDP may manifest itself

in empirical observations has lead to a broad range of

mathematical models of the phenomenon. These models, although

phenomenological, are widely used in computational and
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theoretical studies (see e.g. [18–21]). In the majority of these

models the principal factor determining synaptic efficacy is the

synaptic weight. The latter is described by a dynamic variable of

which the value changes in response to post-to-presynaptic spike

timing. Increments/decrements of the weights are often associated

to LTP/LTD respectively. One of the outcomes of such activity-

dependent modifications of the synaptic weights is that connec-

tions between individual cells may grow or decay over time by a

relatively large amount. This facilitates emergence of neuronal

clusters that fire together, up to a tolerance margin.

A particular form of such firing activity in which clusters of

neurons produce time-locked spiking sequences has recently received

substantial attention in the literature [22–25]. Relative time lags

between spikes in these sequences are robust; the sequences can

repeat spontaneously, or they can be generated in response to a

certain stimulus. A number of theoretical frameworks have been

proposed to explain emergence and persistence of these precise

firing patterns with different inter-spike timing, see e.g. [23] and

related notions of synchronized chains (synfire chains) and

polychronous groups. In these frameworks STDP, linked to the

post-to-presynaptic timing, is advocated as a mechanism that is

directly responsible for the emergence of persistent spike sequences

within a given topological substrate. Even though computational

evidence suggests that this may indeed be the case, rigorous

correspondence between stimuli, particular STDP-based signaling

pathways, and their stability is not yet fully understood. In

particular, the question of how STDP may ensure precise timing

of spiking sequences with arbitrary lags between spikes is still open.

Finding an answer to this question is the main goal of our current

work.

In this paper we investigate dynamic properties of a pair of

neural oscillators coupled via synaptic STDP-enabled connections.

Our results suggest that for this class of systems accurate tuning of

post-to-presynaptic spike timing to a given, and broadly arbitrary,

value is indeed possible via a suitable STDP mechanism. This

mechanism can be viewed as a feedback facilitating or depressing

synaptic transmission ‘‘on demand’’, depending on timing of

stimulation. In contrast to conventional models of STDP in which

spike-timing modulates weights of synaptic connections, we

consider a model of STDP in which spike-timing influences

internal state of pre- or post- synaptic neurons. Such internal state

is, in the case of our model, an excitation parameter enhancing/

suppressing spike generation. This feature of spike-dependent

potentiation is well-documented phenomenologically [26]. We

show that coarse tuning of spike timing is readily achievable in a

pair of interconnected neural oscillators equipped with such STDP

mechanism. Further fine-tuning of spiking patterns can be

achieved via additional slow fluctuations of the base line of

excitation thresholds.

The main motivation for choosing excitation-driven STDP

mechanisms rather than conventional models of STDP (i.e. the

ones modulating the weights of connections) is that we would like

to be able to deal with realistic cases of neurons having different

natural frequencies. As a general rule, the larger the difference

between natural frequencies of neural oscillations the larger should

be the values of synaptic weights if accurate time-locking of spikes

is desired, cf. e.g. [21,27]. This, however, may conflict with the

standard assumption demanding that coupling between elements

in the system is weak. Thus regulatory mechanisms complemen-

tary to the ones modulating the values of synaptic weights are

needed for ensuring precise locking of spike sequences in systems

of neurons with inherently non-identical frequencies of spike

generation. STDP-driven modification of excitation variables is a

plausible candidate for this role.

For the sake of numerical and analytical tractability we focus

predominantly on a simplified spike transmission model using a

pair of neuronal oscillators coupled via excitatory synaptic

coupling. Synaptic transmission in the model is unidirectional

and instantaneous: a spike in the postsynaptic neuron is evoked as

soon as the excitatory postsynaptic potential (EPSP) exceeds

certain threshold. As a model for pre- and post-synaptic neurons

we use Rowat-Selverston neuronal oscillator [28]. This model is

computationally efficient, yet being a reduction of Hodgkin-

Huxley classical model, it bears a fair degree of biological realism.

The model is typically used in computational studies of

synchronization and phase-locking in networks of synaptically

coupled cells [29]. Here we also employ this model for studying

phase-locking behavior of neurons with STDP-enabled synaptic

connections.

The paper is organized as follows. Section Methods contains

description of the Rowat-Selverston neuronal oscillator and also

specifies the class of synaptic coupling considered in the paper. In

addition, it presents the concept of phase spiking maps which is used

in both numerical and analytical parts of the study. Definitions of

specific STDP mechanisms are provided in Results. This is followed

by quantitative and qualitative description of the dynamics such

mechanisms may induce in the coupled system. The results are

summarized and discussed in a brief Discussion. Technical derivations

and other auxiliary materials are presented in Appendix S1.

