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Abstract

Background: Admission to the ICU (intensive care unit) is frequently complicated by early AKI (acute kidney injury). The develop-
ment of AKI following cardiac surgery is particularly associated with increased mortality and morbidity. According to AKIN (acute
kidney injury network) criteria, UO (urinary output) is a predictor for AKI.
Objectives: The goal of this study was to determine the effects of some AKI risk factors on AKI and also to investigate changes in UO
as a predictor of AKI using joint modeling.
Patients and Methods: In a retrospective study, 300 cardiac-operated patients, who had been admitted over a period of three years,
were selected according to the consecutive sample selection method, using the ICU at Masih Daneshvari Hospital in Iran as a referral
center. The random mixed effect model and the survival model were used to investigate UO changes and estimate the effect of UO
and other risk factors on the hazard rate of AKI in a joint analysis.
Results: AKI occurred in 38.0% of patients. A significant decrease of UO occurred more often in female and infected patients, as
well as those with a low DBP (diastolic blood pressure). The survival model showed that the risk of AKI in females, older patients and
patients with low DBP, lower UO and with infection was higher (P = 0.001). Using joint modeling, the association parameter between
the risk of AKI and UO was estimated (-0.3, P = 0.002).
Conclusions: Where there is a relationship between two longitudinal and survival responses, joint modeling can estimate it.
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1. Background

The development of AKI (acute kidney injury) follow-
ing cardiac surgery is associated with increased mortal-
ity and morbidity (1). According to the definition, post-
operative AKI occurs in 3% - 30% of patients (2). In a study
conducted to identify the AKI incidence in patients who
were operated on through the off-pump coronary artery
bypass (OPCAB) technique, 33.3% in the OPCAB group had
AKI (3). Over the last few decades, more than 35 differ-
ent definitions have been proposed to define AKI, many of
which were complicated. A substantial number of publi-
cations focused on the AKIN (acute kidney injury network)
and RIFLE (risk injury failure loss end-stage kidney disease)
classifications are widely accepted by the medical commu-
nity. They were based on UO (urinary output) and/or SCr
(serum creatinine) biomarkers (4, 5). Because of some ad-

vantages, in many studies, UO has been suggested over
other biomarkers, such as serum creatinine. The use of UO
has been especially preferred for the study of AKI in car-
diac surgery, ICU and hospitalized patients (6, 7). Further-
more, using UO as an AKI biomarker is not dependent on
the knowledge of a baseline UO, and particularly in criti-
cal care settings, where hourly UO is routinely measured, a
reduced UO is potentially the first symptom of kidney dys-
function (7, 8). A decrease in UO is usual among critically ill
patients (9). Therefore, urinary diagnostic indices are prin-
cipally used to aid in the early diagnosis of AKI and in mea-
suring its severity (10).

As many studies have investigated, the risk factors asso-
ciated with the development of AKI after cardiac surgery,
the precise monitoring of UO and a better understand-
ing of risk factors of its variation, could improve the clin-
ical management of patients in the ICU and allow clini-
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cians to quickly recognize AKI (7). In almost all studies,
explicit risk factors have been frequently associated with
an increased risk for AKI (11-17). These include female gen-
der, reduced left ventricular function or the presence of
congestive heart failure, diabetes, peripheral vascular dis-
ease, pre-operative use of an intra-aortic balloon pump,
chronic obstructive pulmonary disease, the need for emer-
gent surgery and an elevated pre-operative serum creati-
nine (18). Other risk factors for AKI have also been estab-
lished, such as sepsis, pneumonia, infusion of contrast
medium, rhabdomyolysis and preexisting renal disease
(19, 20). The study of the risk factors associated with the
variation of UO changes as a predictor of AKI in ICU pa-
tients has been performed less frequently than AKI. Using
joint modeling of longitudinal and survival data, it is pos-
sible to estimate the effects of risk factors for UO changes
and then investigate the effects of UO and other AKI risk fac-
tors.