Methods

Synaptically coupled neuronal oscillators
We studied dynamical properties of a pair of spiking neuronal

oscillators coupled by an excitatory synapse [28,29]. Each

neuronal oscillator in this system is a computationally efficient

reduction of standard Hodgking-Huxley equations; oscillators of

this type have been used widely in computational neuroscience in

the context of synchronization [29]. Since we did not intend to

focus on any specific molecular mechanisms of synaptic transmis-

sion but rather were concerned with mere dynamics of spikes,

picking this model in favor of other alternatives strikes a plausible

balance between biological realism and overall computational

efficiency. Mathematically, the model can be expressed as follows:

tm
dVpre

dt
~Ifast(Vpre){wpre{zpre{DI

tw(Vpre)
dwpre

dt
~w?(Vpre){wpre,

tm
dVpost

dt
~Ifast(Vpost){Isyn(Vpost,Vpre){wpost{zpost,

tw(Vpost)
dwpost

dt
~w?(Vpost){wpost,

zpre~Ipre,zpost~Ipost:

8>>>>>>>><
>>>>>>>>:

ð1Þ

Subscripts pre,post in (1) label variables governing dynamics of

presynaptic and postsynaptic neurons, respectively. Variables Vpre,

Vpost stand for the corresponding membrane potentials. Param-

eters Ipre, Ipost model constant currents determining equilibrium

depolarization levels; DI is the difference in depolarization (hence,

natural spiking frequencies) between two neurons. The function

Ifast(V )~{Vz tanh (gfastV )

models fast currents across cell membrane, and gfast is the

conductance of the fast voltage-dependent inward current,

Variables wpost, wpre are the slow recovery variables, and

w?(V )~gslowV is the voltage-dependent activation function;

gslow is the corresponding conductance.

Adaptive and Phase Selective STDP
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Time scales of the spikes are determined by parameter tmw0
and the function

tw(V )~t2z
t1{t2

1z exp {V
kt

:

The function tw(V) is the voltage dependent characteristic time of

the slow current, and t1, t2, kt are parameters. We consider the

case when t1,2&tm and tw(V )&tm, and t2wt1. This ensures that

duration of individual spikes is small relative to the inter-spike

intervals.

Synaptic current in (1) is implemented in accordance with the

following instantaneous synaptic transmission model:

Isyn(Vpost,Vpre)~gsynS?(Vpre):(Vpost{Vsyn), ð2Þ

where gsyn is the maximal synaptic conductance reflecting synaptic

strength. Function

S?(Vpre)~
1

1z exp
Hsyn{Vpre

ksyn

ð3Þ

defines the amount of available neurotransmitter, and parameters

Hsyn and ksyn characterize the midpoint and slope of synaptic

activation, respectively. Parameter Vsyn is associated with the

synaptic reversal potential; it controls the sign of synaptic currents

induced by spikes at the presynaptic neuron. In this model, the

synapse is excitatory if Vsynw0. Hence, because we consider the

case when the neurons are connected by an excitatory synapse, we

set Vsynw0. The values of all relevant parameters of the model are

provided in Table 1.

When gsyn~0 pre- and post-synaptic oscillators are uncoupled,

both producing sequences of pulses with constant, albeit different,

firing rate. Periodic oscillations in each uncoupled compartment

appear through the supercritical Andronov-Hopf bifurcation

[30,31]. In terms of Eqs. (1), such bifurcation occurs when

parameter DI reaches some critical value. This mimics depolar-

ization of the membrane by a constant current injection.

Dependence of the spiking rates on the depolarization levels is

illustrated in Fig. 1. In Fig. 1, labels I1 and I2 mark maximal and

minimal values of DI for which the dynamics of both

compartments is oscillatory. Note that, in principle, there are

very narrow intervals to the left of I2 and to the right of of I1 in

which low-amplitude oscillations exist. These are not shown in the

figure. If the values of DI are outside of a small neighborhood of

this interval then the system is in the excitable mode. If DI is

within the interval ½I2,I1� then the frequency curve, f (DI), is a

strictly monotone and continuous function. Thus in this interval

there is a one to one correspondence between the depolarization

parameter DI and the spike firing rate, f .

Spiking phase map
In order to characterize and analyze post- to presynaptic timing

in (1), including cases when zpre and zpost are varying with time, we

introduce spiking phase map [32]. The map itself is constructed as

follows. First, we define the relative spiking phase, W, as:

W~
tpost{tpre

Tpre

, . . . 0vWv1,

where tpre is the time corresponding to occurrence of a presynaptic

spike, and tpost is the time of the first postsynaptic spike generated

in response to the presynaptic one; Tpre is the period of oscillations

in the presynaptic neuron. Variable W, therefore, may be viewed

as a sample of relative phase of the oscillators that is measured at

the moments of time when the post-synaptic oscillator fires.

Second, having defined a sequence of W over time, we determine

the spiking phase map as follows:

T : Wi?Wiz1, i~1,2, . . . ,

Wi~
tpost(i){tpre(i)

Tpre
,

ð4Þ

where i is the index of transmitted spikes in the sequence.

It was shown in [32] that in the case of constant zpre, zpost

transformation (4) may be modeled by a one-dimensional point

map, Wiz1~T(Wi), where T is a piece-wise continuous function

on the interval 0vWƒ1. Stable fixed points of this map

correspond to the spike synchronization mode 1 : 1. Spiking

phase in this mode is locked to the value of the fixed point. Note,

that the spiking phase map can be also viewed as a discrete version of

the pulse coupled equations. These are typically used in the literature

on the analysis of weakly coupled neuronal oscillators for

describing dynamics of relative phases in the system. The function

T(W) in this context is often referred to as the phase response curve

(PRC). The advantage of using discrete spiking phase map instead

of its continuous-time counterpart is that the discrete map, (4), is

defined for any values of coupling strengths, provided that both

systems oscillate.

Table 1. Parameters of model (1).

Parameter Values

Ipre,Ipost,DI 0.5, 0.5, [21.170.2]

gfast , gslow 2.0, 2.0

tm , t1 , t2 , kt 0.16, 5.0, 50.0, 0.05

Vsyn , Hsyn , ksyn , gsyn 1.0, 0.0, 0.16, [0.071.0]

doi:10.1371/journal.pone.0030411.t001

Figure 1. Spike oscillation frequency (e.g. natural frequency) as
a function of the level of depolarization in single neuron
model described by Eqs. (1). The values of frequency f are
computed for the dimensionless model.
doi:10.1371/journal.pone.0030411.g001
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Figure 2 shows typical shapes of the PRCs for (1). In the absence

of coupling relative phase shifts increase in a monotone fashion

(Fig. 2A). Adding a small coupling alternates the dynamics and,

respectively, PRCs. Figure 2 B shows the spiking phase map near

the tangent or z1 bifurcation. There appears to be a region (a

ghost) in the figure which is pulling and trapping, for quite a long

period of time, the values of Wi. The effect is illustrated in more

detail in Fig. 3A. Notice that the system’s state may remain in a

neighborhood of the synchronous mode for a rather long time. In

the phase space of Eqs. (1) this corresponds to solutions near

periodic or quasi-periodic orbits on the invariant torus. Further

increase of gsyn leads to appearance of a stable fixed point. The

fixed point corresponds to nearly synchronous firing (i.e. with

almost zero phase lags) of pre and post- synaptic oscillators

(Fig. 2C,D). An example of such a solution of (1) is shown in

Fig. 3B.

Dependence of the spiking phase map for (1), and hence the

dynamics of (1), on other parameters of the system is illustrated

with the one-parameter bifurcation diagrams provided in Fig. 4.

Fig. 4A shows the values of Wi when the coupling strength, gsyn, is

fixed but parameter DI is varying. In agreement with standard

intuition, the presence of sufficiently strong synaptic coupling

results in nearly synchronous oscillations if the natural frequencies

mismatch, DI , is relatively small. When the value of DI increases

synchronous 1 : 1 mode disappears. Instead of the synchronous

mode stable periodic trajectories emerge (Fig. 4B). These

correspond to periodic motions on a torus in the phase space of

(1). According to the figure (Fig. 4A), periodic modes with different

rotation numbers may be followed by intervals of complex

(quasiperiodic or chaotic) dynamics.

Results

Model of STDP
We propose a phenomenological model of synaptic transmission

in a pair of spiking neuronal oscillators supplied with an adaptive

STDP regulatory mechanism. A diagram describing this mecha-

nism is schematically presented in Fig. 5. The diagram shows two

possible ways in which the timing of spikes may influence state of

synaptic coupling.

The first alternative is illustrated in Fig. 5A. Timing of pre- and

post-synaptic spikes is affecting the state of the presynaptic neuron.

Such change of the neuron’s state is accounted for in the model by

a phenomenological variable zpre. Increasing/decreasing the value

of zpre facilitates/depresses transmission of stimuli, respectively.

Such spike-timing-modulated signal transmission in the model acts

as a feedback relating timing of pre-to-post synaptic spikes with the

neuron’s excitability parameter zpre.

Dynamics of this phenomenological variable, zpre, is driven by

an STDP function curve of which the shape depends on specific

molecular mechanisms. Here, for illustrative and computational

purposes, we model this curve by a simple function resembling a

truncated sinusoid (Fig. 5C). This STDP curve determines

dependence of zpre on relative time differences between post-

and presynaptic spikes (e.g. relative spiking phase). These relative

time differences are denoted by W (see Methods).

Figure 2. PRC curves for different coupling strengths, DI~{0:05. A: gsyn~0. Relative phase shift is monotonically increasing as it is shown
by arrows. The increase is linearly proportional to the frequency mismatch, DI . B: PRC for small value of the synaptic coupling, gsyn~0:008.
Monotonically increasing phase is pulled towards the abscissa in the vicinity of the origin. C: Synchronization for gsyn~0:04. Stable fixed point
emerging from the tangent (z1) bifurcation defines the value of the phase locked with a small synaptic transmission delay. D: Synchronization for
the increased coupling strength, gsyn~0:1. The fixed point is close to zero.
doi:10.1371/journal.pone.0030411.g002
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In addition to the relative spiking phase, W, the model accounts

for an optional phase offset, Wc. The latter can be added to or

subtracted from the value W. The origins of this extra variable are

many: it can account e.g. for the influence of delays inherent to

signal transmission in neural circuits; it may also model external

inputs to the presynaptic neuron. In the context of our present

work we will view variable Wc as a reference relative phase: the

relative phase between spikes which is to be attained asymptot-

ically. In addition to the STDP curve and the phase offset Wc, we

also introduce a regulatory parameter lpre. This extra parameter

determines the baseline to which the values of zpre relax in absence

of stimulation. In the model it accounts for small and relatively

slow fluctuations of extracellular medium. One can speculate that

these fluctuations could be related to glia and matrix influence on

synapses - the subject which has been discussed in many empirical

studies [33]. The latter fluctuations affect the function of STDP

and thus they can also be related to metaplasticity [6].