Many clinical trials produce both repeated measure-
ments (longitudinal) and time-to-event (survival) data.
Many classic methods exist for analyzing such data sepa-
rately, including linear mixed effects models for longitu-
dinal responses and parametric, nonparametric or semi-
parametric models for survival responses (21-24). Using
these methods separately, however, may be inappropriate
when two outcomes are correlated. A joint model is less
likely to cause biased statistical inferences (22, 25, 26). By
jointly maximizing the likelihood from both the longitu-
dinal process and the time-to-event data, one uses infor-
mation from both sources to get parameter estimates for
the two processes simultaneously. By doing so, we can cor-
rectly assess the dependence of the failure time and the
longitudinal data (26). In addition to correcting biases,
joint modeling can improve the efficiency of parameter
estimates in both parts of the model, because extra infor-
mation is being used. Many studies have been further ex-
tended by using the Bayesian approach (27-31) or the fre-
quentist approach (32-35). However, when a more compli-
cated longitudinal model is used, an EM algorithm may
not be feasible. For example, when the longitudinal model
requires a large number of random effects to capture the
structure of the observations, the EM algorithm for esti-
mation may involve high-dimensional integration in the E-
step. This task is very challenging and may even be impossi-
ble (26). Therefore, in this study, a Bayesian joint modeling
of longitudinal and survival data was used to determine
the effects of certain risk factors, such as gender, age, infec-
tion (the majority of patients were septic), cardiac disease,
DBP (diastolic blood pressure) and chronic pulmonary dis-
ease, on time-to-AKI as the survival outcome, and UO as the
longitudinal outcome.

A Bayesian approach was used to estimate the joint pos-

terior distribution of model parameters. We used AKIN cri-
teria for the AKI definition, which was defined as a reduc-
tion in urinary volume to 0.5 mL/kg per hour for more than
six hours. The present retrospective study was conducted
on patients admitted to the ICU of Masih Daneshvari Hos-
pital as a referral center over a period of three years. The
patients’ demographic data, laboratory data and the rea-
son for ICU admission were recorded in constructed forms
during the ICU admission.

2. Objectives

In this study, for the first time, we assessed the associa-
tion between UO and AKI using the joint modeling of lon-
gitudinal and survival data.

3. Patients and Methods

We analyzed the data from a retrospective study. All
participants were consecutively sampled adult patients
(n = 380) who underwent a cardiac surgical procedure
with cardiopulmonary bypass at Masih Daneshvari Hospi-
tal, Tehran, Iran, between October 2010 and October 2012.
Patients who underwent more than one cardiac surgical
procedure during hospitalization (n = 40) were excluded
from the study. Additional exclusion criteria were surg-
eries performed off-pump (n = 15) and pre-operative renal
failure requiring dialysis (n = 25). Overall, 300 patients
could be included in the study. After surgery, patients were
admitted to the ICU and were followed from the day of
ICU admission until ICU discharge or the end of the study.
UO and other physiological variables were repeatedly mea-
sured every two hours in the first eight hours of admis-
sion in the ICU. The patients’ demographics, laboratory
data, the reason for ICU admission, the length of hospital-
ization and the length of ICU stay were recorded in pre-
pared forms during the ICU admission. The main survival
endpoint was the time of occurrence of AKI after cardiac
surgery, which was defined as an amount of urinary out-
put less than 0.5 mL/kg per hour for more than six hours.
Patients were followed from ICU admission until AKI oc-
currence. The dosage of dopa, dobutamine, epinephrine,
norepinephrine and vassopresinare was scaled based on
the individual patient characteristics and comorbid con-
ditions. Blood pressure was measured twice at ten-minute
intervals, and patients were sitting for at least five minutes
before the measurement.

3.1. Statistical Analysis

A joint modeling of longitudinal and survival data, pro-
posed by Guo-Carlin, was used for data analysis in this
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study (25-37). Guo-Carlin’s method applied a Bayesian hi-
erarchical model obtaining estimates for the parameters
of interest by Markov chain Monte Carlo (MCMC) methods.
The joint modeling approach links two sub-models, one
for the longitudinal process and one for the event time.
The linkage is modeled via a set of random effects that are
assumed to consider the associations between these two
outcomes. In this study, the longitudinal and survival re-
sponses were, respectively, UO and the time of occurrence
of AKI (in hours) in patients with cardiac surgery since
the time of entry into the ICU. A mixed effect model was
assumed for UO, and the time-to-AKI was analyzed using
parametric models (Weibull and exponential models), re-
spectively, according to Equations 1 and 2:

(1)
UOij = intercepti + β11agei + β12sexi

+ β13DBP ij + β14infectionij

λi (t) = λ0 (t) exp (γ ∗ intercepti + β21Agei + β22sexi

+ β23DBP i + β24Infectioni + β25COPDi

+ β26CDi)

(2)

Where i = 1…300, the number of patients, and j for each
i equals j = 1, 2, 3, 4. λi (t) is the hazard of AKI for patient i at
time t.