The second alternative is illustrated in Fig. 5B. Here spike-timing

affects the state of the postsynaptic neuron. Spikes arriving to

terminals of the presynaptic neuron cause the release of a

neurotransmitter. The neurotransmitter reaches the postsynaptic

neuron, and this triggers generation of postsynaptic potentiation

(PSP) with latency time dsyn%Ts (Ts is the characteristic time scale

of the spike train, e.g. the period of oscillations). In this model PSP,

in turn, triggers generation of the response spike (e.g. action

potential). The latter event is then detected in the postsynaptic

terminal via a chemically or electrically back-propagating signal.

Similarly to the previous (presynaptic) case there is a state variable

Figure 3. Oscillations in synaptically coupled oscillators Eqs. (1). Upper panel shows the membrane potentials in presynaptic (dashed curve)
and in postsynaptic neurons (solid curve), respectively. The lower panel shows time evolution of the relative spiking phase. A: Phase pulling effect.
Long lasting quasi-synchronous signals are alternating with phase reset intervals. Parameter values: gsyn~0:008,DI~{0:05. B: Synchronization and
phase locking due to the excitatory synaptic coupling. Parameter values:gsyn~0:1,DI~{0:05.
doi:10.1371/journal.pone.0030411.g003

Figure 4. Dynamics of spiking phase map (4) for oscillators with different natural frequencies. A: Bifurcation diagram illustrating
dependence of the relative spiking phase on frequency mismatch. Parameter values: gsyn~0:01. B: Example of periodic trajectory of the spiking phase
map which corresponds to 2 : 3 spike frequency ratio.
doi:10.1371/journal.pone.0030411.g004
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zpost whose increase or decrease facilitates potentiation or

depression, respectively. Other parameters of this mechanism

such as Wc and lpost are similar to the case discussed in the first

alternative.

Let us now formulate the STDP models discussed above

mathematically. Consider a pair of spiking neuronal oscillators

coupled by an excitatory synapse (see Equations (1) in Methods)

[28,29]. The original equations are extended according to the

circuitry shown in Fig. 5. Presynaptic STDP feedback (shown in

Fig. 5 A) is governed by the following equations:

dzpre
dt

~apre(Ipre{zpre){kpreG(W)zlpre,

zpost~Ipost:

(
ð5Þ

Similarly, postsynaptic STDP has the form:

dzpost
dt

~apost(Ipost{zpost){kpostG(W)zlpost,

zpre~Ipre:

(
ð6Þ

In essense, Eqs. (5) and (6) are additional currents in the

presynaptic and postsynaptic neurons, respectively. The current

are dependent on spike-timing. Parameters apre, apost stand for the

time scales of the polarization’s relaxation, and G(W) accounts for

the STDP curve. Parameters kpre, kpost are gains. Function G is in

the right-hand side of (5), (6) is assumed to be bounded, sufficiently

smooth, and ‘‘1’’-periodic. In particular, the following is supposed

to hold:

G(W) [ C2

G(W)~G(Wz1)
dG
dW (W~Wc)w0:

ð7Þ

Variable Wc in (7) is the reference phase, 0vWcv1. In the present

work, for simplicity, we select the function G as follows:

G(W)~ sin (2p(W{Wc)): ð8Þ

In the next section we analyze dynamics of the combined system

(1), (5) and (6) when the values of lpre, lpost are fixed, and natural

frequencies of pre- and post-synaptic oscillators are not identical.

STDP with presynaptic feedback
Consider system (1), (5), and (8). Dynamics of this configuration

for kprew0 is illustrated in Figure 6A. One can observe that, after

a relatively short transient behavior, the relative phase, W, locks

near the reference value, Wc. According to the figure, the transient

looks like damped oscillation relaxing asymptotically to a stable

fixed point. When the relative phase locks presynaptic neuron

changes its depolarization level (Fig. 6A–C, lower panel). Notice

that locking occurs for both zero and nonzero synaptic coupling.

Figure 6B illustrates dynamics of the system in the phase pulling

mode (see Methods, Fig. 2B). If the coupling between cells is made

relatively strong then presynaptic STDP feedback may destroy the

in-phase synchronization mode and switch the system into the

phase-locked mode determined by the value of reference phase

(Fig. 6C).

The values at which relative phase locks are determined by the

values of the control variable, zpre, at the fixed point. The values of

zpre and relative phase at the fixed point (denoted by z�pre and W�

respectively) can be determined from (5):

{apre(Ipre{z�pre){kpreG(W�)~0: ð9Þ

Hence, according to (8) the value of phase locking mismatch, dW,

can be estimated as follows

Figure 5. Schematic representation of the adaptive STDP phase
locking. Timing between the postsynaptic and the presynaptic spikes
is modeled by the spiking phase, W. The difference between W and Wc ,
where Wc is some reference value that might be induced by another
regulatory inputs, activates the feedback mechanism, ‘‘STDP’’; the latter
activates molecular cascades changing the state, denoted by z, of the
presynapse and/or postsynapse. Direct STDP feedback is modulated by
fluctuations of extracellular medium, l (e.g. the metaplasticity), giving
rise to the adaptation, i.e. fine tuning of the phase-locked state. A:
Presynaptic STDP feedback. B: Postsynaptic STDP feedback. C: STDP
curves used in simulations. Positive half-period of the G-function
indicates potentiation by the increase of presynaptic frequency and/or
depression by the decrease of postsynaptic frequency.
doi:10.1371/journal.pone.0030411.g005
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dW~W�{Wc~{
1

2p
arcsin

apre(Ipre{z�pre)

kpre

: ð10Þ

The larger is the value of kpre, the higher is the precision of phase

locking. Notice, however, that if the feedback gain, kpre, exceeds a

critical threshold, the STDP phase locking regulatory mechanism

described above may fail. Loss of stability of the fixed point is a

possible explanation for this observation. For extremely large

values of kpre one can observe an ‘‘overregulation’’ catastrophe

(Figure 6D). In short, STDP suppresses presynaptic neuron so

hard that the neuron is eventually driven into excitable mode. This

is shown in the upper panel of Fig. 6D. The value of zpre exceeds

the critical value, I1 (see Methods), and the presynaptic neuron

becomes inhibited: no spikes are evoked.

In order see the range of parameters for which presynaptic

STDP can be considered as a viable phase locking mechanism we

calculated numerically dependence of W� on kpre (Fig. 7). When

kpre is small the relative phase W is not settling to a particular

constant value; it ‘‘scans’’ through the whole interval of admissible

values, ½0,1). If kpre is increased beyond a threshold value the

relative phase locks. Increasing the value of kpre further results in

locking of relative phase in a neighborhood of the reference, Wc, as

predicted by (10).

With regards to the influence of STDP model (5) on behavior of

the coupled system an interesting phenomenon can be observed:

in-phase oscillations become apparently stable at some critical

value of kpre (lower left corner of the plot). In other words,

presynaptic STDP facilitates existing synaptic connections by

providing synaptic efficacy equivalent to stronger synaptic

coupling (transition from Fig. 2B to Fig. 2C in Methods). For

larger values of kpre relative phase W jumps to a neighborhood of

the reference phase Wc. According to the figure, increments of kpre

Figure 6. Dynamics of two neuronal oscillators with presynaptic control. Upper and the lower panels show the evolution of the relative
phase shift (in A–C) and control variable, zpre, respectively. A: No synaptic coupling. Parameter values: apre~0:01,kpre~0:002,DI~{0:05,gsyn~0,Wc~0:6.
B: Phase pulling mode. Parameter values: apre~0:01,kpre~0:002,DI~{0:05,gsyn~0:008,Wc~0:6. C: Switching the phase locking mode from the
unsupervised mode (defined by the synaptic coupling) to the one enslaved by the reference phase. Parameter values: apre~0:01,
kpre~0:002,DI~{0:05,gsyn~0:01,Wc~0:6. D: Failure of the phase control due to overregulation effect. The upper panel shows membrane potentials
in two neurons. Parameter values: apre~0:01,kpre~0:003,DI~{0:05,gsyn~0:008,Wc~0:6.
doi:10.1371/journal.pone.0030411.g006

Figure 7. Phase control bifurcation diagram. Values of the
outcome phase W driven by Eqs. (5) versus feedback strength, kpre.
Parameter values: apre~0:01,DI~{0:05,gsyn~0:008,Wc~0:6.
doi:10.1371/journal.pone.0030411.g007
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(in a relatively broad interval) result in improvements of the phase

locking accuracy: relative phase W approaches Wc with the growth

of kpre. There is, however, a critical value of kpre~k� at which the

fixed point becomes neutrally stable. Further increments of kpre

result in destabilization of the fixed point.

In order to assess stability of the relative phase dynamics we

invoke the idea of spiking phase maps (see Methods). Here the

one-dimensional spiking phase map discussed in Methods is

extended as follows:

Tpre :

Wi?Wiz1,

zpre(ti)?zpre(tiz1),

Tpre(i)?Tpre(iz1):

8><
>: i~1,2, . . . : ð11Þ

Variable Tpre(i) is the period of presynaptic spikes; it is now time-

varying due to the STDP feedback. Since there is a functional

dependence between Wi and Tpre(i), map (11) can be approxi-

mated by a two-dimensional one describing dynamics of the

variables (Wi(Tpre(i)),zpre(ti)).

Investigating dynamics of (1), (5), (8) numerically we have found

that the critical gain k� corresponds to the neutral stability of W�

with zero real part of its complex conjugate multipliers. Therefore,

Neimark-Saccer bifurcation takes place at kpre~k� [30]. Figure 8

shows trajectories of the spiking phase map in the vicinity of k�.
One can see from this figure that if kprevk� then variables

(Wi,zpre(ti)) travel towards the stable fixed point (see Figs. 8 A and

C). If, however, kprewk� then (Wi,zpre(ti)) move in the opposite

direction (see Figs. 8 B and D), and the fixed point appears to be

unstable. This behavior indicates that the bifurcation is subcritical

(with positive first Lyapunov coefficient). Thus, for kprewk�

relative phase W oscillates with a growing amplitude (Fig. 8 D).

One can also observe that for kprewk�, which are some distance

apart from k�, variable zpre (after a short transient) leaves the

domain corresponding to the oscillatory mode (Fig. 1 in Methods).

This, in turn suppresses all oscillations in the presynaptic neuron.