The free software OpenBUGS 3.2.2 (http://www.mrc-
bsu.cam.ac.uk) was used for data analysis and estimation
of unknown parameters. Deviance information criterion
(DIC) was used for model selection. A Bayesian joint mod-
eling approach with vague prior distributions (assum-
ing a multivariate normal distribution with mean 0 and
variance-covariance matrix Z4×4 with diagonal elements
0.01 and zero covariances for main effects vector β1 = ( β11,
β12, β13, β14), and postulating a gamma distribution with
parameters α1 = 0.1 and α2 = 0.1 for the error variance. We
similarly selected vague normal distribution prior for β2

= (β21, β22, β23, β24, β25, β26). A normal distribution with
mean 0 and variance 0.01 for the association parameter
γ was assumed. In addition, we for random intercepts
chose normal prior. Results are based on 100 draws from
a Markov chain Monte Carlo (MCMC) of length 11,000 iter-
ations, with a burn-in of 1,000 iterations, to characterize
posterior distributions for the parameters.

4. Results

The characteristics of some variables that were used in
the modeling have been reported in Table 1. Continuous
variables are presented as the mean ± SD. To summarize,
the mean ± SD age was 57.7 ± 9.8 years, 52% were women

and AKI developed in 38% of patients. From among the
300 patients included in this analysis, 114 patients had ob-
served event times and 25 patients died. 46 and 156 pa-
tients, respectively, had chronic pulmonary disease and
cardiac disease.

Table 1. Demographic and Laboratory Characteristics of Patients (n = 300)a

Variable Cardiac Surgery Patients

Urinary

2 hours 1.8 ± 0.2

4 hours 1.1 ± 0.2

6 hours 0.9 ± 0.3

8 hours 1.2 ± 0.2

HOS-LOS, days 17.8 ± 3.8

ICU-LOS, days 7.8 ± 2.9

Age, y 57.6 ± 9.8

Additive EuroSCORE 3.9 ± 1.3

Logistic EuroSCORE 4.7±6.9

APACHI II SCORE 11.2 ± 5.0

COPD, No. (%) 62 (20.7)

CD, No. (%) 242 (80.7)

Sex, (Female), No. (%) 156 (52.0)

Infection, No. (%) 45 (15.0)

Abbreviations: APACHE II SCORE, acute physiology and chronic health evalua-
tion II score; CD, cardiac disease; COPD, chronic obstructive pulmonary disease;
EuroSCORE, European system for cardiac operative risk evaluation; HOS-LOS,
hospital length of stay; ICU-LOS, ICU length of stay.
aValues are expressed as mean ± SD unless otherwise indicated.

The survival estimates of patients are shown in Figure
1. A decreasing survival curve of patients means an increas-
ing risk of AKI over time. The vertical dashes on the line
of survival function in Figure 1 to denote that AKI for some
patients did not occur because the study ended or because
the patient died. The total number of UO longitudinal
measurements was 880, and the average of the measure-
ments was 3.2 per patient. The amount of UO was reduced
over time overall. In Table 2, we compared the results of
the joint analysis for the effect estimation of some covari-
ates on two interested responses. The association parame-
ter that described the strength of association between val-
ues of UO and risk of AKI was estimated to be -0.31 with a
95% confidence interval (-0.55, -0.10), which indicated that
UO and the risk of AKI were negatively associated. The HR
(hazard ratio) was exp (1.34) = 3.8 for patients with infec-
tion problems with respect to non-infected patients. The
patients without an infection problem had a better aver-
age survival rate. Females had a worse survival rate (i.e., a
higher risk of AKI following cardiac surgery) than male pa-
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tients, and the differences were significant. The HR of AKI
following cardiac surgery in female to male was exp (0.69)
= 1.99. In the survival model, we found that age was signif-
icant; every 10-year increase in age elevated the AKI rate by
50%. In the longitudinal sub-model, it was seen that the de-
crease of UO occurred significantly more in female and in-
fected patients, and also in those with low DBP. A decrease
of one unit in DBP corresponds to a decrease of 11.9 in UO.
The mean UO of a female patient was 55.7 lower than the
mean UO of a male patient in this study. The final joint
modeling, presented in Table 2, had less (DIC = 56.8) over
other models with different predictors. In other joint mod-
els, chronic obstructive pulmonary disease (COPD) and car-
diac disease were entered into the longitudinal sub-model,
but they had no significant effects, and their DICs were
near to the final joint model DIC in this study.