In the bifurcation diagram in Fig. 7 a ‘‘cloud’’ of points emerges

when kpre approaches the critical point k� from the left. The size of

this cloud grows with kpre in a seemingly continuous way. This

contrasts with our earlier remark about that the bifurcation is

subcritical. Notice, however, that if kpre approaches k� from the

left, real parts of the linearized map’s eigenvalues are becoming

negligibly small, and also the convergence rate to the fixed point is

asymptotically decreasing to zero. Since numerical simulations

were run over given and finite interval of time, the amplitude of

this cloud, i.e. deviations of W from the fixed point at the end of the

simulation, depends explicitly on the convergence rate of the map.

The smaller is the convergence rate the higher are the chances that

deviations of W from Wc are larger at the end of the simulation.

This is exactly what we observe in the figure.

STDP with postsynaptic feedback
Consider the second mechanism of the postsynaptic STDP

feedback – the one in which timing of pre- and post- synaptic

events changes excitability of the postsynaptic neuron (Fig. 5A). In

this case dynamics of the presynaptic neuron is not affected. Hence

it is plausible to assume that the presynaptic neuron generates a

sequence of spikes with a fixed, albeit unknown, frequency.

Lest us investigate dynamics of relative phase for this system. As

before, we approach the task by constructing and analyzing the

corresponding phase spiking map (see (4), Methods). Given that

the value of Tpre is constant, the map is described as follows:

Tpost :
Wi?Wiz1,

zpost(ti)?zpost(tiz1)

�
i~1,2, . . . : ð12Þ

Yet, for the sake of convenience of illustration we will only present

its one-dimensional projections on the relative phase coordinate,

W.

Similarly to what has been observed for the first alternative,

STDP feedback stabilizes relative phase in a neighborhood of the

reference value. Corresponding PRCs are shown in Fig. 9A. The

Figure 8. The dynamics of map (11) in the vicinity of the Neimark-Saccer bifurcation point, kpre~k�. A and C. Phase plane dynamics and
the oscillation profile near stable fixed point for kpre~0:0054. B and D. Phase plane dynamics and the oscillation profile near unstable fixed point for
kpre~0:0057. Parameter values: apre~0:01,DI~{0:05,gsyn~0:008,Wc~0:6.
doi:10.1371/journal.pone.0030411.g008
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figure suggests presence of a stable fixed point, W�. If one increases

the value of kpost the fixed point W� looses stability through the

period doubling bifurcation. To the right of this critical point

behavior of the system resembles a route to chaos through the

period doubling cascade (Fig. 9B) [30]. In contrast to the

previously considered configuration (presynaptic STDP feedback),

in this case relative phase remains in a vicinity of the fixed point

even if the fixed point itself becomes unstable. The values of

relative phase, however, appear to be attracting to a stable 2m-

periodic orbit or to a set with a structure of a chaotic attractor.

Corresponding plots of the evolution of W and zpost are shown in

Fig. 10A,B. Further increments of kpost lead to a catastrophe of the

attractor. The catastrophe occurs because the values of zpost

become so large that oscillations in the postsynaptic neuron

disappear (see Fig. 1, Methods).

The fact that a set on which the values of W project resembles an

object looking strikingly similar to a chaotic attractor suggests a

rather unexpected function of the STDP mechanism considered

here. The function is that such STDP-induced dynamics may offer

a natural facility for encoding of information in the system.

Indeed, if this set is a chaotic attractor then it comprises of infinite

number of orbits with varying periods. Thus, in principle, a rich

set of spiking sequences can be activated in such a system if an

appropriate stimulus arrives.

Bifurcation diagrams characterizing dynamics of the system are

shown in Fig. 10. When the values of kpost are relatively small the

picture is similar to the case of presynaptically-driven feedback

(Fig. 7). If we increase the value of kpost (up to the first critical

point), relative phase will eventually lock to a value corresponding

to nearly in-phase oscillations. Again, the phenomenon is very

similar to the case of presynaptic configuration: STDP facilitates

in-phase oscillations even if the synaptic connection is relatively

week. If kpost is increased even further (until the second critical

value) relative phase locks near the reference Wc. Further

increments of kpost result in gradual improvements of accuracy

until, however, kpost arrives at the third critical value. At this point

the period doubling bifurcation occurs in the spiking phase map

(12). Increasing the value of kpost beyond this critical point gives

rise to the bifurcation cascade. The latter, in turn, leads to

emergence of chaotic-looking dynamics [30,31] of the relative

phase (Fig. 9B, Fig. 10B). This state, however, is also limited in

terms of the range of admissible values of kpost. If kpost becomes

too large, i.e. it exceeds the forth critical value, oscillations in the

postsynaptic neuron disappear (Fig. 11A).

In addition to numerical simulations we analyzed stability of the

fixed point analytically. The results are presented in Appendix S1

and also are illustrated with stability diagrams in Fig. 10. We have

Figure 9. The PRCs for the one-dimensional approximation of the spiking phase map (12). A: Appearance of the stable fixed point for
kpost~0:002 indicating phase locking mode in the signal transmission with reference phase Wc~0:6. Grey curve shows the PRC without control. B:
The PRC for large control strength, kpost~0:0063, indicating the appearance of chaotic attractor. The dots show the trajectory of the two-dimensional
map (12). Parameter values: apost~0:01,DI~{0:05,gsyn~0.
doi:10.1371/journal.pone.0030411.g009

Figure 10. Evolution of spiking phase and control variable zpost

for postsynaptic control. A: Phase locking. Parameter values:
apost~0:01,DI~{0:05,gsyn~0,kpost~0:002. B: Chaotic oscillation of
the spiking phase near the reference phase. The strength of the
feedback is changed in two steps marked by the arrows. Parameter
values: apost~0:01,DI~{0:05,gsyn~0:00,kpost~0:002,0:0063.
doi:10.1371/journal.pone.0030411.g010
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shown that when the system is in the phase locking mode the fixed

point is exponentially stable. Hence, the dynamics persists under

small perturbations. A somewhat more detailed, albeit complicat-

ed, picture emerges from numerical simulations. In particular,

Figure 12 illustrates how fluctuations of the depolarization level,

DI , may affect dynamics of phase locking for a fixed value of kpost.

As expected, there is a frequency band in which spiking phase

remains locked. Phase locking error dW grows if the frequency

mismatch, DI , increases in absolute value. When the values of jDI j
become relatively large synchronous mode disappears, and

different periodic, quasiperiodic and chaotic motions emerge.

Qualitatively, this resembles the case of direct synaptic coupling

(see Methods, Fig. 4). Similar scenarios were observed in the

system with postsynaptic feedback (6).

Adaptive phase-locking STDP
So far we considered two spike-timing regulatory mechanisms

ensuring stable phase locking in the system. According to these

results, both mechanisms guarantee locking of relative phases of

oscillations a vicinity of the reference subject to the choice of

parameters. Yet, as one can see from these results too, phase

locking occurs with an error. Dynamics of the system in a

neighborhood of the phase locking state, e.g. for the case of

postsynaptic feedback, satisfies the following inequality (see

(S1.12), Appendix S1)

Wiz1{Wc

ziz1{z�

����
����

ƒb(Tpost(i))
Wi{Wc

zi{z�

����
����

zc: max
t[½tpost(i),tpost(i)zTpost(i)�

l�{lpost(t)
�� ��,

l� ~{apost(Ipost{f {1(v)),

where b(:) is a decreasing strictly monotone function such that

limT?? b(T)~0, v is the frequency de-tuning parameter (see

(S1.1)–(S1.3) in Appendix S1), Tpost(i) is the interval between

spikes at tpost(iz1) and tpost(i), zi stands for zpost(tpost(i)), z� is the

value of zpost at the equilibrium when lpost(t)~l�,

apost(f
{1(v){Ipost){lpost(t) is the term characterizing the

amplitude of the relative phase fluctuations around desired values

at i??, and v is the natural frequencies mismatch.

According to this, (see also (10) and (S1.11) in Appendix S1) if

parameters of the STDP law are chosen such that

apost(f
{1(v){Ipost){lpost(t)~0 then the relative phase variable,

W, (in a neighborhood of the locking state) locks to the the

reference Wc asymptotically. The problem is, however that the

value of natural frequencies mismatch, v, is unknown a-priori.

Figure 11. Bifurcation and stability diagrams for the case of postsynaptic control. Left panel: phase control bifurcation diagram. Values of
the outcome phase W driven by Eqs. (6) versus feedback strength, kpost. Parameter values: apost~0:01,DI~{0:05,gsyn~0:008,Wc~0:6. Right panel:
stability diagram derived from the local analysis of the fixed points of (S1.5) in Appendix S1. Blue line shows the values of js1j, js2j (eigenvalues of the
Jacobian of (S1.5), see also (S1.9)) as functions of kpost for Tpost~50. Green line depicts the values of js1j, js2j for Tpost~35. Other parameter values
were set as follows: apost~0:01, f0~0:025, G0~2p, gsyn~0. Blue and green circles indicate critical values of k�post(Tpost), for Tpost~50 and Tpost~35
respectively, at which the fixed point W�,z� becomes unstable. Notice that stability diagram in the right panel (derived analytically) is largely
consistent with the bifurcation diagram in the left panel (obtained by means of numerical simulations). Slight inconsistencies are evident in the area
where kpost are small. These inconsistencies are due to that 1) our analytical derivations ignore the influence of synaptic coupling, Isyn, and that 2) the
fixed point may disappear when kpost small.
doi:10.1371/journal.pone.0030411.g011

Figure 12. Spiking phase locking modes for increasing natural
frequency mismatch. Illustration for the case of presynaptic control
(5) Parameter values: apre~0:01,kpre~0:003,gsyn~0:008,Wc~0:6.
doi:10.1371/journal.pone.0030411.g012
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Thus annihilating the error by choosing the values of apost, Ipost (or

apre, Ipre for the presynaptic feedback) is not a viable option. On

the other hand, the possibility for minimizing the error by

assigning large values to kpost (or kpre) is also limited. This is

because, as we have shown analytically (see (S1.7), (S1.9) in

Appendix S1) and demonstrated numerically (Fig. 9B), increasing

the values of kpost leads inevitably to the loss of attractivity of the

fixed point.

Nevertheless, as we illustrate below, asymptotic reduction of the

phase-locking error to zero can be achieved via adjustments of lpre

or lpost according to a simple adaptation mechanism. This

adaptation mechanism is in essence a slow fluctuation of the

excitation thresholds. The frequency of these fluctuations increases

if absolute values of relative phase are far away from the desired

ones. The frequency slows down when relative phase approaches

its desired value, i.e. the reference Wc.