Survival Function
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Figure 1. Survival Estimate of Patients

5. Discussion

AKI following cardiac surgery is a common and serious
post-operative problem, and it is an independent predictor
of mortality after cardiac surgery (38). AKI is highly preva-
lent and predictable. AKI is a significant predictor of mor-
tality using multivariate logistic regression (39-41).

By most estimates, up to 30% of cardiac surgery pa-
tients develop clinically relevant kidney injury (42). Some
studies have found that using UO as a biomarker of AKI in
cardiac surgery in ICU and hospitalized patients is prefer-
able (6). Many studies have developed models to predict
AKI, but statistical modeling of the risk factors associated
with the variation of UO in ICU patients has been described

Table 2. The Estimated Effects of Risk Factors Associated With UO and AKI in ICU Data
Using Joint Analysis

Sub-Model Parameter β (SE)

Longitudinal (UO)

Age 2.98 (1.57)

Sex -55.72a (13.63)

DBP 11.90a (1.56)

Infection -649.8a (6.00)

Survival (AKI)

Age 0.04 (0.40)

Sex 0.69a (0.39)

DBP -0.31a (0.08)

Infection 1.34a (0.52)

COPD 0.67a (0.55)

CD 1.42a (0.79)

Association Parameter

Association -0.31* (0.70)

Abbreviations: COPD, chronic obstructive pulmonary disease; CD, cardiac dis-
ease.
aSignificance of the effect at significance level of 5%.

less than AKI. Moreover, there was no numeric quantity for
association of UO and risk of AKI (2).

The novelty of this study was in describing the rela-
tionship between the time of AKI following cardiac surgery
and UO by an association parameter, using joint modeling.
Joint modeling takes into account the interdependence of
the two types of survival and longitudinal responses.

After using joint modeling, our findings showed a neg-
ative significant association between the risk of AKI fol-
lowing cardiac surgery and UO in patients (-0.31, P = 0.04),
which demonstrated the suitable selection of the joint
modeling for this research. According to the results of
the mixed model of joint analysis, a significant decrease
of UO occurred more often in female and infected patients
as well as those with low DBP. Female gender (HR = 1.99,
P = 0.01), older age (HR = 1.1), cardiac diseases (HR = 4.2,
P = 0.02), low DBP (HR = 1.4, P = 0.03) and chronic pul-
monary diseases (HR = 1.9, P = 0.02) had significant effects
on the risk of AKI after cardiac diseases. Similar results
were obtained by other researchers (10, 38, 43-46). Sepsis
was also introduced as a considerable risk factor of AKI. In
fact, the majority of infected patients were septic in this
study. Many other factors are associated with an increased
risk of AKI, but their influence will be highly dependent on
the specific nature of the population (19). Through using
joint modeling, a reduction in the standard error of esti-
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mates occurred, thus more accurate parameter estimates
and valid inferences concerning the effect of covariates on
the survival and longitudinal outcomes could be obtained
(25, 47).

However, the occurrence of AKI after cardiac surgery
is often slow, and other factors concerning intra-operative
and post-operative management of patients could be rel-
evant. We recommend definite prevention programs in
the ICU target patients with traditional risks of AKI, such
as older age, sex, cardiovascular surgery and chronic pul-
monary disease. Moreover, some factors might be measur-
able some time before the occurrence of AKI, which more
importantly could suggest appropriate strategies to pre-
vent or limit AKI (1).

To the best of our knowledge, it is not clear whether the
addition of variables that are not known before surgery,
but are easily accessible before AKI occurrence, can also be
easily collected, recorded and monitored (1). The strength
of this study was the estimation of the association param-
eter of AKI and UO using joint modeling for the first time.

5.1. Conclusions

We concluded that when there was a relationship be-
tween two longitudinal and survival responses, joint mod-
eling presented considerable improvements in estima-
tions compared to longitudinal and survival models sep-
arately.
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