The most simplest model of such fluctuations is, perhaps, the

following:

lpost ~lminz
lmax{lmin

2
(1{ sin (f))

_ff ~cjW(ti){Wcj, c [Rw0,lmaxwlmin,lmax,lmin [R,

According to [34,35] (see also Appendix S1, (S1. 16) and

Proposition 1) such adaptation scheme ensures that

limi?? Wi{Wc~0 provided that the value of c is sufficiently

small and lminv minv apost(z
�
post(v){Ipost), lmaxw maxv

apost(z
�
post(v){Ipost). A very similar adaptation mechanism can

be derived for lpre as well by replacing subscripts post with pre in

the above. Dynamics of adaptive phase-locking STDP in (1) with

variable zpost evolving according to (6) is illustrated in Fig. 12.

According to the figure, when extracellular adaptation feedback is

activated the error of phase locking is slowly vanishing with time.

Discussion

In the previous sections of the manuscript we demonstrated how

an STDP mechanism affecting neuronal excitability can be used

for tuning of time lags between presynaptic and postsynaptic

spikes. Even though the model we studied is obviously a

simplification the resulting regulatory mechanisms may still be

considered as biologically plausible (see e.g. Fig. 5 illustrating

timing dependent modulations of state of presynapse, postsynapse

and extracellular matter). Numerical and analytical studies of the

model revealed that the values of time lags between pre- and post-

synaptic events can be maintained with remarkably high accuracy.

In fact, if no external perturbations are present then the accuracy

can be made arbitrarily high. Thus the study demonstrates that

STDP mechanisms linked to neuronal excitability can play an

important role in explaining key characteristics, such as e.g. pre-

post- synaptic timing, of signal transmission in the brain.

Precise timing of signals in the system can be achieved via

assigning appropriate values to internal parameters of the STDP

mechanism. These are the reference phase, Wc, strength/slope of

the STDP’s action, kpre,kpost, time constants apre,apost, and

excitation baseline parameters lpre,lpost.

The mechanism itself can be viewed as a feedback steering

relative phase of the spikes towards a desired reference value. As

opposed to more simplistic modeling views in which synapses are

treated as mere physical connections with only one regulatory

parameter, the synaptic gain, our study shows that dynamics of

synapses and synaptic connections constitute a significant addition.

So much so that systems equipped with such dynamic connections

become capable of adapting to inherent differences of prior

excitation in the cells. In addition they may also compensate for

the discrepancy of natural frequencies in the connected neurons.

This creates an analysis framework for generating and testing

existence of dynamic functional architectures not only in a pair of

non-identical neurons but also in networks of cells. Thanks to

explicit connection between parameters of STDP and values to

which relative phase converges, we hope that similar connections

may potentially be established at the level of networks too.

In addition to demonstrating potential of STDP with regards to

regulating spike timing to a vicinity of some desired reference

value we investigated the problem further. In particular, we

studied a possibility of making spike timing in the system

arbitrarily accurate. We demonstrated that introduction of a

simple STDP adaptation circuit enables to achieve highly accurate

tuning of spike timing in the system for a wide range of values of

the reference phase (Figs. 5, 13 illustrate location of this circuit in

the mechanism and show how the system with such circuit may

function). Adaptation here refers to a process of self-tuning of

Figure 13. Adaptive compensation of phase locking errors via extracellular adaptation feedback. Illustration for the case of presynaptic
control (5). Parameter values: apre~0:01,DI~{0:05,gsyn~0,Wc~0:1,kpre~0:0005,c~0:001.
doi:10.1371/journal.pone.0030411.g013
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internal parameters of the synapse in response to deviations of

spike timings from the desired ones. As we have shown in previous

sections, if natural frequencies of oscillations are not identical then

spike timing in systems with non-adapting STDP circuits is likely

to deviate from the reference. The error can not be eliminated by

making the values of gains of STDP large. This is because such an

increase will inevitably lead to instabilities. We showed, however,

that a synapse with adaptation in just one parameter of STDP,

namely lpre or lpost, maintains desired spike timing with arbitrarily

high precision. The process can be thought of as slow fluctuations of

‘‘state of extracellular matter’’. At the present level of biophysical

detail used in our simulations we could not associate such process

explicitly with a specific extracellular molecular cascade. Neverthe-

less, we can speculate that certain characterizations of the l
processes (e.g. low strength influence, relatively slow time scale,

integration effect) are quite similar to the influence of glia and

extracellular matrix on synaptic transmission described in [33].

Concluding, we summarize key outcomes of our study are as

follows:

N We propose a robust computational solution for task-oriented

STDP; the mechanism is capable of stabilizing given post-to-

presynaptic spike timing with arbitrary high precision.

N Both presynaptic and postsynaptic STDP feedbacks regulating

internal neuronal excitation enable stable maintenance of the

desired spike timing values.

N The task-oriented STDP needs additional adaptation feedback,

possible mediated by extracellular matter e.g. glia and matrix,

if precise spike-timing or low gains in the presynaptic and

postsynaptic feedbacks are required.

N Higher gains in STDP postsynaptic feedback may trigger

complex modes of phase dynamics with periodically or

chaotically fluctuating post-to-presynaptic spike timing values.

Supporting Information

Appendix S1 Supplementary material including addi-
tional analytical results on stabilizing effect of STDP and
phase adaptation.
(PDF)
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